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Abstract: Hydraulic rock drills operate under harsh environments of excessive humidity and vibrations. In operation, 
the fundamental machine frequency is hampered by various loading disturbances created by the pressure 
waves generated during the rock drill application, which initiates faults at different times during a complete 
cycle of rock drilling. These faults include failure of internal parts, excessive channel openings and damaged 
parts, causing enough non-linearity in the pressure data generated. A fault in such machinery can multiply 
quite rapidly, leading to accidents like complete failure of the equipment and loss of life. Therefore, it is 
crucial to classify the fault and inform the operator of it.  The fault classification challenge escalates further 
when the rock drill operates on previously unknown operating conditions. In the present work, we compare 
the performance of deep learning models like Long short-term memory, Convolutional Neural Network, and 
Residual Network to classify faults, whose signature is recorded in data generated at a frequency of 50kHz 
when a rock drill is in operation. We also demonstrate how the accuracy of models vary when the models are 
tested on unseen operating conditions. An overall analysis is provided to generalize a model for fault 
classification in industrial applications over contrasting operating conditions.  

1 INTRODUCTION 

Hydraulic rock drills have a wide range of 
applications in various industries, such as mining, 
rock excavation projects, highway tunnels, and 
railways, due to their high precision, cleanliness, and 
safety (Ma et al., 2019). Modern rock drills are 
generally mounted on vehicles and their mechanism 
uses pneumatics or hydraulics (Jakobsson et al, 
2022). Hydraulic rock drills are used to fracture huge 
rocks and concrete structures by applying pressure 
through continuous impact & rotation, with a force of 
around 600kN. The repetitive impact of piston makes 
the machine vulnerable to different faults. 
Classification of faults is crucial to ensure safety and 
maintain high maintenance standards. Different 
operating regimes recorded different signatures of 
fault, making the classification problem more 
challenging. Therefore, a model that guarantees that 
a fault is captured and categorizes it appropriately is 
needed. 

Due to high reliability, robustness, and low cost, 
only pressure sensors are mounted on hydraulic rock 

drills. Pressure waves generated are recorded on these 
sensors at a frequency as high as 50kHz. These 
pressure signals are recorded at the inlet fitting called 
percussion pressure (Pin), damper pressure inside the 
outer chamber (Pdin), and pressure in the volume 
behind the piston (Po). The magnitude and phase of 
these pressure signals depend on the impact of the 
drill on the rock or sudden valve openings (Jakobsson 
et al., 2022). The pressure is recorded for a certain 
period depending on the overall operation time of the 
hydraulic rock drill or the occurrence of an 
unforeseen event such as faults. The measured signal 
is periodic in nature, typically, governed by a 
sequence of valve openings at different times, making 
it difficult to view the signal as a superposition of 
similar wave occurrences in the past. Additionally, 
these events correlate to fault occurrences, and they 
vary with a change in test setup or change in operating 
conditions, therefore, making it difficult to spot the 
occurrence of individual events at such a high 
frequency of event generation. 

Hydraulic rock drill operates under high-
performance demands in harsh environments 
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subjected to excessive humidity and vibrations 
(Jakobsson et al., 2022). In operation, the 
fundamental machine frequency is hampered by 
various loading disturbances created by the pressure 
waves, generated during the rock drill application. 
This initiates faults at different times during a 
complete cycle of rock drilling. These faults include 
failure of internal parts, excessive channel openings, 
and damaged parts. The fault classification challenge 
escalates further when the hydraulic rock drill 
operates in an unseen test environment. Table 1 
represents 11 types of faults occurring in hydraulic 
rock drills in operation. 

Table 1: Fault Classes for a hydraulic rock drill. 

