
Multi-Camera 3D Pedestrian Tracking Using Graph Neural Networks

Isabella de Andrade1 a and João Paulo Lima2,1 b

1Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
2Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, Brazil

Keywords: Tracking, Pedestrians, Neural Networks, Multiple Cameras.

Abstract: Tracking the position of pedestrians over time through camera images is a rising computer vision research
topic. In multi-camera settings, the researches are even more recent. Many solutions use supervised neural
networks to solve this problem, requiring much effort to annotate the data and time spent training the network.
This work aims to develop variations of pedestrian tracking algorithms, avoid the need to have annotated data
and compare the results obtained through accuracy metrics. Therefore, this work proposes an approach for
tracking pedestrians in 3D space in multi-camera environments using the Message Passing Neural Network
framework inspired by graphs. We evaluated the solution using the WILDTRACK dataset and a generalizable
detection method, reaching 77.1% of MOTA when training with data obtained by a generalizable tracking
algorithm, similar to current state-of-the-art accuracy. However, our algorithm can track the pedestrians at a
rate of 40 fps, excluding the detection time, which is twice the most accurate competing solution.

1 INTRODUCTION

Tracking pedestrians is a computer vision problem
that consists of finding the location and assigning an
identity for each person through a video. This topic
receives considerable attention since it is one of the
tasks of perception systems present in autonomous
vehicles (Badue et al., 2021), and can also help in be-
havior analysis and video surveillance (Zhang et al.,
2018), among other applications.

The most common ways to track pedestrians
are model-free-tracking (MFT) and tracking-by-
detection (TBD) (Sun et al., 2020). In MFT, each
pedestrian must be manually initialized in the first
frame. The algorithm will keep looking for these
individuals over the following frames, limiting this
method since it cannot handle variations in the num-
ber of pedestrians over time. On the other hand, in
TBD, pedestrians are detected independently in each
frame, and the algorithm will assign the same identi-
fier to the detections that belong to the same person.

Another difference between pedestrian tracking
approaches is the number of cameras employed,
such as single camera (Brasó and Leal-Taixé, 2020;
Bergmann et al., 2019; Zhou et al., 2020) or multiple
cameras (Vo et al., 2021; Gan et al., 2021). Meth-
ods using multiple cameras handle occlusions better,

a https://orcid.org/0000-0003-4432-8449
b https://orcid.org/0000-0002-1834-5221

increasing the reliability of the solutions. However,
the complexity of re-identifying pedestrians and the
required computational power increases when using
multiple images. Many solutions work offline, where
the algorithm can only process a complete sequence
of images, making real-time applications that allow
interactions as we obtain images unfeasibly.

This work proposes an algorithm to track pedes-
trians in 3D space based on the TBD technique pro-
posed by Brasó & Leal-Taixé (2020), modifying it to
be effective in the multi-camera environment. We use
the detections obtained by the multi-camera solution
of (Lima et al., 2021). We also show experiments
training the neural network with labels obtained from
a generalizable tracker, so ground truth annotations
are unnecessary. In addition, we compare variations
of the implemented algorithm using accuracy metrics.

The contributions of the present work are:

• A fast algorithm that associates the detections of
the same pedestrian through several frames;

• An approach combining the use of Message Pass-
ing Neural Networks with 3D detections in a
multi-camera environment, in Section 3;

• Quantitative and qualitative evaluations of the
proposed method, in Section 4.

974
de Andrade, I. and Lima, J.
Multi-Camera 3D Pedestrian Tracking Using Graph Neural Networks.
DOI: 10.5220/0011674700003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP, pages
974-981
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



2 RELATED WORK

Brasó & Leal-Taixé (2020) used neural networks that
pass messages in graphs, called Message Passing
Neural Networks (MPNN), adapted to the problem
of tracking pedestrians (Brasó and Leal-Taixé, 2020).
They train the network with the characteristics of each
pedestrian’s bounding box, such as position and size,
and vectors of appearance characteristics. However,
they tracked pedestrians using only one camera and
required ground truth annotations for training.

Spatiotemporal data association can usually be
achieved using unsupervised methods, while appear-
ance association is more complex and often requires
expensive training. Karthik, Prabhu & Gandhi (2020)
proposed generating label annotations using spa-
tiotemporal unsupervised algorithms and training a
neural network with these labels. Still, they only train
the network for appearance association.

