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Abstract: Machine learning models have demonstrated exceptional performance in various applications as a result of
the emergence of large labeled datasets. Although there are many available datasets, acquiring high-quality
labeled datasets is challenging since it involves huge human supervision or expert annotation, which are ex-
tremely labor-intensive and time-consuming. Since noisy datasets can affect the performance of machine
learning models, acquiring high-quality datasets without label noise becomes a critical problem. However,
it is challenging to significantly decrease label noise in real-world datasets without hiring expensive expert
annotators. Based on extensive testing and research, this study examines the impact of different levels of label
noise on the accuracy of machine learning models. It also investigates ways to cut labeling expenses without
sacrificing required accuracy.

1 INTRODUCTION

Machine learning has shown outstanding perfor-
mance in a variety of applications since the recent
emergence of large-scale datasets. This success de-
pends on the availability of large amounts of la-
beled data (Krizhevsky et al., 2017) and (Li et al.,
2017), which is both expensive and time-consuming
(Nguyen et al., 2015). There are several techniques
presented in the literature to reduce the high label-
ing cost by using non-expert annotators on Amazon’s
Mechanical Turk (Nguyen et al., 2015); however, the
use of non-experts often results in erroneously labeled
data, commonly referred to as noisy labels (Nguyen
et al., 2015). The percentage of incorrect labels has
been observed to range from 5% to 38% in real-world
datasets (Song et al., 2019).

Training supervised machine learning algorithms
are known to be sensitive to noisy labels since it
is assumed that the training dataset is correctly la-
beled (Krizhevsky et al., 2017),(Li et al., 2017), and
(Song et al., 2019). Noisy labels can negatively affect
the performance of ML models more than any other
type of noise (Song et al., 2019). Furthermore, they
can impact the structure of the models and the time
needed to train the classifiers (Garcia et al., 2015).
In addition, ML models can even learn on corrupted
labels, and it fails to generalize the model (Krogh

and Hertz, 1991). Batch normalization, dropout, and
data augmentation (Perez and Wang, 2017) have been
utilized to overcome the overfitting issue (Perez and
Wang, 2017), but with noisy datasets, they did not
completely overcome the overfitting issue (Lee et al.,
2018).

Since real-world datasets contain label noise by its
nature and it is challenging to eliminate label noise
completely, utilizing an expert annotator is consid-
ered to minimize label noise (Nguyen et al., 2015)
and (Aslan et al., 2017). Unfortunately, in most do-
mains, expert annotators are expensive, limited, and
many projects cannot afford them (Aslan et al., 2017).
Therefore, some proposals include designing anno-
tating techniques with non-experts to acquire high-
quality labeled datasets at a considerably lower cost
(Nguyen et al., 2015). Other recent studies try to over-
come label noise by removing noisy records (Huang
et al., 2019). Even so, it is challenging to predict
whether or not a record label has noise. Other lit-
erature introduces machine learning models that are
more robust to a noisy dataset (Xiao et al., 2015) and
(Song et al., 2019). Despite the techniques introduced
in the literature to obtain high-quality labeled datasets
at a cheaper cost, obtaining a clean and accurately an-
notated dataset remains challenging and costly (Aslan
et al., 2017). In addition, reducing the label noise may
not help the machine learning model to generalize or
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acquire higher accuracy, but it just increases the label-
ing cost.

Based on extensive experimentation and analysis,
this study investigates the influence of various degrees
of label noise on the accuracy of machine learning
models. Also, we examine the the trade off between
labeling cost and accuracy. Furthermore, we propose
a cost-effective method to improve the accuracy when
there is high label noise. To mimic a noisy real-
world dataset. Firstly, we adopt a common approach
for adding synthetic label noise to a training set of
available benchmark datasets and keeping the test set
clean. Next, we evaluate each machine learning algo-
rithm’s robustness to noise with distinct levels of label
noise. Finally, we discuss cost-effective learning and
the best way to select the annotator level of expertise
depending on the machine learning task and the bud-
get. This paper makes the following contributions:

• Investigate the effect of class labels noise on some
ML models to minimize the cost of annotation by
determining the robustness of different ML mod-
els towards label noise.

