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Abstract: Establishing correspondences is a fundamental and essential task in computer graphics for further 
processing of shapes. We have proposed an important modification to an existing method to remove several 
large matching errors in specific regions. The method uses the unit sphere and the regular spherical grid as 
parameterization spaces to perform registration and obtain the matching map between two three-
dimensional genus-zero shapes, considering non-rigid and non-isometric deformations. Although the unit 
sphere is a suitable parameterization space for rigid alignment, mapping the sphere to a regular spherical 
grid for non-rigid registration makes the process unstable since it is not a distance-preserving projection. 
Therefore, it produces large detachments on the grid and for several regions. Replacing the regular spherical 
grid mapping with Cubic mapping results in smooth displacement and locality for all corresponding vertices 
on each cube face. Due to our enhancement, the Optical Flow faces a smooth flow field in the non-rigid 
registration process. Our modification results in the elimination of matches with significant normalized 
geodesic error and an increase in the accuracy of the correspondence map, compared to the base method and 
other recently published approaches. 

1 INTRODUCTION 

Finding the correspondence map between two 
meshes is an essential initializing task for further 
processing of the shapes, such as building a 
Statistical Shape Model (SSM), Shape 
Reconstruction, Shape Analysis, etc. (Sahillioğlu, 
2019). For building an SSM of the shape of interest, 
correspondences should be established for all shapes 
within the dataset (Cootes et al., 1995), and to have 
an accurate SSM, we need to establish correct 
correspondences (Davies et al., 2002). Thus, 
matching errors on the correspondence map should 
be removed or decreased. If the matched vertices do 
not represent anatomically equivalent regions on 
source and target shapes (e.g., matching the left foot 
to the right foot in matching human shapes as 
depicted in Figure 1a), the result of the SSM and its 
variability will be exaggerated (Davies et al., 2002), 
leading the application toward unexpected results. 
The task becomes more complex as shapes go from 
2D to 3D, and the transformation goes from rigid to 
non-rigid and from isometric to non-isometric 
(Sahillioğlu, 2019). In addition, it is a challenging 

process since shapes’ local and global information 
should be considered (Sahillioğlu, 2019). Since most 
real shapes tend to have non-rigid and non-isometric 
deformations, matching such shapes has become an 
interesting and expanding topic in computer vision. 

Multiple surveys represent recent advances in 
establishing correspondences (Sahillioğlu, 2019; Li 
et al., 2014; Tam et al., 2012). The author 
(Sahillioğlu, 2019) has presented a classification of 
recent methods based on the density of the 
 

 
Figure 1: (a) Several erroneous matchings in a region by a 
matching algorithm (Lee et al., 2019); (b) ground truth. 
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correspondences, deformation types, solution 
approaches, etc. Regarding the solution approaches, 
the first category is Similarity-based solutions 
(Ovsjanikov et al., 2012; Nogneng et al., 2017; Ren 
et al., 2018; Gehre et al., 2018; Melzi et al., 2018; 
Hu et al., 2021; Vestner et al., 2017) in which 
geometric invariants descriptors are computed and 
matched. These sophisticated descriptors need to 
handle different geometric aspects of the shapes, 
e.g., rigid alignments, scaling, etc. The other 
approaches are Registration-based methods 
(Eisenberger et al., 2020; Eisenberger et al., 2019; 
Cosmo et al., 2019; Dyke et al., 2019; Melzi et al., 
2019; Lee et al., 2019). These techniques register 
shapes under a deformation field or project them 
into a common intermediate domain and perform the 
registration in the parameterization space. The 
significant advantage of these approaches is that 
they generate one-to-one, very dense, and 
continuous correspondence maps (Huang et al., 
2020). Although parametrizing the shapes, results in 
higher computational complexity than similarity-
based methods (Sahillioğlu, 2019), it can help tackle 
some challenges in parametrization spaces. 
Removing the scale of shapes by mapping them to 
unit disks (Sahillioğlu, 2019), handling the rigid 
registration easier by mapping shapes into spheres 
(Lee et al., 2019), using intrinsic and extrinsic 
information to handle local and global deformations 
(Eisenberger et al., 2020) and matching the shapes 
using functional maps (Melzi et al., 2018) are 
examples of parameterization done in the literature. 
(Eisenberger et al., 2020) use an intermediate 
product space that includes shapes’ intrinsic and 
extrinsic information and perform the registration 
process fused with functional maps. Intrinsic 
information is invariant to large-scale deformations, 
and extrinsic features handle local topological 
changes. So, rigid alignment is implicitly 
considered. Although they have suggested that their 
initial pose determination using Markov Chain 
Monté Carlo provides reasonable estimation in many 
cases, the results show that initialization still can go 
wrong for large deformations, affecting the matching 
results. (Eisenberger et al., 2019) utilize the 
Karhunen-Loéve expansion to compute divergence-
free deformation fields. This property makes the 
registration applicable to shapes with almost the 
same volume, which is a drawback for a general 
matching algorithm. (Cosmo et al., 2019) have used 
the Laplacian spectrum to deform shapes. The 
method works on shapes from different categories 
(e.g., matching horses to camels) having the same 
initial pose only. (Dyke et al., 2019) add anisotropic 