The work of Lima et al. (2021) is a generalizable
solution that uses detections of pedestrians in differ-
ent cameras that are close to each other in the world
ground plane to build a graph and obtain the 3D co-
ordinate of each pedestrian (Lima et al., 2021). How-
ever, this solution does not maintain a temporal rela-
tionship between the detections.

Lyra et al. (2022) proposed a generalizable online
tracking algorithm that creates a bipartite graph be-
tween detections of consecutive frames (Lyra. et al.,
2022). An algorithm of maximum weight graph asso-
ciation connects detections of each edge’s endpoints
to the same pedestrian using the distance between the
detections of the edge’s endpoints. However, by us-
ing deep neural networks, we can achieve a faster so-
lution, as shown in Subsection 4.4.

3 PEDESTRIAN TRACKING

In this section, we detail the approach used to track
pedestrians. In Subsection 3.1, we talk about the de-
tections used. In Subsection 3.2, we explain how the
neural network architecture works. In Subsection 3.3,
we specify how we trained the neural network. Fig-
ure 1 shows an overview of our method.

3.1 Detections

We obtain detections from the solution proposed by
Lima et al. (2021). Following their method, first,
we use YOLOv3 (Redmon and Farhadi, 2018) to de-
tect each person’s bounding box and the AlphaPose
library (Li et al., 2019) to extract keypoints from the
human body. Then, considering camera calibration

is available, we project the pedestrians’ location in
each camera image onto the world ground plane and
merge them to determine their final coordinate in 3D
space (Lima et al., 2021).

Thus, although we detect pedestrians in several
cameras, the algorithm of Lima et al. (2021) retrieves
one world ground plane location for each pedestrian,
which is the input to our method. In addition, their al-
gorithm is generalizable, so it is possible for this work
to also evolve into a generalization.

The detections represent the location of each
pedestrian at each instant of time t, but they do not
establish an identity relationship between pedestrians
at different times. In this work, we combine the de-
tections of the same pedestrian along a sequence of
images, thus managing to trace its trajectory in space.

3.2 Proposed Tracker

Our neural network is based on the MPNN architec-
ture proposed by (Brasó and Leal-Taixé, 2020). Ini-
tially, their tracking uses only one camera, but this
work proposes its use with multiple cameras.

In their work, they use characteristics of the 2D
bounding boxes coordinates (xle f t ,ytop,xwidth,yheight)
obtained by a single camera detector, but our goal is
to track the pedestrians in the 3D world ground plane.
Therefore, we use the pedestrian x and y coordinates
on the 3D world ground plane to track, which we ob-
tain from the multi-camera detector proposed by Lima
et al. (2021), as explained in Subsection 3.1.

After detecting pedestrians, we construct a graph
where nodes are detections and edges connects detec-
tions of different frames. For each pedestrian, there is
only one detection per frame independent of the num-
ber of cameras. Since pedestrians can enter or exit
the scene at any moment, the number of pedestrians
from different frames is not necessarily the same. The
graph is the input for our network, which has three
main steps. First, we process the features of nodes and
edges. Then, we update these attributes by combining
the characteristics of neighbor nodes and edges. The
final edges are classified as active or inactive to indi-
cate whether they connect detections from the same
pedestrian or not.

The MPNN has two encoder MLPs, four update
MLPs, and one classifier MLP. Each MLP has m
fully-connected layers followed by a normalization
layer and an activation layer. The activation function
used is ReLU.

The encoder MLPs process and compress the in-
put data. The first encoder MLP is used for edges,
where the number of neurons in the input layer varies
according to the number of characteristics used and

Multi-Camera 3D Pedestrian Tracking Using Graph Neural Networks

975



Figure 1: Overview of our approach. (a) Given a set of images from multiple cameras, we detect the 2D bounding boxes of
pedestrians in each camera and (b) project them onto the 3D world ground plane as proposed by Lima et al. (2021). Our task
is to identify which detections of different frames belong to the same pedestrian, therefore, (c) we create a graph where the
nodes represent the detections on the world ground plane, and the edges connect nodes from different frames. It is unnecessary
to have the same number of detections in each frame, e.g., Frame 1 can have n detections, and Frame 2 can have m detections.
Then, (d) we use the neural network architecture proposed by Brasó & Leal-Taixé (2020) to propagate the characteristics of
nodes and edges across the graph. (e) We use a sigmoid function to classify whether an edge is active or inactive, where an
active edge means that the detections belong to the same person. Finally, we assign the same id for detections connected by
an active edge. (f) Using the position of the previous frame and the current frame, we can observe the trajectory of pedestrians
on the 3D world ground plane.