• Explore the trade off between labeling cost and
accuracy when the size of dataset and the level of
noise change.

• Introduce a cost-effective method using ensemble
learning to improve accuracy even in the presence
of significant label noise.

The rest of this paper is organized as follows: Sec-
tion 2 surveys related work and Section 3 discusses
the design of the experimental study. The results and
limitations are explored in Section 4 and Section 5,
respectively. In Section 6, we conclude and discuss
our plans for future work.

2 MOTIVATION AND RELATED
WORK

Correctly labeled datasets are essential for supervised
learning to build a reliable model. Machine learn-
ing algorithms typically assume that the dataset is
labeled correctly. However, obtaining a reliable la-
beled dataset is expensive and difficult, leading to a
noisy dataset and unreliable models. Crowdsourc-
ing from non-experts and web annotations are two
low-cost yet ineffective options for gathering anno-
tations on a big scale. These two options were widely
used for image data, where tags and online search
terms are recognized as acceptable labels. Unfortu-
nately, both of these options frequently introduce in-
correct or noisy labels. Furthermore, the inclusion

of noise in a dataset’s class label degrades its quality
and may reduce classifier prediction accuracy. There-
fore, there is an increasing interest in obtaining high-
quality datasets with minimum amount of noises for
image and text processing applications. In the liter-
ature, many methods for training machine learning
in the presence of noisy labels have been proposed.
However, the effect of mislabeled data and class la-
bel noise did not receive appropriate consideration in
terms of ML structure and annotator cost. This paper
explores the effect of label noise on machine learning
and deep learning algorithms with different datasets
sizes and labeling costs.

Various strategies and techniques recently intro-
duced in the literature to handle class label noise in
datasets (Huang et al., 2019). These techniques try to
identify the noisy label and remove the record from
the dataset before the training. However, it is hard
to identify the noise label. The other suggested tech-
nique in literature is to design a noise tolerant ma-
chine learning models (Xiao et al., 2015) and (Gar-
cia et al., 2015). On the contrary, in this paper, we
study the effect of the label noise on different ma-
chine learning algorithms to optimize the cost of la-
beling. We study the effect of label noise on different
machine learning models such as SVM, KNN, MLP,
CNN, DT, and RF.

Support vector machines (SVM) are capable of
handling both classification and regression problems.
The decision boundary for this method is the hyper-
plane, which must be determined. A decision plane
is required to divide a collection of objects into their
classes. In other words, SVM searches for a hyper-
plane in a high-dimensional feature space that has
the greatest potential distance between two classes
of data. The goal of SVM is to correctly identify
the objects using examples from the training data set
(Sitawarin and Wagner, 2019).

K-nearest neighbors (KNN) is a straightforward
supervised machine learning algorithm that can be
used to address classification and regression prob-
lems. KNN attempts to identify the k training sam-
ples that are closest to a new element before predict-
ing the label of that new element using the k-nearest
points. Calculating the distance can be done using
any similarity function. Despite being straightfor-
ward, KNN frequently performs well in classifica-
tion scenarios with very irregular decision boundaries
(Sitawarin and Wagner, 2019).

The Multilayer perceptron (MLP) is fully con-
nected multi-layer neural network. It is a model for
the nonlinear mapping of an input vector to an output
vector. The weights and output signals connecting the
nodes are a function of the total of the node’s inputs,
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as adjusted by a straightforward nonlinear activation
function. MLP can learn through training. A collec-
tion of training data is needed, which is made up of
input and corresponding output vectors. The training
data is repeatedly fed into the multilayer perceptron,
and the weights in the network are changed until the
desired input—output mapping is achieved (Gardner
and Dorling, 1998).

Convolutional neural networks (CNNs), which
fall under the Deep Neural Networks category, are
widely used in conjunction with two-dimensional in-
puts like such as images. Millions of photos can be
used as inputs to enable them to learn about thou-
sands of different objects. By altering the depth and
breadth of the model, CNN’s learning capacity can be
changed. The convolutional layer is a crucial compo-
nent of the CNN architecture that comprised of learn-
able filter banks that are active when a certain feature
is discovered (Durga et al., 2019).

