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Abstract: Recent 3D detection models rely on Transformer architecture due to its natural ability to abstract global context
features. One is the 3DETR network - a pure transformer-based model designed to generate 3D boxes on
indoor dataset scans. It is generally known that transformers are data-hungry. However, data collection and
annotation in 3D are more challenging than in 2D. Thus, our goal is to study the data-hungriness of the
3DETR-m model and propose a solution for its data efficiency. Our methodology is based on the observation
that PointNet++ provides more locally aggregated features that can be useful to support 3DETR-m prediction
on small dataset problem. We suggest three methods of backbone fusion that are based on addition (Fusion I),
concatenation (Fusion II), and replacement (Fusion III). We utilize pre-trained weights from the Group-free
model trained on the SUN RGB-D dataset. The proposed 3DETR-m outperforms the original model in all data
proportions (10%, 25%, 50%, 75%, and 100%). We improve 3DETR-m paper results by 1.46% and 2.46% in
mAP@25 and mAP@50 on the full dataset. Hence, we believe our research efforts can provide new insights
into the data-hungriness issue of 3D transformer detectors and inspire the usage of pre-trained models in 3D
as one way towards data efficiency.

1 INTRODUCTION

It has not been long since 3D point cloud analysis be-
came one of the crucial areas of research. 3D object
detection on point clouds is concerned with generat-
ing bounding boxes tightly surrounding the objects
in a 3D scene, thus, it recognizes and localizes ob-
jects simultaneously. 3D object detection has many
applications in real-world such as autonomous driv-
ing, robotics, healthcare, and augmented reality. 3D
point cloud object detection is a challenging computer
vision task, since 3D point cloud data is sparse, or-
derless and irregular. Due to such properties, various
methods of treating the 3D point cloud data were born
in the research community. Hence, there are three key
reasons for the motivation behind the deeper study of
3D point clouds among computer vision researchers:

• Emergence of readily available 3D scanning sen-
sors

• Presence of richly labeled datasets

• Development of 3D deep learning methods

Various large-scale 3D datasets were accumulated
and annotated due to the emergence of the latest point
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Figure 1: Supervised pre-training and fine-tuning of
3DETR-m model.

processing technologies such as LiDAR and RGB-D
sensors that can effectively scan the 3D environment.

Many works in 3D vision utilize deep learning for
3D shape classification (Su et al., 2015) (Qi et al.,
2016), 3D object detection (Qi et al., 2017a) (Chen
et al., 2019) and tracking (Giancola et al., 2019) (Qi
et al., 2020), 3D point cloud segmentation (Landrieu
and Simonovsky, 2017) (Graham et al., 2017).

Previous deep learning methods in 3D relied on
convolutional neural networks (ConvNet) and multi-
layer perceptrons (MLPs). Inspired by the success
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of ConvNet, which is due to the ability to capture
finer features at local levels, PointNet++ (Qi et al.,
2017b) was designed to hierarchically process raw
point cloud input to extract features at multiple scales.
Many object detection models are built upon this
backbone which has proven to be effective in learn-
ing 3D representations of the point cloud input.

Recently, Transformers has made a breakthrough
in 3D scene understanding. Transformer architecture
(Vaswani et al., 2017) initially was designed for Nat-
ural Language Processing (NLP) tasks, which inher-
ently suits sparse and orderless input. Most impor-
tantly, it can capture long-range dependencies vital
for perceiving contextual patterns in the scenes. Due
to such amenities, Transformers and the self-attention
operation offered more accurate detections on point
clouds. Nevertheless, unlike non-transformer models,
pure transformer-based ones require more data sam-
ples to train the network.