Class 
Number 

Class 
Code 

Class Description 

Fault 0 NF No fault 
Fault 1 T Thicker drill Steel 
Fault 2 A Leakage from high-pressure 

channel to low-pressure channel
Fault 3 B Leakage from the control channel 

the to return channel 
Fault 4 R Damaged return accumulator
Fault 5 S Longer drill steel 
Fault 6 D The damper orifice is larger than 

usual
Fault 7 Q Low flow to the damper circuit
Fault 8 V Valve damage 
Fault 9 O The orifice on control line outlet 

larger than usual 
Fault 10 C The charge level in high-pressure 

accumulator is low 
 

Research in classification algorithms based on 
machine learning, deep learning, or symbolic learning 
has certainly taken up a developmental pace since the 
last decade (Gupta et al., 2021). Every year work on 
new classification approaches has been proposed that 
work extremely well on benchmark datasets provided 
under the UCR archive for numerous industrial 
applications and academic interests (Dau et al., 2019). 
Few of the frequently tested algorithms for such tasks 
are LSTMs, CNNs, and transformers. with their 
variants including architecture changes or ensemble 
strategies (Gupta et al. 2021).  

Researchers have proposed some related work on 
fault classification using sensor data with time series 
models or other deep learning frameworks. Sun et al. 
(2020) have proposed a CNN-based framework by 
using univariate sensor data from a hydrogen sensor. 
They have also proposed the usage of random forest 
as a bagging algorithm to generalize their model. 
Although they were able to achieve an accuracy of 
100% for 6 faults, the faults considered had very 

different signatures, and the faults that possess signals 
closer to the base faults were considered as future 
work (Sun et al., 2020). Few researchers have used 
deep convolutional neural networks (DCNN) to 
identify faults in gearbox sensor data (Jing et al., 
2017). They transformed the data into 3 fusion levels 
and were able to achieve high accuracies after 
transformation. However, the data present in training, 
validation, and test sets were taken up from the same 
test facility. They did not have any separate data from 
different test setups or different operating conditions. 
Researchers have also experimented with 3 types of 
datasets of motor bearing with 2 faults outer ring and 
inner ring faults using a Transfer Convolutional 
Neural Network (Wen et al., 2020). They also divided 
the data into train, validation, and test from the same 
datasets and provided k-fold validation. Both the 
aforementioned works make it difficult to scale up the 
model for different test facilities or operating 
conditions. Zhang et al. (2021) have used a hybrid 
attention Resnet to train a model for fault diagnosis of 
wind turbine gearbox. The present work is inspired by 
their idea of fault diagnosis, and we propose the use 
of Resnet for generalizing a model for multiple 
operating regimes. 

Jakobsson et al. (2022), have also proposed a time 
series-based approach for fault classification in 
hydraulic rock drill operations. They have employed 
Dynamic Time Warping (DTW) with its several 
variations. They have used only one pressure sensor 
(percussion pressure) and have reported the best 
accuracy of 73% on the test dataset (i.e., changing 
operating conditions). The hypothesis followed 
requires that signatures of one fault would always 
follow the same trend in any operating condition and 
the change would only be compromised in the phase 
difference, where the DTW algorithm with its 
variants can help. In the present work, we employ 
several deep learning-based approaches to capture the 
spatial and temporal patterns in the multivariate data 
and discuss the best model that can be deployed. 

The present work proposes the development of 
algorithms where operating regimes of industrial data 
changes in relation to the necessary application, as a 
result, similar trends are unseen while model training. 
This work intends to obtain a generic model for 
deployment with an assumption that data available for 
training is scarce and the test operating conditions are 
completely unseen by the model. The contribution of 
this work provides an approach for solving industrial 
problems with changing operating regimes, 
decomposing domains based on available data, and 
lastly, selecting the best model for deployment. 
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The paper is organized as follows: Section 1 
describes the problem statement, industrial standards, 
related work, and the identified gaps. Section 2 
describes the data source and descriptive study. 
Section 3 describes the architectures of the algorithms 
used. Section 4 presents the methodology followed to 
select the best model. Section 5 presents the key 
results and provides relevant discussion around them. 
Lastly, section 6 summarizes the approach & results 
and provides concluding remarks.  