Decision trees (DT) are a form of supervised ma-
chine learning in which the training data is continu-
ally divided based on a particular parameter, by de-
scribing the input and the associated output. Decision
nodes and leaves are the two components that can be
used to explain the tree. The leaves represent the final
decisions whereas the decision nodes are where the
data is split (Su and Zhang, 2006).

The random forest algorithm (RF) is made up of
a variety of independent decision trees. RF employs
two random selection processes to build a single de-
cision tree: the first is the random selection of train-
ing samples, and the second is the random selection
of the sample’s characteristic features. When all the
decision trees have been built, equal-weight voting
is used to determine the final classification decision
(Ren et al., 2017).

Recently, many machine learning problems are
successfully solved using ensemble techniques. Such
techniques include training multiple models and in-
tegrating their predictions to increase the predictive
performance of a single model. In ensemble learn-
ing (EL), an inducer or base-learner uses a series of
labeled instances as input to create a model such as
a classifier that generalizes these examples. Decision
tree, neural network, and linear regression model are
some examples of machine learning algorithms that
can work as inducers. The fundamental idea behind
ensemble learning is that by merging many models,
the faults of one inducer will most likely be made
up for by other inducers, improving the ensemble’s
overall prediction performance. A straightforward
but efficient method for creating an ensemble of in-
dependent models is bagging, in which each inducer
is trained using a replacement sample of instances

drawn from the original dataset. Each sample typi-
cally has the same number of examples as the origi-
nal dataset in order to guarantee a sufficient number of
cases per inducer. The final prediction of an unknown
instance is decided by majority voting among the in-
ducers’ predictions (Sagi and Rokach, 2018). In this
paper, we study the performance of ensemble learn-
ing in the presence of label noise by exploring dif-
ferent combinations of the aforementioned machine
learning models. The results indicate that ensemble
learning is a cost-effective approach for overcoming
noise in labeled data.

3 DESIGN OF EXPERIMENTAL
STUDY

In this empirical study, we add the noise to the class
label in two different ways: (i) random class flipping
and (ii) flipping to one of the most three classes hu-
man labelers will get confused with. To optimize each
model’s hyperparameters Ray Tune with HyperOpt-
Search was used (Krogh and Hertz, 1991). All mod-
els were trained with a batch size of 64. For each time
we increase the label noise, we train separate models
with different learning rates ranging from 0.01 to 0.9
and pick the learning rate that results in the best per-
formance. Also, generally, we observe that the higher
the label noise, the lower the optimal learning rate.

We used MNIST, Flowers, Adult, Breast Cancer
Wisconsin, and IMDB reviews datasets in these ex-
periments to show the effect of the label noise on dif-
ferent machine learning algorithms and to optimize
the labeling cost.

Adult: The adult dataset, also known as the Cen-
sus Income dataset from the UCI Machine Learning
repository (Dua and Graff, 2017), consists of 48,842
entries extracted from the US Census database with
16 columns and 14 attributes. After cleaning the
dataset, 7 percent was deleted because it contained
missing values. The remaining 44,5222 entries con-
tain 24.78 percent for the income less than 50K and
75.22 percent for equal or more than 50K. The task
is to predict income levels based on the individual’s
personal information.

The Breast Cancer Wisconsin (WBC): This
dataset also was retrieved from the UCI Machine
Learning Repository (Dua and Graff, 2017). It con-
tains 569 instances with ten features computed from
digitized images of a breast mass. Each feature value
is recorded with four significant digits. There are two
classes, which are benign with 357 instances and 212
malignant instances.

MNIST: This dataset is being used as a bench-
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mark for classification algorithms (Deng, 2012). The
MNIST dataset contains 70,000 images, 28x28 pix-
els each of handwritten digits between 0 and 9. The
training set contains 60,000 images, and the test set
includes 10,000 images.