deformations to a non-rigid registration process to 
handle the non-isometric deformations accurately. 
Although they handle large-scale deformations, the 
initialization of the method is based on their local 
feature descriptor, and poor initial matches mislead 
the registration process entirely. In (Melzi et al., 
2019), iterative up-sampling is used in the spectral 
domain to refine the functional map results. The 
functional map initialization implicitly considers the 
shapes’ initial pose. Unit spheres and regular 
spherical grids are incorporated to match two genus-
zero shapes (Lee et al., 2019). Learning-based 
approaches are also used for finding the 
correspondences on shapes. However, they take 
longer processing time in the training stage rather 
than processing the shapes directly (Sahillioğlu, 
2019) and need the availability of large datasets. 

For building an SSM, it is critical that the 
corresponding landmarks are sufficiently dense and 
smoothly continuous (Munsell et al., 2008). As 
stated, registration-based methods represent dense 
and continuous correspondences on shapes (Huang 
et al., 2020).   

(Lee et al., 2019) have used the unit sphere as the 
intermediate domain since it is a suitable 
parameterization space for explicitly handling scale 
and rigid transformation. In addition, significant 
differences in the initial pose can be handled on the 
unit sphere. Figure 2 elaborates steps of their 
framework resulting in matching between two cat 
shapes (Figure 2a). First, shapes are converted into 
unit spheres (Figure 2b) using Conformalized Mean 
Curvature Flow (CMCF) (Kazhdan et al., 2012). 
Spheres are then processed by Authalic Evolution 
(AE) (Zou et al., 2011) to make the area of the mesh 
triangles as equal as possible (Figure 2c). Heat 
Kernel Signature (HKS) (Sun et al., 2009) is 
calculated on the shape domain and is pulled back to 
the sphere (Figure 2d). It extracts features of the 
shapes that are used in rigid and non-rigid 
registration steps. Rotational alignment is applied 
(Figure 2e) to align the spheres as much as possible 
by maximizing the correlation on SO(3) (Baden et 
al., 2018). Finally, for the non-rigid registration step, 
the spheres are moved into an equirectangular 
spherical grid (Figure 2f) with multiple resolutions, 
simulating the hierarchy structure of the Optical 
Flow process (Prada et al., 2016). After applying the 
Optical Flow on hierarchical planar grids, the flow 
field is pulled back into spheres, and vertices of the 
source sphere are moved to their corresponding 
coordinates on the target sphere accordingly (Figure 
2g). Calculating a proximity metric on overlapped 
spheres, e.g., Euclidean distance, generates the
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Figure 2: Illustration of (Lee et al., 2019) work. (a) Source (top) and target (bottom) cat shapes; (b) Shapes are moved into 
the spherical domain; (c) AE method applied; (d) HKS is computed on the shape domain and pulled back on the spheres; (e) 
Spheres are rotationally aligned; (f) Spheres are moved to a regular equirectangular spherical grid; (g) Non-rigid registration 
is applied using Optical Flow on grids and spheres are advected; (h) Proximity measure reveals the matching of vertices. 

forward and backward correspondence maps (Figure 
2h). However, looking at the result of the method, 
we can figure out that several erroneous matchings 
are represented in some areas (e.g., Figure 1a), 
which will be investigated in the next section. 