This paper aims to study the robustness of 3D de-
tection models towards limited dataset condition. De-
pending on various reasons, data might not always be
available, and the robust model trained on fewer data
can save resources such as time and computational
overhead on the network. In this work, we compare
four different models with four different architec-
tures with the purpose of preliminary study and anal-
ysis, which are: 1) Group-free 3D (Liu et al., 2021)
(hybrid model with transformer decoder and Point-
net++ backbone); 2) MLCVNet (Xie et al., 2020a)
(point-based model with a combination of MLPs
and attention); 3) 3DETR (Misra et al., 2021) (pure
transformer with the encoder-decoder); 4) 3DETR-
m (Misra et al., 2021) is another version of 3DETR
which uses 2 set abstraction layers from PointNet++,
where a masked encoder is used for local feature ag-
gregation. All models were trained on the ScanNetv2
benchmark dataset under four settings: 10%, 25%,
50%, and 75% of the original dataset.

The contributions from our research efforts are
outlined below:

• We design a novel architecture by integrating the
PointNet++ backbone into 3DETR-m via simple
fusion methods such as addition, concatenation,
and replacement.

• We use SUN RBG-D pre-trained model of Group-
free 3D network to initialize backbone with more
meaningful weights, thus, yielding higher per-
formance in all dataset proportions (10%, 25%,
50%, and 75%). By improving over the baseline
3DETR-m models, we make purely transformer-
based architecture more data efficient. We im-
prove 3DETR-m paper results by 1.46% and
2.46% in mAP@25 and mAP@50 on the full

dataset.
• We are the first to explore the data-hungriness of

a transformer-based 3D object detector to the best
of our knowledge.

2 RELATED WORKS

Point-Based Approaches. PointRCNN (Shi et al.,
2018) is a two-stage 3D object detector similar to the
FasterRCNN method in 2D object detection, which
exploits the PointNet backbone to extract useful fea-
tures and generate 3D object proposals. KP-Conv
(Thomas et al., 2019) is a point convolution-based
approach where any number of kernels can be used,
making it a more flexible technique than grid convo-
lutions. MLCVNet (Xie et al., 2020a) is a multi-level
context VoteNet (Qi et al., 2019) extracting features
at multiple levels such as at patch, object and global
levels.
Projection/Voxel-Based Approaches. Previous
works focused on the traditional convolution ap-
proach after the irregular shape of 3D input data
was transformed into 2D/3D grids. These meth-
ods PIXOR (Yang et al., 2019), AVOD (Ku et al.,
2017) project point cloud to 2D planes/bird’s eye view
(BEV) and convert them into 2D grids to apply 2D
ConvNets, which can learn features and output 3D
bounding boxes. A number of methods VoxNet (Mat-
urana and Scherer, 2015), MV3D (Chen et al., 2016),
FCAF3D (Rukhovich et al., 2021) depend on vox-
elization, which first maps point cloud input to a vol-
umetric 3D grid (voxels) so that 3D ConvNets can be
utilized to compute features and predict 3D bounding
boxes.
Transformer Based Approaches. Authors of Point
Cloud Transformer (Guo et al., 2021) design a solely
transformer-based network for learning global con-
text through a self-attention mechanism. Pointformer
(Pan et al., 2020) paper is a pure transformer U-net
like architecture that relies on the ability of Trans-
formers to capture long-range dependencies. It is built
with three different transformers: Local Transformer,
Local-Global Transformer, and a Global Transformer.
The authors of (Zhao et al., 2020) propose Point
Transformer layer to effectively process raw point
cloud igniting a permutation-invariant property.