is at most 4, with two hidden layers with 18 neu-
rons and an output layer with 16 neurons. Mean-
while, the other encoder MLP is used for nodes, and
we can use three different arrangements as input. One
option is to use visual features only, extracted using
ResNet50 (He et al., 2016) pre-trained in the Ima-
geNet dataset (Deng et al., 2009), where the size is
2048. Another one is to use pedestrian coordinates,
where the size is 2, and we also try to concatenate vi-
sual features with coordinates, where the size is 2050.
So then, the MLP has a hidden layer with 128 neurons
and an output layer with 32 neurons.

The update MLPs are responsible for learning the
function that better combines the characteristics of
nodes and edges. One update MLP is used for edges,
and it has an input layer with 96 neurons, a hidden
layer with 80 neurons, and an output layer with 16
neurons. Two update MLPs learn the attributes of past
and future nodes separately. They have an input layer
with 48 neurons, a hidden layer with 56 neurons, and
an output layer with 32 neurons. After obtaining the
updated attributes of the past and future nodes, an-
other update MLP concatenates both information and
transforms its size with an input layer of 64 neurons
and one output layer of 32 neurons.

The classifier MLP produces a numeric output
used for classification. It has an input layer with 16
neurons, a hidden layer with 8 neurons, and an output
layer with 1 neuron.

Figure 2 illustrates the architecture used. As men-
tioned earlier, the feature embeddings we use as node
attributes are extracted with ResNet50. We also ex-
perimented using pedestrian coordinates instead of
feature embeddings and concatenating features and
coordinates. Furthermore, we use the distance be-
tween frames, the geometric distance, and the appear-
ance distance for edges. The distance between frames
(d f ) is

d f = f(B)− f(A), (1)

in which f(A) and f(B) are the frames where detections
A and B appeared. The geometric distance (dg) is the
distance between x coordinates and between y coordi-
nates

dx = x(B)− x(A) (2)

dy = y(B)− y(A), (3)

where x(A) and x(B) are the x coordinates of detections
A and B, and dx is the x distance of their edge. The
same applies to dy, and together dx and dy are the ge-
ometric distance. The appearance distance (da) is the
cosine distance between the visual features. These at-
tributes are the input to the encoder MLP.

As the nodes need to use one bounding box, and
in this work, we have several, they are stacked ver-
tically to turn into one input to ResNet50. However,
this neural network needs a fixed-size input, but the
pedestrian can appear in different numbers of cam-
eras. So the input size is fixed at the maximum size
considering the total number of cameras, and a vector

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

976



Figure 2: MPNN architecture. First, we extract visual features from detections and feed them to an encoder MLP. Instead of
this, we could have also used (x,y) coordinates. Similarly, we obtain edge characteristics by calculating the distance between
frames, between x, between y coordinates, and between visual features of the detections. They also feed another encoder MLP.
With the results of these encoders, we start the message-passing process, where we update node and edge characteristics n
times. At each message passing step, we concatenate features of node A, node B, the edge between A and B, and the initial
state of this edge (before any update). We use this as input to the MLP that will update the edge. With nodes, the update
starts separately for nodes from the past and future. Considering A is a detection from the past and B is from the future, we
concatenate A with its edge and pass it through the MLP that updates nodes from the past. Then, we use B and its edge to
update the MLP of nodes from the future. We sum each result with the node that was not used, concatenate them, and pass it
through an MLP that updates nodes. After the n steps, the final edge is classified using a classifier MLP.

of zeros replaces images from cameras without pedes-
trian detection. Also, each bounding box is resized to
128x64 before being stacked.

Then, for each pair of nodes A and B connected
by an edge, their attributes and the edge attributes are
concatenated and used as input to update the edges’
MLP. Initially, these attributes are the output of the
encoder MLP, but this MLP updates the edge at-
tributes, thus propagating the information from the
nodes to the edges.

Similarly, each pair of nodes A and B connected
by an edge updates the attributes of the nodes. How-
ever, this update considers the past and future rela-
tionship between them. First, we concatenate the at-
tributes of the nodes from the past with the edge at-
tributes. They are the input to the update MLP of
the nodes from the past. Its output sums with the at-
tributes of the nodes from the future. Afterward, the
attributes of the future nodes are concatenated with
the edge attributes and used as input for the update
MLP of the future nodes. Its output sums with the
attributes of the nodes from the past. This way, the
network is trained by differentiating past and future
information from pedestrians. Past and future results
are concatenated and used as input for the last update
MLP, which updates the node attributes.