IMDB Reviews: It contains 50,000 reviews for
movies. The review in a textual format and class la-
bels are 0 for negative or 1 for positive reviews.

Flowers: This dataset contains 4242 images of 5
different types of flowers chamomile, tulip, rose, sun-
flower, and dandelion. Each class contains almost 800
images. The size of each image is about 320x240 pix-
els, but some images have lower resolution than the
320x240 pixels, so we resized all images to 300x200.

3.1 Trade off Between Labeling Cost
and Accuracy

This section aims to answer the following question:
What are the trade off between labeling cost and ac-
curacy? Table 3 shows the cost of labeling by hu-
mans with various expertise levels ranging from non-
experts to experts in the field. The cost of labeling
increases as the level of expertise increases. Label-
ing the data with expert labelers would result in less
noise and higher accuracy. However, we can deter-
mine a suitable ML model, which results in a likable
accuracy even if the data has some noise. Some ML
models’ accuracy can be considerably impacted by la-
bel noise (Song et al., 2019). On the other hand, there
are some ML models that can cope with label noise
because they are more resilient and less sensitive to
label noise (Krizhevsky et al., 2017).

Multiple experiments have been conducted using
several ML models with different datasets in order to
investigate the resilience of various ML models to-
wards label noise. Through intensive investigation of
the robustness of various ML models toward misla-
beled data, it has been shown that there are some ML
models that are more resilient towards label noise.

We studied the effect of label noise on differ-
ent machine learning models such as SVM, KNN,
MLP, CNN, DT, and RF using MNIST, Flowers,
Adult, Breast Cancer Wisconsin, and IMDB reviews
datasets. To estimate the accuracy when hiring dif-
ferent labelers, we can assume that the dataset with
different levels of label noise is obtained from differ-
ent labelers ranging from expert labelers with 0-5% of
noise to non-expert labelers with around %5-30% of
noise. Based on the accuracy obtained in the exper-
iments we conducted, we can determine the optimal
labeler for each dataset based on the cost and desired
accuracy.

In each experiment, the degree of noise is in-

creased from 0 to 30% to demonstrate how the ML
responds as the noise level increases. We execute
each experiment with 100%, 50%, and 20% of the
dataset in order to determine how well ML mod-
els perform when there is label noise. Additionally,
each experiment was run 30 times, with an average
taken to obtain a rough estimate. Since knowledge
experts are expensive, obtaining a huge, precisely la-
beled dataset on a low budget is difficult. However,
not all machine learning models need a perfect dataset
to achieve higher accuracy. The results in section 4.1
show how well ML models perform when trained on
a big, noisy dataset against a smaller, clean dataset.
Moreover, in section 4.1, we will discuss the impact
of various levels of label noise on 100, 50, and 20 per-
cent of the same dataset, and we will assess the trade-
off between dataset size and cleanness to compare the
labeling cost for each size.

3.2 Using Ensemble Learning to Reduce
Labeling Cost

Ensemble learning combines several individual mod-
els to obtain better performance. In other words,
an ensemble can be considered a learning technique
where many models are joined to solve a problem.
This is done because an ensemble tends to perform
better than singles improving the generalization abil-
ity. In ensemble learning, predictions from vari-
ous neural network models are combined to lower
prediction variance and generalization error (Wang
et al., 2014), (Alsubhi et al., 2021), and (Wang et al.,
2014). This machine learning paradigm, where mul-
tiple learners are trained to solve the same problem,
have shown its ability to make an accurate prediction
from multiple machine learning in classification prob-
lem (Sagi and Rokach, 2018).

This section aims to answer the following ques-
tion: can ensemble learning perform better than a sin-
gle model in the presence of label noise? Also, which
machine learning model combinations can cope bet-
ter with mislabeled? Ensemble learning is being used
in the literature to increase task prediction accuracy in
many fields like Health Care, Speech, Image Classi-
fication, Forecasting, and Others (Wang et al., 2014),
(Moon et al., 2020), (Dong et al., 2020), and (Yu et al.,
2008).