2.1 Training with Limited Data

In 3D deep learning, there are few works that have
used pre-training for 3D point cloud data. PointCon-
trast (Xie et al., 2020b) framework enables unsuper-
vised pre-training for the first time in high-level 3D
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scene understanding that provided promising results
in segmentation and detection tasks with six bench-
mark indoor and outdoor datasets. Yamada et al. (Ya-
mada et al., 2022) suggest using pre-training to ini-
tialize weights from a model trained on a synthetic
dataset and fine-tune on a smaller dataset with real
scans. The authors developed a new fractal geomet-
ric database called PC-FractalDB, on which source
networks were pre-trained. In the 2D domain, a re-
cent work (Wang et al., 2022) focused on pushing
the performance of DETR (Carion et al., 2020) and
Deformable-DETR (Zhu et al., 2020) and could beat
original models with much less data on subsampled
COCO 2017 and small-sized CityScapes datasets. For
COCO 2017, smaller training data was created by
sampling 0.1, 0.05, 0.02, and 0.01 from the full train-
ing examples, whereas the evaluation set is kept the
same.
Summary. Current 3D object detection transformers
demonstrate competitive performance and simple de-
sign compared to point-based or grid-based methods.
Nevertheless, it is not clear whether transformer mod-
els can keep high accuracy with smaller training data.
The recent study in 2D (Wang et al., 2022) shows
that with smaller training samples, detection trans-
formers suffer from performance drop, which proves
that transformers are data-hungry networks. Hence,
motivated by an existing gap, we aim to study the
data-hungriness of 3D detection transformers by eval-
uating the 3DETR-m model on smaller sets of Scan-
Net dataset and present a novel 3DETR design that
achieves better performance than the baseline scores.
As object detection on point clouds is still in its in-
fancy, the existing 3D detectors do not utilize any
transfer learning. Hence, we are the first to use an
off-the-shelf pre-trained model on the detection trans-
former network.

3 APPROACH

3.1 Leveraging 3DETR-m Model with
PointNet++ Backbone

First we will provide an overview of 3DETR (Misra
et al., 2021) model architecture focusing on the
Masked Encoder and Decoder of the transformer.
Masked Encoder. The masked encoder of 3DETR-
m consists of three layers of self-attention and MLP.
The attention matrix of size (N′ ×′ N) in each layer
is multiplied by a binary mask matrix M of the same
shape. Any Mi j entry of M is set to 1 if i and j points
are located within a radius r distance with each other.
3DETR-m uses 2 Set Abstraction layers from Point-

(a) PointNet++ (b) 3DETR-m encoder

Figure 2: t-SNE visualization of feature distribution.

Net++. The first set abstraction layer is used to down-
sample initial scene points to 2048 points, and later to
1024 points by the second set abstraction layer with
a radius of 0.4. The second stage of subsampling and
set aggregation is named interim downsampling that
is used for the masking stage and is applied to the en-
coder self-attention output.
Decoder. The transformer decoder receives an input
of (N′×d) from the encoder and (B×256) query em-
beddings, where B = 256 query points sampled by fps
from N′ points. Fourier positional embedding is ap-
plied to include positional information, as the decoder
does not have knowledge about initial positions. The
decoder is used to produce final (B× d) boxes with
d = 256 box features. There are eight decoder layers
and four heads in each MHA. Cross-attention in the
decoder computes the relation between query embed-
dings and encoder features, while self-attention in the
decoder computes the relation between query embed-
dings.

3.2 Analysing Feature Distribution

In order to understand the feature scales, a dimen-
sionality reduction technique t-distributed stochastic
neighbor embedding (t-SNE) was used. The 256-
dimensional feature vector of the PointNet++ features
and 3DETR-m encoder features were projected to di-
mension 50 using truncatedSVD for sparse matrices.
Using t-SNE plots to visualize feature dimensions
helped better understand the feature scales and data
distribution. Differences in data distribution mean
some normalization techniques need to be used prior
to fusion. The plots in Figure 2 showcase the features
reduced to 3D space for one of the batch data samples.
Fusion I: Addition. To mitigate the data-hungriness
of 3DETR, we used backbone features from Point-
Net++. We added the backbone features with the en-
coder features, where encoder features were normal-
ized between the [0, 1] range. A detailed scheme of
the modification can be seen in Figure 3. For the nor-
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malization, MinMaxScaler was applied according to
equations below:

xstd =
x− xmin

xmax − xmin
(1)

xscaled = xstd ∗ (max−min)+min (2)

where xmin is a minimum value and xmax is a max-
imum value in feature space, while x is the feature of
current point in a cluster. The range to which normal-
ization has been applied is given by min, max vari-
ables. In the below equation, the fusion method is
shown with a simple addition operation, where F(x,y)
is the new fused features, xscaled is the normalized en-
coder features, and y is the backbone features.