This update phase can be repeated several times
and is the part that represents the MPNN process of
passing messages. The information obtained by nodes
and edges is shared and mixed.

Subsequently, the edge attributes are the input to
the classifier MLP, and its output is used as the pa-
rameter of the sigmoid function to perform the binary
classification of the edge between 0 (inactive) or 1
(active), which will determine whether the detections
connected by this edge are really from the same per-
son or not.

3.3 Training and Validation

We use the binary-cross-entropy loss function to cal-
culate how much the wrong predictions should be pe-
nalized. For each passage l, we calculate the penalty
for prediction ŷe made for edge e, and then the penal-
ties for all edges are added together:

loss(l) =− ∑
e∈E

w ·ye · log(ŷ(l)e )+(1−ye) · log(1− ŷ(l)e ),

(4)
where E is the edge set and w is a weight that helps to
balance the loss when the number of active and inac-
tive labels is very different. This weight is calculated

Multi-Camera 3D Pedestrian Tracking Using Graph Neural Networks

977



by dividing the number of inactive labels by the num-
ber of active labels, which means that when there are
more inactive labels, the penalty for a wrong predic-
tion for an active label is more significant. Also, the
negative logarithmic function has larger values when
it is close to zero, so when the label ye is 1, the loss
uses -log(ŷ(l)e ) because if ŷ(l)e is zero the penalty will
be greater. If the label is 0, the loss is calculated with
-log(1− ŷ(l)e ).

Then the penalty for all passages l will be added
together. Since this value is the loss of all edges, it is
divided by the number of edges to get the average loss
between a prediction ŷe and a label ye:

loss(ŷ,y) =
1
|E|

L

∑
l=l0

loss(l). (5)

Training and validation were performed in two
ways. First, to compare the results obtained with dif-
ferent configurations, the network was trained using
70% of the frames present in the dataset as training,
20% as validation, and 10% as the test set.

Then, we use a 10-fold-cross-validation evalua-
tion with the configuration that obtained the most ac-
curate result during the previous experiment. The 10-
fold-cross-validation consists of dividing the database
into ten datasets of equal size, running the training ten
times, and each run uses a different set as validation
and the others as training.

Furthermore, we trained the network running 25
epochs for each experiment with the Adam optimizer,
and the learning rate has been kept as lr = 10−3.

4 RESULTS

In this section, we describe the database and metrics
used in Subsection 4.1, report the experiments with
the pedestrian detector in Subsection 4.2, and the ex-
periments with the ground truth annotations in Sub-
section 4.3. We also compare our solution with re-
lated works in Subsection 4.4.

4.1 Dataset and Metrics

During experiments, we used the WILDTRACK
dataset (Chavdarova et al., 2018), which has seven
cameras with overlapping views in an open area with
an intense flow of people. It has ground truth an-
notations that contain each pedestrian’s identification
number, the coordinate pair (x,y) that represents its
3D position on the world ground plane, and its bound-
ing box on each camera through 400 frames.

The main metric used is multiple object tracking
accuracy (MOTA), which summarizes the relation-
ship between errors and total detections as follows:

MOTA = 1− FP+FN +MM
OBJ

, (6)

where FP is the number of false positives, FN is the
number of false negatives, MM is the number of mis-
matches, and OBJ is the number of objects in the
ground truth annotations.

Another metric used is multiple object tracking
precision (MOTP), which calculates tracking preci-
sion as

MOT P = 1− derr

nmatches
, (7)

where derr is the sum of the geometric differences be-
tween the tracked position and the actual location, and
nmatches is the number of cases where a match be-
tween the tracking and the ground truth annotation
occurred. Both metrics were proposed by (Bernardin
and Stiefelhagen, 2008). We observed them more dur-
ing experiments, but we also report the other MOT
Challenge benchmark metrics for completeness (Mi-
lan et al., 2016).

The experiments were carried out using a machine
that has an Intel Xeon processor @ 2.20GHz, 26GB
of RAM, and an NVIDIA Tesla P100 GPU with 16GB
of memory.