Our ensemble approach has only three classifiers
which are combined to operate the ensemble. The
models that we used in this experiment are CNN,
MLP, DT, RF, KNN, and SVM using MNIST, Flow-
ers, Adult, Breast Cancer Wisconsin, and IMDB re-
views datasets. The best three combinations of these
machine learning models are presented in section 4.2.
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The amount of noise introduced increases from 0 to
30% in each experiment to show how the ensemble
learning performs each time noise increases.

4 RESULTS AND DISCUSSION

In this section, we empirically examine the effect of
noisy datasets on ML performance, accuracy, and the
labeling cost associated with each annotator. Firstly,
we simulate class label noise by randomly flipping the
class label from its actual label to any other class la-
bel. Secondly, we gradually increase the label noise.
Then, we compare the annotators cost with the label-
ing noise.

Figure 1: Effect of label noise on MLP, RF, SVM, DT, and
KNN with WBC dataset (A) 100% of dataset, (B) 50% of
dataset and (C) 20% of the dataset.

The result in this experiment indicates that ML
models can be affected differently depending on the
dataset. For instance, random forest performance
dropped just 0.14% for each 1 percent of noise only
with MNIST, but with other datasets, the accuracy
dropped around 0.5% , Table 1. Furthermore, with
different size of the same dataset the effect is sig-
nificant as Figure 1 shows. This indicates that the
dataset’s size and type play an essential role in terms
of accuracy and generalizing the model (Lee et al.,
2018). Therefore, some machine learning models
show more resilience to noise than others, depending
on the dataset type and the task.

4.1 Experiment 1

Many machine learning and natural language process-
ing tasks require human-labeled data. It is critical for
the ML model to have a high-quality dataset with less

Table 1: Average Accuracy Drop.

Dataset MLP RF DT CNN SVM KNN
MNIST 0.59 0.14 1 0.41 0.70 0.19
WBC 0.17 0.43 0.87 - 0.74 0.63
Adult 0.73 0.38 0.94 - 0.70 0.61
Flower 0.91 0.57 - 0.51 - -

label noise on the training set, since falsely labeled
data affects machine learning models. Unfortunately,
obtaining such a high-quality dataset with low label-
ing noise is usually quite expensive and necessitates
the assistance of a domain expert (Krizhevsky et al.,
2017).

This experiment shows that we can simultane-
ously optimize the cost of labeling and obtain desir-
able accuracy. We used the Human Intelligent Tasks
(HITs) prices presented in (Krizhevsky et al., 2017)
and (Lee et al., 2018) to acquire human knowledge
for labeling datasets using Amazon Mechanical Turk
(MTurk). According to (Nguyen et al., 2015) and
(Feng et al., 2009), the price can be between $1.5
for a non-expert to $150 knowledge expert, which
is $0.015 to $1.5 per image. By evaluating the per-
formance of each machine learning models with la-
beler price shown in Table 3, we can identify the cost
needed to achieve the desired accuracy in each ma-
chine learning models.

Precisely, we measure: (1) the performance of
each classifier with acquired labels from the annota-
tors on the Table 3 on the test set, and (2) the total
labeling cost by each annotator. Figure 1 presents the
performance of each classifier depending on the accu-
racy of the labeling for the Cancer dataset and MNIST
dataset, respectively. For the most part, when the level
of noise increases as a result of using non-expert an-
notators, we can see that most machine learning mod-
els’ performance decrease. In other words, the per-
formance of machine learning models increases when
the price of labeling increases. However, some ma-
chine learning can have better accuracy than others
with the same or even more label noise. For instance,
SVM can perform better than MLP with the $12,600
labeling cost, but with $14,000 MLP performs bet-
ter than SVM. Likewise, Random Forest outperforms
CNN when the labeling cost is $1,400, but after in-
creasing the labeling cost to $13,000, CNN exceeds
Random Forest’s performance.

Total Cost = Number of images × Annotator Cost
per image

This indicates that with low labeling cost (labeled
by non-expert where the data can include label noise)
and by choosing the right ML model, we can achieve
desirable performance. Figures 1 shows that with up
to 10% of added noise, some ML is slightly affected
in some datasets than other. For instance, the effect
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Figure 2: Machine learning algorithm cost with different
labeling accuracy using MNIST dataset.