F(x,y) = xscaled + y (3)

Figure 3: Architecture of proposed model 3DETR-m-F1
with backbone fusion on 3DETR-m (Fusion I). The red
lines represent our modifications on the original 3DETR.

Fusion II: Concatenation. We utilized concatena-
tion method to preserve original features from the
backbone. The architecture sketch can be seen in Fig-
ure 4.

F(x,y) = ReLU(γ(Concat(xscaled ,y))) (4)

where γ is MLP network with hidden dimension of
128. Concat(xscaled ,y) is performed across feature
axis, giving in total 512 output features, which is pro-
jected by the MLP back to 256 dimension. ReLU non-
linearity is used as an activation function. The en-
coder features were normalized between [0, 1] based
on Equation 2.

Figure 4: Architecture of proposed model 3DETR-m-F2
with backbone fusion on 3DETR-m (Fusion II). The red
lines represent our modifications on the original 3DETR.

Fusion III: Replacement. In this fusion technique,
the pre-encoder is fully replaced by the backbone or,
in other words, extended by two more set abstraction
layers followed by two feature propagation layers as
in PointNet++ (see Figure 5).

Figure 5: Architecture of proposed model 3DETR-m-F3
with backbone fusion on 3DETR (Fusion III). The red lines
represent our modifications on the original 3DETR.

Figure 6: Comparison of Group-free, 3DETR-m, ML-
CVNet and 3DETR vanilla models.

4 DATA-EFFICIENT 3DETR-m
WITH SUPERVISED
PRE-TRAINING

In this section we explain how we improved 3DETR-
m by utilizing the transfer learning technique. Group-
free model (Liu et al., 2021) was selected as a source
pre-training model as it is partially transformer-
based architecture and it has competitive perfor-
mance. Hence, in order to support the fused back-
bone, we initialized its weights with SUN RBG-D
pre-trained Group-free model weights from the same
backbone while eliminating the rest of the architec-
ture layers. As we are interested in increasing the
performance of 3DETR-m in all data proportions, we
strove to take advantage of the pre-trained backbone
from the Group-free model (GF3D). For the base-
line models in all data proportions, we use 10 de-
coder layers instead of original 8 layers and refer to
it as 3DETR-m-10L. Since the features from a source
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dataset are different from the target dataset, thus, it
may need additional layers to be refined.

As depicted in Figure 1, the weights of a pre-
trained GF3D model are transferred to 3DETR-m to
initialize the backbone with meaningful values rather
than just random numbers. Therefore, only the Point-
Net++ feature weights from GF3D are implanted into
the same backbone in 3DETR-m. GF3D is an end-to-
end network that optimizes backbone features based
on downstream detection task, which perfectly suits
our goal - to make maximum use of the PointNet++
backbone. In addition, SUN RBG-D is also an indoor
dataset that can, at the same time, supply diverse fea-
tures together with features extracted from ScanNet.

SUN RBG-D pre-trained GF3D model with 6 lay-
ers, 256 object candidates, and width 1 of the back-
bone was downloaded from an official GitHub repos-
itory. We created an instance of the GF3D model in
3DETR code to have access to a state dictionary and
model parameters. After the pre-trained model weight
was loaded, a new state dictionary was created, pro-
viding all source model parameters.

5 EXPERIMENTS

Dataset and Metrics. ScanNetv2 (Dai et al., 2017)
is an indoor dataset built from richly annotated 3D re-
constructions comprising 1513 indoor scenes and 18
object categories. 3D bounding box annotations, as
well as per-point instance semantic labels, are pro-
vided. The standard mean Average Precision (mAP)
protocol is followed under IoU thresholds of 0.25 and
0.5, eliminating the oriented bounding boxes. The
dataset was split into a training set consisting of 1201
scenes and 312 test set for validation.
Source Dataset. SUN RBG-D (Song et al., 2015) is
a single-view RBG-D dataset of indoor environments
with 3D bounding box annotations. It contains 10,335
RGB-D image frames labeled with amodal and ori-
ented bounding boxes with 37 class categories. Abid-
ing by a standard evaluation protocol, only 10 classes
are used during training and validation. The training
set has 5285 frames, and the test set has 5050 frames.
Training Details. The training configurations for the
experimental models were kept as provided in the
original papers and GitHub repositories. The base-
line models were all trained on cluster GPUs pro-
vided by the university. MLCVNet and 3DETR used
a single GPU, while GF3D utilized 4 GPU resources.
The code is written in the PyTorch framework. Both
3DETR and GF3D use AdamW optimizer, while ML-
CVNet uses Adam. Initial learning rates for 3DETR,
GF3D and MLCVNet are 0.0005, 0.006 and 0.01, re-