2 PROBLEM STATEMENT 

In (Lee et al., 2019), authors have stated that they 
“rasterize the scale factors from the spherical 
triangulation” (Figure 2e) “onto an equirectangular 
N×N spherical grid” (Figure 2f) to perform Authalic 
Evolution. They have used the same approach for 
the Optical Flow process, stating that the 
computation of the flow field is done “using regular 
N×N spherical grids and rasterizing the signals”, 
SHKS and THKS, the HKS signals defined on the 
source and target shapes. 

As defined in the standard ISO 31-11, the 
parameterization from a sphere in cartesian space 
(Figure 3a) to a regular spherical grid (Figure 3b) is 
done by the following formulas. 

 ρ =  ඥxଶ  yଶ  zଶ;  ρ  0 θ = arctan ቀzxቁ ; 0  θ  π φ =  arctan ቆ√xଶ  zଶy ቇ ; 0  φ  2π 

(1)

 
On a unit sphere, ρ is equal to 1. Thus, the 

parameters θ and φ reconstruct the UV plane (Figure 
3b). However, this parametrization is not distance-
preserving for vertices that have border values of θ 

 
Figure 3: Illustration of parameterization from a unit 
sphere (a) to a regular spherical grid (b). The mapping has 
not preserved the distances as they are on the sphere. The 
indicated region is an example of the issue.  

(close to 0 or π) and φ (close to 0 or 2π), which we 
will refer to as “border vertices”. Although these 
vertices are located very close in the spherical 
domain (e.g., dark blue regions on top of the sphere 
in Figure 3a), they are far apart on the UV plane 
(indicated dark blues regions on top and bottom of 
the rectangular grid in Figure 3b). (Lee et al., 2019) 
move two rigidly aligned spheres into spherical grids 
(Figure 2e to 2f), and then, the Optical Flow will 
register two grids (Figure 2h) in the planar domain. 
As two spheres are rigidly registered, the 
corresponding vertices are close in the spherical 
domain, and some small and smooth movements 
should match them. However, a slight shift of the 
border vertices in the spherical domain can be 
mapped to a significant shift on the UV grid. E.g., a 
slight movement of vertices in the dark blue region 
of Figure 3a can move the vertex from the upper 
region indicated in Figure 3b to the bottom one.   
With the Optical Flow operating on this planar 
domain, it cannot recover these large shifts and will
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Figure 4: Illustration of discontinuity of neighbor regions on the spheres when they are projected to the spherical grid; (a) 
Source shape; (b) Target shape; (c) Source sphere rigidly registered into target sphere. The region which will be split when 
mapping into the spherical grid is indicated; (d) Target sphere. Corresponding region is indicated; (e) Spherical grid 
representation of the source sphere indicating the region that is splitting into two regions, dissimilar to its correspondence 
region in target grid representation; (f) Spherical grid representation of the target sphere, showing the corresponding region 
to the indicated region in the source grid while it is a single connected area on the right side of the grid. 

fail to match those corresponding vertices.  
An illustration of this problem is represented in 

Figure 4. Figure 4a is the source cat shape which 
will be put in correspondence with the target cat 
shape, represented in Figure 4b. The coloring 
represents corresponding landmarks on both shapes. 
Figures 4c and 4d show rigidly aligned spherical 
representations of the two shapes and indicate the 
regions containing some border vertices, which will 
be investigated further on their planar representation. 
The spherical grid parameterization of the shapes in 
Figures 4e and 4f implies that although most of the 
vertices in the indicated regions are in the same 
location on the spherical grid, some vertices of one 
of the cat’s ears are separated on the source planar 
representation (as indicated in Figure 4e), while they 
are all located on the right side of the plane in the 
target planar representation (Figure 4f). Since 
corresponding vertices are placed far from each 
other in the planar domain, the Optical Flow cannot 
find proper movement for matching these vertices. 

3 METHODOLOGY 

To solve the issue of border vertices, we propose 
replacing the regular spherical mapping (steps in 
Figure 2e and 2f) with cubic mapping (Greene, 
1986). Figure 5a shows a unit sphere with smooth 
coloring on its surface. Moving the sphere to a unit 
cube (Figure 5b) and expanding it (Figure 5c) shows 
that on each face, the distances and locality are 
preserved (according to the fact that colors are not 
distorted as we saw in Figure 3b for the regular 
spherical grid). 