2 DATA DESCRIPTION 

The hydraulic rock drill system in consideration uses 
3 sensors, mounted at different locations on the drill, 
recording pressure at a frequency of 50kHz. The 
pressure data used for analysis is generated in a test 
facility where the faults are induced in the system for 
different operating conditions (Jakobsson et al., 
2022). Multiple instances are captured in the test 
facility by changing the operating conditions of the 
hydraulic rock drill. The test facility is kept as close 
to real-world scenarios, where drilling usually takes 
place. Any modifications to percussion pressure (P1) 
and feed force (P2) have a significant impact on how 
hydraulic rock drill operates. Experiments have been 
conducted by changing feed force and percussion 
pressure and as a result pressure variations are 
recorded on the 3 pressure sensors. Figure 1 illustrates 
the changing operating conditions with respect to 
controllable variables (P1 and P2). Additionally, 
changes in ambient conditions and the direction of 
drilling are a few uncontrollable parameters that alter 
the pressure signal recordings, thereby making the 
fault classification task complex. 

Figure 1 illustrates eight distinct operational 
regimes that have been recorded based on the 
outcomes of trials carried out in the testing facility. 
Each of the operating regimes provided has a 
different set of P1-P2 values. Table 2 provides the 
number of observations captured in each of the 
operational regimes. The fault classes were evenly 
separated in all the regimes. 

Figure 3 illustrates how the same fault differs 
under several operational regimes. The x-axis in the 
figure represents the time in milliseconds and the y-
axis represent the Pin, Pdin, and Po for a single fault. 
From the exploratory analysis in figure 3, it can be 
noted that a single fault's patterns alter over various 
operating regimes and cannot be superimposed on 
one another. Therefore, advanced algorithms are 
needed to classify faults with high accuracy. 

 
Figure 1: Percussion pressure & feed force variation for all 
8 operating regimes (Jakobsson et al., 2022). 

Table 2: Regime-wise data samples available. 

Regime ID Number of 
samples

Regime ID Number of 
samples

Regime 1 7311 Regime 5 7977
Regime 2 7867 Regime 6 3293
Regime 3 3184 Regime 7 7935
Regime 4 7597 Regime 8 8461

3 NETWORK ARCHITECTURES 

We tested 3 deep learning architectures to provide the 
best possible accuracy even when the operating 
conditions change. We consider the work done by 
Jakobsson et al. (2022), as a baseline and explore the 
outcomes from deep learning architectures. Each of 
the network architectures is built using the functional 
API in TensorFlow 2.0 (Abadi et al., 2016) 

3.1 Long Short-Term Memory  

Long short-term memory (LSTM) is a sequential 
deep learning algorithm introduced to overcome the 
vanishing gradients problems usually noticed in 
Recurrent Neural Networks (RNN) (Hochreiter et al., 
1997). LSTM networks are known to provide 
excellent results when the features in the data have 
temporal dependencies. In the past LSTMs have been 
successful in industrial applications such as problems 
with classification applications, prediction 
applications, anomaly detection, forecasting 
applications, etc. (Balouji et al., 2018, Gupta et al., 
2022). The predictions from an LSTM model are 
controlled by 3 control gates; an input/update gate, 
forget gate, and an output gate. The previous hidden 
state and the current input are fed to the input/update 
gate, while forget gate controls the amount of 
previous information to be passed to the next cell 
state, and lastly, the output gate decides the final state 
of the cell. Figure 4 presents the architecture of the 
network used in the current study. 
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Figure 2: (a) Normalized damper pressure inside the outer chamber, (b) Normalized pressure in the volume behind the piston, 
and (c) Normalized percussion pressure at inlet fittings vs time in milliseconds. 