4.2 Experiments Using a Pedestrian
Detector

Using the detections obtained through a detection al-
gorithm, the solution proposed in this work can be
evaluated in the same way it would be used in prac-
tice. Therefore, first, we used as the test set the de-
tections of (Lima et al., 2021). We train the neural
network with two variations, one using the ground
truth annotations and another using labels obtained
with the solution proposed by Lyra et al. (2022). The
latter is a tracking algorithm that results in detections
with assigned identities and would exempt the need
for ground truth annotations since this solution works
without training (Lyra. et al., 2022).

Tables 1 and 2 show the results obtained by train-
ing with the ground truth annotations and with Lyra et
al. (2022) tracker, respectively. The “Name” column
describes the configuration used, where the number
(2 or 15) refers to the number of frames considered
in the graph construction. When we use 15 frames,
the algorithm uses both previous and future frames,
while when using 2 frames, we analyze the algorithm
using only the current and previous frames. We also
evaluated the algorithm’s performance using different

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

978



Figure 3: MOTA obtained at each iteration during 10-fold-
cross-validation.

parameters as edge characteristics. The distance be-
tween frames and the geometric distance are essential,
but we show the results of using and not using the ap-
pearance distance.

It is possible to observe that in both cases, the
best results were obtained when using 15 frames and
not using the appearance distance between detections.
When training with ground truth annotations, the pro-
posed solution reached 76.6% of MOTA, while when
training with Lyra et al. (2022) results, we achieved
77.1% of MOTA.

Also, training lasts approximately 3-6 minutes,
while inference processes around 40 fps. However, to
use the visual characteristics, it is necessary to process
the detections beforehand to obtain the Re-ID vectors,
and this makes the algorithm slower, reaching 0.6 fps.
Therefore, we also performed tests using only the x
and y coordinates as node attributes, and we obtained
similar results without changing the above framerate
of 40 fps. Besides, we try using coordinates and Re-
ID concatenated. For each configuration, we execute
the test ten times, calculate the average MOTA and
the standard deviation (SD), and we apply the best
configuration from Table 2 (15+ d f + dg + da). The
results are on Table 3.

Considering the best configuration, we exper-
imented with the 10-fold-cross-validation pattern,
where we averaged the results obtained in the ten parts
of training per iteration. The best MOTA achieved is
at epoch 24 with 62.3%. The evolution of MOTA is
illustrated in Figure 3.

Observing one frame of the inference obtained
after training with the previous best configuration,
we analyzed the result qualitatively, highlighting four
pedestrians. Figure 4 shows cameras #1, #3, #5, and
the world ground plane corresponding to frame #364,
with pedestrians #009, #014, #019, and #024 colored
in yellow, light green, dark green, and light blue, re-
spectively. In these images, it is possible to see that in
addition to the pedestrians being re-identified in dif-
ferent cameras, they also continue to be tracked even
when they have severe occlusion. For example, in

Figure 4: Images from cameras #1, #3, #5, and the world
ground plane of frame #364 highlighting pedestrians #009,
#014, #019, and #024 in yellow, light green, dark green, and
light blue, respectively.

camera #5 (center image), pedestrian #024 is not seen
but has stable tracking in the world ground plane as it
continues appearing on other cameras.

Pedestrian #009 is next to pedestrians #006 and
#011, and pedestrian #006 is the one holding a bag in
camera #3. On camera #5, the person with the bag
is occluding pedestrian #009, but we notice that the
tracking of pedestrians #009 and #011 continues cor-
rectly.

Pedestrians #014 and #019 are more examples of
correct pedestrian tracking despite some cameras ex-
periencing partial or severe occlusions as they appear
in other cameras.

Also, despite the overall result being good, there
are still errors in tracking. For example, detection
#027 appears, but when we project it onto cameras
#1 and #3, we see that it points to an empty location,
so it is a false positive.

4.3 Experiments Using Ground Truth
Detection Annotations

As the quality of TBD trackers depends on the quality
of the detections, we also experimented with using the
neural network to track the ground truth annotations.
Table 4 displays the results, where the highest MOTA
is 99.9% with the same configuration as the previous
experiments.

This result demonstrates how much the quality of
detections reflects on tracking, reaching a result that
is 22.9% better than the best result of previous exper-
iments and almost perfect.

4.4 Comparison with Related Works

In Table 5, we compare our results with state-of-the-
art methods in 10% of the WILDTRACK dataset.

The best results obtained are similar to the ones

Multi-Camera 3D Pedestrian Tracking Using Graph Neural Networks

979



Table 1: Results obtained in the test set after training with ground truth annotations.