To avoid the spherical grid mapping issue

(having large displacements) for some vertices on 
the expanded version of the unit cube, we extended 
each face of the cube properly while respecting the 
adjacency of the faces and the locality of the vertices 
on the cube. For applying the Optical Flow, we only 
consider the central face (indicated in Figure 5c with 
a black rectangle). By doing this for all six faces 
separately, we can have a continuous, local, and 
smooth flow field for all the vertices. 

 
Figure 5: Replacing the regular spherical grid with cubic 
mapping. (a) The unit sphere; (b) The unit cube made by 
cubic mapping from the unit sphere; (c) cubic mapping 
expanded. The expansion is done according to the central 
indicated face and adjacent faces. 

Figure 6 shows the expanded cube for the cat 
shape represented in Figure 4a. The indicated region 
in Figure 6 implies that the vertices of the cat’s ear 
are all connected in the same region, while they have 
been split in the previous parameterization (Figure 
4e). This shows that the central face of the expanded 
version of the cube keeps all adjacent vertices in a 
single connected region. 

The mentioned modification is explained in 
detail in Algorithm 1, which will replace the
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Figure 6: Cubic mapping expanded for cat shape 
represented in Figure 4. The indicated part is the ear of the 
cat, which is split into two regions in Figure 4e. 

Algorithm 1: Proposed modification to (Lee et al., 2019)
by incorporating Cubic Mapping. 

Input : Rotationally aligned Source and Target
Spheres, SSphere and TSphere 

Output : Forward MS→T, and Backward MT→S
Correspondence Maps 

1 : For i=1:max_level_optical_flow 
2 : res=level_resolutions(i) 
3 : Compute cubes  SCube, TCube from SSphere, 

TSphere respectively. faces will be
generated according to
image_generation_resolution, SHKS(i+1)

and THKS(i+1)

4 : For j=1 to 6{front, back, right, left, top,
bottom} 

5 :  Extend SCube_face(j), TCube_face(j)

according to their adjacent faces and
generate Simage(j), Timage(j) 

6 :  Interpolate Simage(j), Timage(j) using 
gaussian filter to fill the holes on the
images

7 :  Reduce the image resolutions to res
8 :  Apply Optical Flow on Simage(j), 

Timage(j) and keep the calculated flow 
field for the face SCube_face(j)

9 :  For j=1 to 6{front, back, right, left, top, 
bottom} 

10 :  Move the vertices falling on
SCube_face(j) and update SSphere

accordingly 
11 : Compute MS→T, and MT→S using the 

proximity 
 
non-rigid registration part in (Lee et al., 2019). After 
aligning two spheres rigidly, the spheres are 
transferred into unit cubes (Algorithm 1, line 3). 
Each face will be appropriately extended with its 
adjacent faces on the cube, and the Optical Flow is 
applied to it (Algorithm 1, lines 4 to 8). Finally, the 
computed flow field for all vertices is pulled back to

the source sphere and they are advected accordingly. 
To prove that the locality is preserved for this 

parametrization, we move two rigidly registered 
spheres with known correspondences into unit cubes 
(Algorithm 1, line 3) and then overlay the 
corresponding faces of the cubes to compute the 
Euclidean distances from each vertex on the source 
cube face to its corresponding vertex on the target 
cube face. Assuming that the corresponding vertices 
are close on the overlaid spheres (since spheres have 
been rigidly registered), corresponding vertices on 
the source cube and target cube can be located on 
the same face (e.g., both on front faces of cubes), or 
adjacent faces (top, bottom, left and right faces for 
the front face). Considering this adjacency, Figure 7 
shows the Euclidean distances for vertices on the 
source cube faces to their corresponding vertices on 
the overlaid target cube faces. The cube is unit, and 
the displacement of all vertices is less than half of 
the side of each face. The distances can differ due to 
the amount of deformation of the shapes. 

We replaced the non-rigid registration process in 
(Lee et al., 2019) with Algorithm 1. We will show 
that our approach has resolved the mentioned issue 
in (Lee et al., 2019) in multiple datasets and 
according to multiple matching quality metrics. 

 
Figure 7: Indicating Euclidean distance of the 
corresponding vertices on the cube surfaces. The cube 
faces are sized 1 by 1. 