Figure 3: Voting VS Machine learning algorithm costs.

of 10 percent label noise on CNN with the MNIST
dataset is just 3 percent. On the other hand, the ef-
fect on MLP with the same dataset and percentage of
noise is more than 6 percent. Let us assume that the
MNIST dataset is unlabeled, and it needs a human
annotator. Choosing an expert annotator is very ex-
pensive as Figure 2 shows. The cost of labeling the
dataset is 28,000 dollars if we choose the experts with
only 5 percent noise. In this case, the accuracy is 96
percent when using CNN and 94 percent using MLP.
On the contrary, if we labeled the same dataset by an
expert with 10 percent noise, the cost is only 14,000
dollars. The accuracy using CNN is 95 percent, and
MLP is 92 percent, 2% less than when the label noise
is 5%. This shows that we can trade off 2% accuracy
and decrease the labeling cost dramatically.

Therefore, depending on the ML task, we can de-
termine if we need to invest more money in the label-
ing to increase accuracy. In a manufacturing classifi-
cation problem, for example, assuming that the task is
to label the product images as damaged or good. The

importance of eliminating the noise will be different
depending on the cost of the product. If the cost of
the product is 1 dollar, then 10 percent of noise would
cost much less than a 50-dollar product. If the cost
of misclassification is not crucial, then we can cost-
effectively label the data even if it has some noise.

Additionally, by comparing the performance of
ML models, with more miniature dataset sizes, the
accuracy is lower with the same level of noise. When
we deduce the dataset’s size to 20%, the accuracy
dropped dramatically even with the same level of
noise as shown in Figure 1. Nevertheless, expert an-
notators are expensive, and many projects cannot af-
ford them. For example, the cost of expert annotators
can be 30 times more than the cost of non-expert an-
notators, as Figure 2 shows. By analyzing the results
in Figure 2, ML models with large noisy datasets per-
form better than smaller datasets. For instance, with
20% of the MNIST dataset labeled by an expert la-
beler costing $11,200, ML models can only achieve
90% accuracy. On the other hand, if we used non-
expert labeler to label the entire dataset, we can obtain
similar accuracy with only $224. Therefore, while it
is essential to have accurately labeled data, the size of
the dataset is more valuable to generalize the machine
learning model and have an accurate classification.

4.2 Experiment 2

As experiment 1 shows, some algorithms showed
more resilience to label noise than others. In this sec-
tion, we analyze the performance of ensemble learn-
ing with different configurations against different lev-
els of label noise. We used three different machine
learning algorithms presented in section 2 and com-
bined them together in the voting structure to find the
most robust combination. Each model is trained sepa-
rately and then combined for a hard voting ensemble.
For consistency, we use the same hyperparameter op-
timization framework to get the best configurations
in each model. Correspondingly, we implement the
same level of in each model. We increase the noise
from 0 to 30 percent with each ensemble learning to
investigate the model robustness and the sensitivity
by examining the average accuracy drop with each 1
percent class noise.

The experimental results presented in Table 2
show the labeling cost associated with different lev-
els of label noise as well as the accuracy of vari-
ous ML models, including three combinations of en-
semble learning models, which are (RF, KNN, and
MLP), (CNN, KNN, and SVM), and (CNN, KNN,
and MLP). We can see that the labeling cost for the
MNIST dataset that has 70,000 images is $56,000,
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Table 2: Comparison between ensemble learning and traditional machine learning in terms of the labeling cost.