Name MOTA MOTP IDF1 IDP IDR Rcll Prcn GT MT PT ML FP FN IDs FM

2+d f +dg 75.2% 90.7% 74.9% 73.9% 75.9% 90.8% 88.3% 41 29 10 2 114 88 32 23

2+d f +dg+da 73.7% 82.6% 67.9% 67.0% 68.8% 90.3% 87.9% 41 30 9 2 118 92 40 26

15+d f +dg 76.7% 90.9% 82.1% 81.0% 83.2% 90.8% 88.3% 41 28 11 2 114 88 20 24

15+d f +dg+da 75.9% 86.6% 79.6% 78.5% 80.7% 90.8% 88.3% 41 30 9 2 114 88 27 21

Table 2: Results obtained in the test set after training with the output of Lyra et al. (2022) tracking.

Name MOTA MOTP IDF1 IDP IDR Rcll Prcn GT MT PT ML FP FN IDs FM

2+d f +dg 75.8% 90.6% 76.8% 75.8% 77.8% 90.8% 88.3% 41 30 9 2 114 88 28 23

2+d f +dg+da 75.7% 90.5% 78.2% 77.2% 79.3% 90.8% 88.3% 41 30 9 2 114 88 29 23

15+d f +dg 77.1% 90.7% 82.4% 81.3% 83.5% 90.8% 88.3% 41 28 11 2 114 88 16 22

15+d f +dg+da 76.8% 90.6% 82.1% 81.0% 83.2% 90.8% 88.3% 41 30 9 2 114 88 19 23

Table 3: Results obtained changing nodes features.

Name MOTA ±SD

Coordinates 77.02% ±0.147

Re-ID 77.03% ±0.125

Coordinates + Re-ID 77.04% ±0.171

Table 4: Results obtained testing with ground truth annota-
tions.

Frames
Distance

MOTA MOTP
d f dg da

2 Yes Yes No 98.6% 99.9%

2 Yes Yes Yes 98.9% 99.9%

15 Yes Yes No 99.9% 100%
15 Yes Yes Yes 99.7% 100%

Table 5: Comparison of our solution with related works.
You & Jiang (2020) tracking speed includes the detection
stage, while Lyra et al. (2022) and Ours do not include it.

Technique Tracking
Speed MOTA MOTP

Chavdarova
et al. (2018) Offline 72.2% 60.3%

You & Jiang
(2020)

15 FPS
w/ det 74.6% 78.9%

Vo et al.
(2021) Offline 75.8% -

Lyra et al.
(2022)

20 FPS
w/o det 77.1% 96.4%

Ours 40 FPS
w/o det 77.1% 90.7%

Table 6: Comparison of our solution with Lyra et al. (2022).

Technique Detections MOTA MOTP

Lyra et al.
(2022)

Detector 77.1% 96.4%

Ours Detector 77.1% 90.7%

Lyra et al.
(2022)

Ground
Truth

Annotations

98.9% 98.7%

Ours Ground
Truth

Annotations

99.9% 100%

from (Lyra. et al., 2022). Their solution uses a de-
terministic algorithm with a fixed result of 77.1% of
MOTA, while our solution obtained results that oscil-
late between 76.9% and 77.1%. However, our solu-
tion can track at a rate of 40 fps, while Lyra et al.
(2022) tracks pedestrians at 20 fps. Although we sug-
gest using the algorithm of Lyra et al. (2022) in our
solution, it is only required for training, not affecting
our inference time. Both frame rates do not include
the duration of the detection process. (You and Jiang,
2020) work tracks at 15 fps, where this frame rate in-
cludes the detection process, and the other solutions
are offline. Compared to Lyra et al. (2022), we also
obtained more accurate and precise results when test-
ing with ground truth detection annotations, as seen
in Table 6.

As the WILDTRACK dataset also has annotations
regarding the bounding boxes of each camera, we car-
ried out an experiment using the original algorithm by
Brasó & Leal-Taixé (2020) to track only the 2D de-
tections obtained by YOLOv3 in the first camera of
WILDTRACK. The MOTA was 45.5%, demonstrat-

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

980



ing that the use of multiple cameras proposed in this
work significantly improved this type of environment.