4 EXPERIMENTS AND RESULTS 

Looking closely at the results of (Lee et al., 2019), 
we figure out that the problem only occurs for some 
border vertices. Depending on the amount of 
deformation of the target shape with respect to the 
source shape and rotational alignment of the spheres, 
some of the border vertices might need large 
displacements to meet the location of their 
correspondences on the regular spherical grids. 
Although there could be a small number of border 
vertices having such a property, the wrong matching 
of one vertex can also mislead the matching result 

GRAPP 2023 - 18th International Conference on Computer Graphics Theory and Applications

200



for its neighbors since the registration process is 
done locally by Optical Flow. 

To analyze the result of the proposed 
modification, matching accuracy for the border 
vertices will be considered only. We define border 
vertices as follows. After moving a sphere into the 
regular spherical grid, vertices that fall into 10% of 
the margins from the borders of θ and φ parameters 
are stated as border vertices. The 10% value is set 
experimentally and will ensure that all the probable 
erroneous matchings are happening for vertices in 
this set. Eq. 2 shows this criterion. 

 0  θ  π10 ;  π − π10  θ  π 0  φ  2π10 ;  2π − 2π10  φ  2π 
(2)

 

 
Figure 8: Indicating Euclidean distance for corresponding 
vertices on the spherical grids. Non-border vertices are set 
transparent. Large distances of some border vertices, 
implying cases that cannot be matched with the Optical 
Flow on this grid. 

Figure 8 represents the Euclidean distance 
between the vertices on the source spherical grid and 
their corresponding vertices on the overlaid target 
spherical grid for two shapes with known 
correspondences. In the figure, border vertices 
defined by Eq. 2 are shown as filled circles, while 
non-border vertices are shown transparently. 
According to the figure, although most of the border 
vertices are very close to their corresponding 
matches on the target grid (distances are close to 0), 
some cases need to traverse to the other side of the 
grid to be matched to their correspondences 
(distances are close to π or 2π). 

To demonstrate the effectiveness of the 
modification applied to (Lee et al., 2019), we 
considered comparing registration results from (Lee 
et al., 2019) as ‘DenseP2PCorr’, the modified 
version of the method by incorporating the cubic 
mapping as ‘Ours’, ‘Zoom Out’ (Melzi et al., 2019) 
and ‘Smooth Shells’ (Eisenberger et al., 2020) as 
registration-based approaches. These methods result 

in dense corresponding maps while handling rigid 
alignment and obtaining the matching between 
shapes with different poses. Three datasets are 
considered in this experiment as they contain shapes 
from the real world with non-rigid and non-isometric 
deformations. TOSCA dataset (Bronstein et al., 
2008) consists of 80 models in 9 categories with 
mesh resolutions ranging from 4K to 53K. Sumner 
dataset (Sumner et al., 2004) consists of 76 non-
animative models in 8 categories with resolutions 
ranging from 5K to 43K. The third database is 
SCAPE (Anguelov et al., 2005), containing 72 
models of human shape with a resolution of 12.5K 
vertices. All shapes in all datasets are in 
correspondence within each category and are 
represented with the same topology, making them 
suitable benchmarks for correspondence evaluation. 
However, to reduce the time complexity of the 
runtime, we considered a subset of the shapes for the 
matching process. The number of combinations 
within each category is represented in Table 1. 

To evaluate the methods, we used Princeton 
benchmark protocol and Correspondence Quality 
Characteristics (CQC) curves (Kim et al., 2011). 
Assume that a matching algorithm has matched 
vertex x  from source shape to vertex y in target 
shape as (x, y). Having the ground truth of the match 
as (x, yୋ), Normalized Geodesic Error (NGE) for 
the match (x, y) is calculated by Eq. 3. 

 NGE(x, y) = distୣ୭(y, yୋ) ඥShape_Area  
(3) 

 
In Eq. 3., distୣ୭(y, yୋ)  is the geodesic distance 
calculated on the target mesh between vertices y and yୋ, and Shape_Area is the sum of the surface areas 
for the target shape. For optimizing the computation 
complexity, distୣ୭(y, yୋ)  is calculated and stored 
for all combinations of y and yୋ on each shape and 
for all participating shapes within each dataset. 

Since the modification of the algorithm affects 
the border vertices, NGE for these vertices is 
considered and averaged as the results in Table 1. 

In addition to the numerical analysis in Table 1, 
visual comparisons of matching results of (Lee et al., 
2019) vs. ours are represented in Figures 9-11. 
Figure 9a shows a cat shape on the left, while it 
shows its spherical grid representation on the right. 
The coloring represents the vertex indices on the 
shape and the spherical grid. Considering the same 
coloring on the shape and grid, border vertices inside 
the yellow rectangle represent the region on the cat’s 
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Table 1: Average Normalized Geodesic Error for border vertices and non-isometric deformation per category and in total 
for all datasets. 