 
Figure 3: Normalized damper pressure, Normalized pressure in the volume behind the piston & normalized percussion 
pressure showing the variation in fault signatures in all operating regimes for different cases. 1. No-fault scenario, 2. Thicker 
drill steel fault, and 3. Leakage from high pressure to low pressure challenge fault. 
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The model architecture is illustrated in figure 4. 
The model consists of 2 LSTM layers of 80 and 60 
LSTM units, with an activation function as tanh. The 
2 LSTM layers are followed by 3 dense layers 
consisting of 50, 25, and 11 dense units respectively. 
The first 2 dense layers are provided with a relu 
activation function while the last output layer has a 
softmax activation function. The tuning of the 
hyperparameters is carried out using a random search 
method. The model is trained over 260 epochs with a 
batch size of 32 and a learning rate of 1e-4. 

 
Figure 4: LSTM architecture. 

3.2 Convolutional Neural Networks 

Convolutional neural networks have shown great 
promise in a variety of applications, especially in 
image-based datasets for applications such as image 
classification, image detection etc. (Aloysius et al., 
2017). The main difference between a neural network 
and the convolutional neural network is in the 
selective connection of neurons between hidden 
layers. Because of this sparse connectivity, a CNN 
model can learn spatial features implicitly. CNN 
model uses a convolutional operator resulting in 
neurons sharing weights, thereby, reducing the 
complexity of the model by decreasing the number of 
trainable weights. Recently, the performance of 
CNN-based architectures has shown promise in 
industrial applications such as fault diagnosis, 
classification, and prediction (Jiao et al, 2020).  

The CNN model architecture is illustrated in 
figure 5. The model consists of 4 CNN-1D layers with 
128, 256, 128, and 128 filters respectively. The filter 
size and activation functions used are shown in figure 
5. The 4 CNN layers are followed by 2 dense layers 
(including the output layer) with the number of 
neurons in each layer equal to 20 and 11. A batch size 
of 8 with a learning rate of 0.00001 is used to train the 
model for 100 epochs. 

 
Figure 5: CNN architecture. 

3.3 Residual Networks (ResNets) 

ResNets were introduced to improve the performance 
of deep neural networks in Image classification (He 
et al., 2016). The introduction of skip connections 
between residual blocks enabled the gradient flow to 
the bottom layers. Figure 6 shows an image of such 
residual block connection. ResNet achieved state-of-
the-art performance on ImageNet, COCO datasets 
etc. Similarly, it has shown optimal performance in 
time series Datasets in UCR (Dau et al., 2019).  

 
Figure 6: Connection within a ResNet. 

The customized ResNet architecture used in this 
study is illustrated in figure 7. The network consists 
of 3 Residual blocks with convolutional filters 
64,128, and 128 respectively. Each Residual block 
consists of 3 convolutional 1-D with filter sizes 
{5,3,1}, followed by batch normalization with 
activation function relu. These residual blocks are 
followed by a global average pooling layer and an 
output layer with 11 neurons. A batch size of 8 with a 
learning rate of 0.00001 is used to train the model for 
100 epochs. 

All the models are trained on a GPU machine with 
specifications: NVIDIA RTX A4000 processor on 
ubuntu 22.04 version on a 64-bit operating system, 
with 48 GB RAM. 
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Figure 7: Resnet architecture.

4 METHODOLOGY 

Figure 3 illustrates the change in operating regimes 
with respect to the change in P1 and P2 for a hydraulic 
rock drill system. Jakobsson et al. have also 
mentioned that changing feed force (P2) majorly 
affects the fault signature which lead to inaccuracy in 
their model. Therefore, it is important to develop a 
framework where the accuracy of the model is not 
hampered by changing operating conditions. 
Considering generalization to be of paramount 
importance we formulated 3 parallels to build models 
as accurate as possible that works even in changing 
operating conditions. 