Cost/item Noise Cost EL 1 a EL 2b EL 3c CNN DT RF KNN SVM MLP
0.01 30 700 93.32 94.89 95.63 93.16 61.03 92.67 91.04 79.74 78.75
0.02 25 1400 94.7 95.04 96.54 94.73 66.32 94.75 92.36 83.93 82.65
0.03 20 2100 96.83 95.97 96.77 95.43 70.3 95.89 93.19 85.13 85.35
0.18 15 12600 96.95 96.15 96.98 96.31 75.01 96.68 94.17 89.65 88.16
0.2 10 14000 96.09 96.18 97.01 97.1 78.53 96.94 95.51 92.45 93.38
0.4 5 28000 97.04 96.91 97.17 98.54 85.81 97 96.8 95.81 96.72
0.8 3 56000 97.01 97.23 97.69 98.54 85.81 97 96.8 95.81 96.72

a EL1: RF + KNN + MLP.
b EL2: CNN + KNN + SVM.
c EL3: CNN + KNN + MLP.

Table 3: Labeling Price VS Accuracy.

Cost/Label Noise% Total Cost
Non-Expert 0.01 30 700
Non-Expert 0.02 25 1400
Non-Expert 0.03 20 2100
Non-Expert 0.18 15 12600

Expert 0.2 10 14000
Expert 0.4 5 28000
Expert 0.8 3 56000

which is the most expensive and accurate labeling
with only 3% of noise. On the other hand, the cost of
labeling is only $700 in total with 30 percent of noise.
It can be seen that using ensemble learning outper-
forms all other machine learning models when used
individually. In fact, using a combination of CNN,
KNN, and MLP yields the highest accuracy of 95.63
even with the high presence of label noise. We got
a desirable accuracy with the lowest cost even with
up to 30% of noise. This shows that we can use en-
semble learning as a cost effective method that can
cope with label noise. Through extensive experimen-
tation, we can see that using ensemble learning can
save us $55,300 when using non-expert to label the
MNIST dataset with 70,000 images while maintain-
ing relatively similar accuracy. In other words, paying
an extra $55,300 for an expert annotator to reduce the
label noise from 30 to 3 percent will only increase the
accuracy by 2%. Therefore, ensemble learning is con-
sidered one of the best method that copes with label
noise with low cost to maintain the desirable accuracy.

Unlike using single ML models where the accu-
racy can drop dramatically when we increase the level
of label noise, using an ensemble method maintain
high accuracy regardless of the level of noise in the
dataset. For instance, the accuracy of DT dropped by
roughly 25% when the level of noise increases from
3% to 30% as shown in Figure 2. Even with ML mod-
els that are more robust to label noise such as CNN,
RF, and KNN, there are a noticeable decrease in the

accuracy. These models perform better with cleaner
dataset, which is more expansive to obtain. On the
contrary, using an ensemble learning with any combi-
nations of ML models would result in a better accu-
racy with lower cost as illustrated in Figure 3.

5 LIMITATIONS

Although we used a representative distribution of ML
models, there are still some ML algorithms that can be
investigated. It is challenging to conduct the same ex-
periments with all ML models. However, based on the
results of the experiments in this research paper, we
can see that the results can be generalized. Further-
more, even though we used various datasets in terms
of size and types of data, there are more data that
needs to be explored such as sound datasets. How-
ever, it is beyond the scope of this research to conduct
the same experiments with every data type. Thus, we
used various data such as numerical and image data.
Also, there are different combinations of ML models
that can be used in ensemble learning. Although we
explored various combinations of ML algorithms to
come up with the best ensemble method in terms of
robustness to label noise, there are still other options
to explore that may result in a better accuracy.

6 CONCLUSION

In this paper, we explored the impact of class label
noise on machine learning algorithms’ performance
and accuracy. We proposed two simple settings for
labeling cost optimization. We explored both settings
by analyzing: the tradeoff between the size and clean-
liness of the dataset, as well as the tradeoff between
labeling cost and machine learning performance. De-
pending on the budget, we can choose the best ML
model. We have shown that machine learning models
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have different performance even with the same level
of noise. To have the desired accuracy with low-cost,
we have also shown that it is more important to have
a huge dataset even with high level of noise as op-
posed to small clean dataset. This is because most
ML algorithms need bigger data to train in order to
perform well. We have further shown that desirable
ML performance can be achieved with a low labeling
cost using ensemble learning since it is more resilient
and robust to label noise.
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