    Average NGE (×10-3)   
Dataset/ 
Method 

Shape 
Category 

Number of 
Combinations 

DenseP2
PCorr. Ours Smooth 

Shells Zoom Out NID average (×10-3) 

TOSCA 

Wolf 6 11.5 4.5 0.7 71.2 18.56 
Centaur 30 30.5 16.7 42.8 472 34.23 
Horse 56 30.8 18.4 34.1 289.2 39.53 
Total 142 30.3 17.6 35.9 338.2 37.59 

Sumner 
Lion 72 49.6 31.6 243.6 389 44.97 
Cat 72 52.3 24.3 242.6 469.7 63.61 

Total 144 51.4 26.8 242.9 441.8 55.98 
SCAPE Human 110 107.2 25.9 62.2 80.6 39.4 

Total Total 396 60.6 22.6 97.4 281.1 42.46 
    

 
Figure 9: (a) Indicating some border vertices on the tail of 
the cat; (b) Comparing the matching results from 
DenseP2PCorr (left) vs. Ours (right) on two cat shapes in 
the Sumner dataset. 

 
Figure 10: Indicating some border vertices on the hand of 
the wolf; (b) Comparing the matching results from 
DenseP2PCorr (left) vs. Ours (right) on two wolf shapes in 
the TOSCA dataset. 

 
Figure 11: (a) Indicating some border vertices on the foot 
of the human; (b) Comparing the matching results from 
DenseP2PCorr (left) vs. Ours (right) on two human shapes 
in the SCAPE dataset. 

tail. Figure 9b shows the matching results by (Lee et 
al., 2019) on the left and our approach on the right. 
The coloring in Figure 9b represents the NGE of the 
matching for all vertices in the shape domain. Figure 
10 and Figure 11 show similar results for the 
registration of two wolf shapes from the TOSCA 
dataset and two human shapes from the SCAPE 
dataset, respectively. 

Furthermore, we have represented CQC curves 
for all methods within each category in all datasets. 
CQC curves (Kim et al., 2011) represent percentages 
of correct matches that are tolerating distance r in 
terms of NGE. Figure 12 shows all CQC curves for 
each category within each dataset. In addition, 
curves for all shapes within each dataset and all 
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Figure 12: CQC curves for all datasets per category and in total. (a) Wolf shapes from TOSCA; (b) Centaur shapes from 
TOSCA; (c) Horse shapes from TOSCA; (d) All shapes within TOSCA; (e) Cat shapes from Sumner; (f) Lion shapes from 
Sumner; (g) All shapes within Sumner; (h) Human shapes from SCAPE; (i) All shaped within all datasets. 

 
Figure 13: Normalized Geodesic Error (NGE) vs. non-
isometric deformation (NID) of shapes for all matching 
results. 

shapes within all datasets are also represented. The 
border vertices on target spherical grids are 
considered only for generation of CQC curves. 

Finally, to demonstrate the amount of non-
isometric deformations of the shapes and how they 
affect the result of different matching processes, we 
define the Non-Isometric Deformation (NID) as 
follows. 
 NID(x, y) = หNGE(x, y)ୗ୭୳୰ୡୣ_ୱ୦ୟ୮ୣ− NGE(x, y)ୟ୰ୣ୲_ୱ୦ୟ୮ୣห (4)

 
The source and target shapes are arbitrary shapes 

within the same category (having the same 

topology), and x and y are all vertices on each shape. 
This metric is calculated for all combinations of the 
shapes participating in the matching experiment. The 
values are averaged within each category and 
represented in Table 1. 

Taking the NID into account, we have 
demonstrated the amount of NGE for the matching 
result with respect to the NID of the matching 
shapes for all four competing methods in Figure 13. 