4.1 Enclosed Operating Regime 
Prediction 

Different operating regimes are generated by varying 
both the parameters (P1 & P2), which are shown as 1-
8 numeric values in figure 1. These operating regimes 
indicate the real-time working conditions, such as the 
1st operating regime may imply straightforward 
drilling circumstances in delicate rocks, whilst the 8th 
operating regime may indicate some complex rock 
excavation in coal mines. In the enclosed operating 
regime prediction approach, data from one operating 
regime is split into train, validation, and test dataset 
in the ratio 70:15:15. Deep learning architectures 
presented in section 3 are trained, and their 
performances are recorded. The 15% test data and 
adjacent regime data are used to evaluate the 
performance of all models. The latter enables the 
selection of best models performing well not only on 
the base operating regime (training data operating 
regime)   but   also   on   an   unseen  operating  regime.  

As an example, 70% of data from 1st operating regime 
is used to train the models. These models are then 
used to predict faults on samples from 2nd operating 
regime only. This test is done on the adjacent regime 
with respect to P2 so that model’s judgment makes 
sense.  

4.2 Intermediate Operating Regime 
Prediction 

In the intermediate operating regime prediction 
approach, operating regimes 1,2,4,5, and 6 are used to 
train a model, and the model’s performance is tested 
on the 3rd operating regime. In this method, the model 
is trained from scratch from 1 boundary to another 
while allowing a few operating circumstances for 
testing in between, ensuring great performance on 
intermediate unseen data.  

4.3 Exterior Operating Regime 
Prediction 

Rock drill application involves crushing both soft and 
hard rocks, requiring changes in feed force from as 
low as 20kN to 600kN (Jakobsson et al, 2022). Since 
there is such a large variation in force, many times 
rock drill machines have not seen high-force tasks. 
Safety being of utmost importance necessitates the 
prediction and classification of a fault even if the 
large feed force operating condition is not seen during 
model training. Therefore, a model that can 
accurately anticipate a class is needed for exterior 
operating regime prediction approach. 

Here, we use the training datasets 1, 2, 3, and 4 
to train the CNN & Resnet models from scratch and 
test the models on test datasets 5 & 6. Then, in order 
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to generalize the model to any operating regime, the 
model architecture with the highest accuracy in 
exterior operating regime prediction would be 
adopted. It would be trained on operating regimes 1, 
2, 3, 4, 5 & 6 and tested on operating regimes 7 & 8. 

5 RESULTS & DISCUSSIONS 

Prior work done by Jakobsson et al. (2022) sets the 
baseline for any model development, where 
improvement in the results of fault classification 
demands an increase in accuracy. They used Dynamic 
Time Warping (DTW) and its derivatives to achieve 
an accuracy of 100% on predictions in an enclosed 
operating regime and reported 73% on any other 
operating regime. In the present work, we consider 
their achievements as the baseline and develop 
models that work well not only on enclosed operating 
regime data points but also on intermediate and 
exterior operating regime data points. 

Three types of base model architectures are used 
to classify faults: LSTM, CNN, and ResNets. Each 
model is randomly customized to produce the highest 
test accuracy for each approach presented in section 
4. The ResNet model is customized by changing the 
skip connections in the architecture for the 
classification problem under study. The time taken to 
train, number of trainable parameters, and the results 
are presented in Table 4.  

Table 4 presents results for all three operating 
regimes. First, all three models are tested on the 
enclosed operating regime. Here, all the models are 
trained on 70% of data from 1st operating regime and 
are validated on 30% of data from the same regime. 
All 3 algorithms predict the fault class with at least 
98.32% accuracy in training data and at least 89% 
accuracy in validation data. ResNets perform best 
with 100% accuracy in both, while the performance 
of LSTM-based model can be deemed as overfitted. 
Although, the accuracy of prediction for all the 
models is quite high on the data from the same 
operating regime, but all models failed to produce 
good accuracy when tested on data points from 2nd 
operating regime. ResNets-based model generated 
maximum accuracy equal to 42.48%, while the 
LSTM-based model had the least accuracy equivalent 
to 10.52%. This drop in accuracy can be attributed to 
the unobserved operational condition of percussion 
pressure (P1) by the models, resulting in the recording 
of unseen pressure disturbances on the 3 pressure 
sensors. Therefore, it can be concluded that models 
require more knowledge of the operation of hydraulic 
rock drills to generalize for any operating condition. 