5 CONCLUSIONS

We proposed a new approach for 3D pedestrian track-
ing in multi-camera environments in this work. Our
method uses the MPNN architecture to associate de-
tections that belong to the same pedestrian and to
trace their spatial-temporal trajectory. By carrying
out experiments on the WILDTRACK database, we
showed that the technique reaches up to 77.1% of
MOTA when trained with the tracking result of Lyra
et al. (2022) and 62.3% of MOTA in 10-fold-cross-
validation. In addition, the time required to track
pedestrians is 40 fps, which is twice the most accu-
rate competing solution (Lyra et al. (2022)).

The results obtained considering only 2 frames are
worse than those obtained with 15 frames because
there are more identity changes, so it would be in-
teresting to study how to reduce these changes so that
the performance using 2 frames is as good as the one
when using 15 frames.

Furthermore, this work evaluated the use of a pos-
sible approach to training the neural network without
the need for ground truth annotations. However, sev-
eral unsupervised training techniques could be tried
in this scenario.

REFERENCES

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Car-
doso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixão,
T. M., Mutz, F., de Paula Veronese, L., Oliveira-
Santos, T., and De Souza, A. F. (2021). Self-driving
cars: A survey. Expert Systems with Applications,
165:113816.

Bergmann, P., Meinhardt, T., and Leal-Taixe, L. (2019).
Tracking without bells and whistles. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision (ICCV).

Bernardin, K. and Stiefelhagen, R. (2008). Evaluating mul-
tiple object tracking performance: the clear mot met-
rics. EURASIP Journal on Image and Video Process-
ing, 2008:1–10.

Brasó, G. and Leal-Taixé, L. (2020). Learning a neural
solver for multiple object tracking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6247–6257.

Chavdarova, T., Baqué, P., Bouquet, S., Maksai, A., Jose,
C., Bagautdinov, T., Lettry, L., Fua, P., Van Gool, L.,
and Fleuret, F. (2018). Wildtrack: A multi-camera
hd dataset for dense unscripted pedestrian detection.
In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5030–
5039.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vi-
sion and pattern recognition (CVPR), pages 248–255.
IEEE.

Gan, Y., Han, R., Yin, L., Feng, W., and Wang, S. (2021).
Self-supervised multi-view multi-human association
and tracking. In Proceedings of the 29th ACM Inter-
national Conference on Multimedia, MM ’21, page
282–290, New York, NY, USA. Association for Com-
puting Machinery.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition (CVPR), pages 770–778.

Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.-S., and Lu,
C. (2019). Crowdpose: Efficient crowded scenes pose
estimation and a new benchmark. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10863–10872.

Lima, J. P., Roberto, R., Figueiredo, L., Simoes, F., and
Teichrieb, V. (2021). Generalizable multi-camera 3d
pedestrian detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1232–1240.

Lyra., V., de Andrade., I., Lima., J., Roberto., R.,
Figueiredo., L., Teixeira., J., Thomas., D., Uchiyama.,
H., and Teichrieb., V. (2022). Generalizable online
3d pedestrian tracking with multiple cameras. In Pro-
ceedings of the 17th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 5: VISAPP,, pages
820–827. INSTICC, SciTePress.

Milan, A., Leal-Taixé, L., Reid, I., Roth, S., and Schindler,
K. (2016). Mot16: A benchmark for multi-object
tracking. arXiv preprint arXiv:1603.00831.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv.

Sun, Z., Chen, J., Chao, L., Ruan, W., and Mukherjee, M.
(2020). A survey of multiple pedestrian tracking based
on tracking-by-detection framework. IEEE Transac-
tions on Circuits and Systems for Video Technology,
31(5):1819–1833.

Vo, M., Yumer, E., Sunkavalli, K., Hadap, S., Sheikh, Y.,
and Narasimhan, S. G. (2021). Self-supervised multi-
view person association and its applications. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 43(8):2794–2808.

You, Q. and Jiang, H. (2020). Real-time 3d deep multi-
camera tracking. arXiv preprint arXiv:2003.11753.

Zhang, X., Yu, Q., and Yu, H. (2018). Physics inspired
methods for crowd video surveillance and analysis: a
survey. IEEE Access, 6:66816–66830.

Zhou, X., Koltun, V., and Krähenbühl, P. (2020). Tracking
objects as points. In Vedaldi, A., Bischof, H., Brox, T.,
and Frahm, J.-M., editors, Computer Vision – ECCV
2020, pages 474–490, Cham. Springer International
Publishing.

Multi-Camera 3D Pedestrian Tracking Using Graph Neural Networks

981