5 DISCUSSION AND 
CONCLUSION 

As stated in Table 1, almost 400 registration 
processes are done to demonstrate the comparison of 
the accuracy of corresponding maps generated by 
four different methods in three different datasets 
with different characteristics. Among all the 
categories, the Wolf category from the TOSCA 
dataset is the easiest matching case since shapes are 
not deformed very much (as an example is 
represented in Figure 10b), and the density of the 
shapes is the lowest (approximately 4K vertices). In 
addition, the initial states of the shapes are very 
similar. On the contrary, the human shapes in the 
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SCAPE dataset have a broad range of initial poses 
and deformations. As shown in Table 1, our 
approach has reduced the NGE for border vertices, 
making the matching results more accurate than 
those from (Lee et al., 2019) among all categories. It 
also represents better results compared to the other 
two methods when the shapes’ NID increases. The 
information on NID demonstrates the effect of the 
nature of the shapes on the result of registration 
processes. As can be seen, the shapes in the Wolf 
category from TOSCA, which have the least NID 
values, are best matched with the Smooth Shell 
(Eisenberger et al., 2020) among the competitors. 
Zoom Out (Melzi et al., 2019) is always resulting 
less accurate matching than the others. 

Visual comparisons in Figures 9-11 demonstrate 
the erroneous matching result for some of the border 
vertices in the result of (Lee et al., 2019) vs. Ours. 
Figure 9a implies the same coloring for the cat shape 
and the parameterized vertices on the spherical grid. 
The vertices indicated in crimson color on the grid 
show cat’s tail, as can be seen on the cat shape with 
the identical coloring. It is depicted in Figure 9b that 
these border vertices represent significant matching 
errors, and they are chaotically matched from the 
source shape to multiple regions on the target shape 
by (Lee et al., 2019) (left). This behavior is removed 
in the result of our proposed method (right). In 
addition, we can see that only some border vertices 
show significant errors, and almost all non-border 
vertices are matched to their correct 
correspondences correctly. Similar behavior is 
shown for the Wolf shapes in Figure 10 and Human 
shapes in Figure 11.  

Figure 12 represents CQC curves for all shapes 
within each category and dataset. As shown in 
Figure 12a, the Smooth Shell (Eisenberger et al., 
2020) outperforms the others only when shapes are 
not deforming non-isometrically very much (wolf 
category of the TOSCA dataset). In addition, the 
amount of improvement to the matching accuracy 
among border vertices is related to the amount of 
non-rigid deformation represented in the shapes and 
the number of border vertices that are dislocated 
with large distances on the spherical grid in the 
approach represented by (Lee et al., 2019). 
Considering the mentioned criteria, Figure 12b-12h 
shows that our modification improved the accuracy 
compared with (Lee et al., 2019) for all categories 
and within all datasets. Figure 12i shows the results 
of the comparison in all registration processes. 

According to Figure 13, the more non-isometric 
deformation a target shape (concerning the source 
shape) has, the more challenging the registration 

process is to match corresponding vertices. As stated 
in the figure, the Smooth Shell method (Eisenberger 
et al., 2020) can represent the best result of matching 
for the shapes having small values of NID (e.g., 
Wolf category of the TOSCA dataset). However, 
with increasing the NID of the registering shapes, 
the Smooth Shell’s NGE increases compared to Ours 
and DenseP2PCorr. The fluctuations in the graph 
imply that the correspondence quality is not only 
affected by the NID of shapes but also by other 
factors, such as the initialization state of the shapes, 
rigid alignment, etc. 

As discussed in the paper, we have represented 
an essential modification to the non-rigid 
registration part of the method represented by (Lee 
et al., 2019) to fix an important issue. We suggested 
replacing the regular spherical grid with cubic 
mapping, which preserves distances the same as 
represented on the sphere. Applying Optical Flow on 
each cube face individually (while having them 
extended properly based on adjacent faces) 
preserves the flow field smooth and local for all the 
vertices. Also, there would be no continuity issue in 
the deformation fields. Thus, the Optical Flow can 
calculate all the proper movements to register the 
shapes.  

We have shown that our proposition is superior 
to (Lee et al., 2019) and other recently published 
methods in terms of correspondence accuracy. The 
results by (Lee et al., 2019) for some border vertices 
are chaotically matched to multiple regions. This is a 
critical issue, especially for applications such as 
building SSM.  

Although this work has resolved some 
limitations of the previous work, it still suffers from 
the inability to register non-genus-zero shapes. The 
source of this issue is the CMCF which cannot 
converge the evolution of such shapes toward the 
unit sphere. Furthermore, the unit sphere and unit 
cube are not suitable parameterization spaces to 
represent non-genus-zero shapes. It can be further 
investigated in future works. 
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