Second, we analyze models’ performance on the 
intermediate operating regime. Here, all the models 
are trained on 70% of the training data (operating 
regimes: 1,2,4,5,6) and their predictions are validated 
on 30% of unseen data from the same regimes, while 
the data recorded in the 3rd operating regime is 
considered to be the test data. The accuracy of the 
LSTM-based model dropped drastically for both 
validation and test datasets. The drop in accuracy can 
be attributed to the failure of LSTM networks to 
classify on samples from extrapolated data, similar to 
the results reported by Trask (Trask et al, 2018). On 
the other hand, CNN & ResNet- based models were 
able to capture faults perfectly.  

Lastly, we examine the performance of CNN-
based and ResNet-based models on exterior operating 
regimes. ResNet architecture provided the highest test 
accuracy on operating regimes 5 & 6, equivalent to 
98.61%. Moreover, the recall value on the fault is 
generally considered a measure of safety for 
equipment. Table 3 shows that none of the actual fault 
cases are classified as healthy working conditions (no 
fault class) of the equipment, resulting in a recall 
value equivalent to 1 over fault. A high recall value is 
generally considered as a safety measure for any 
equipment in operation. Here, the recall value for the 
ResNet model is equal to 1, hence satisfying the 
safety criteria for such huge machinery. 

Additionally, the model was also trained on 
operating regimes 1,2,3,4,5, & 6 and tested on 
operating regimes 7&8. ResNet model was able to 
produce an accuracy of 98.09%, which ensures the 
stability of the model in varying operating conditions. 
Therefore, it can be noted that ResNet model with the 
proposed architecture, trained with the least amount 
of time taken, is a better measure of accuracy and 
safety for the equipment under study. 

Table 3: Confusion matrix for ResNet on 5&6 operating 
regime for fault & no faults scenario. 

 Predicted 
 

Actual 
 Fault No-Fault 

Fault 10259 0 
No-Fault 27 984 

6 CONCLUSIONS 

In this paper the generalized approach for the Fault 
Classification over different operating regimes of 
hydraulic rock drill system has been presented. The 
outcomes of 3 different model architectures built 
using LSTM, CNN,  and  ResNets  base  layers  were  
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compared for each region. An accuracy of 100% was 
produced on previously unknown intermediate 
regimes by CNN & ResNet. On unobserved exterior 
regimes, the proposed ResNet architecture 
demonstrated the best accuracy of 98.61% and 
98.09%. Furthermore, classification done using 
Resnet model produced a recall value of 1 over faults, 
guaranteeing the safety of operation in such complex 
machinery. Therefore, it can be concluded that the 
proposed ResNet architecture is the generalized 
model for fault classification in any operating regime 
of a hydraulic rock drill setup. 
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Table 4: Classification accuracy for all the models in all operating regimes. 

S.No Regime Model base 
Layer 

# Trainable 
Parameters

Training 
Time

Training 
Accuracy (%)

Validation 
Accuracy (%) 

Test 
Accuracy (%)

1 Enclosed 
Operating Regime 

LSTM 65311 ~4 hrs 98.32 89.1 10.52
2 CNN 987291 ~1.5 hrs 100 99.2 28.62
3 ResNet 506571 ~1 hr 100 100 42.48
4 Intermediate 

Operating Regime 
LSTM 65311 ~4hrs 85.37 63.78 41.21

5 CNN 987291 ~1.5 hrs 100 100 100
6 ResNet 506571 ~1 hr 100 100 100
7 Exterior Operating 

Regime 
LSTM 65311 ~4 hrs 81.21 41.35 22.94

8 CNN 987291 ~1.5 hrs 100 100 91.25
9 ResNet 506571 ~1 hr 100 100 98.61
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