spectively. All three models are trained end-to-end
with a batch size of 8. We also trained the 3DETR-
m version of vanilla 3DETR, which uses 2 set ab-
straction layers and a masked encoder with interim
downsampling. 3DETR-m has the same settings as
3DETR except for a few differences, such as an en-
coder dropout of 0.3 is used and masking is enabled.
The models trained under limited data condition used
the same configurations as the baseline ones with
100% of the dataset.

We run the experiments on 10%, 25%, 50%, and
75% subsets of ScanNet dataset. All the pre-trained
3DETR-m were trained for 1080 epochs as the origi-
nal model. It is important to note that GF3D trained
on SUN RBG-D uses a width of 1 for the backbone.
Therefore, we modified the PointNet++ width 2 in
3DETR-m models to width 1 for consistency. Base
learning rate of 0.0005 is used in all experiments. The
models were trained using a batch size of 8 on a single
NVIDIA GPU.

6 RESULTS AND DISCUSSION

In order to better understand behavior of 3D models
with limited data, we selected four detection mod-
els which are Group-free (Liu et al., 2021), ML-
CVNet (Xie et al., 2020a), vanilla 3DETR (Misra
et al., 2021) and 3DETR-m (Misra et al., 2021).
The reason for choosing Group-free and MLCVNet
along with 3DETR models is because both Group-
free and MLCVNet rely on PointNet++ backbone and
are not full transformer networks as 3DETR. Our
study explores the data-hungriness of transformer-
based model 3DETR; therefore, we consider it crucial
to compare against non-transformer architectures. We
evaluated our models on ScanNetV2 3D object detec-
tion benchmark dataset.

The overall trend for baseline models is reason-
able (see Figure 6): with more data, the models per-
form better, and the mAP range between the models is
preserved for all settings, except 10% and 25% Scan-
Net training on 3DETR-m. Compared with 3DETR
vanilla, which has lower mAP scores on full dataset
and other proportions than 3DETR-m, at 10% and
25% ScanNet 3DETR-m fails to reach the same per-
formance trend. This may imply that 3DETR-m is
more data-hungry than 3DETR. Noticing this behav-
ior, we wondered whether it is possible to improve
over 3DETR-m (at 10% and 25%). Hence, as a
first step, it was logical to try utilizing PointNet++
backbone features along with the encoder features
since both Group-free and MLCVNet, which pos-
sess higher scores than 3DETR, rely on the backbone
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Figure 7: 3DETR-m (P-Fusion I, II, III) performance com-
parison on ScanNet.

for feature generation. In contrast, 3DETR is a pure
transformer-based network only using a single set ab-
straction layer from the PointNet++ backbone for the
purpose of down-scaling.

Models with all fusion techniques 3DETR-m (P-
Fusion I, II and III) have increased detection accuracy
results compared to 3DETR-m-10L baseline in all
data proportions (10%, 25%, 50%, and 75%), as de-
picted in Figure 7 and Table 1. Note that the 3DETR-
m-10L baseline is the exact 3DETR-m model with
10 decoder layers. On 10% ScanNetV2, 3DETR-m
(P-Fusion I) with SUN RGB-D pre-trained weights
significantly improves on top of our 3DETR-m-10L
baseline by 12.74% accuracy gain in mAP@25 and
by 8.88% gain in mAP@50. While 3DETR-m (P-
Fusion II) outperform the baseline scores by 11.93%
mAP@25 and 6.97% mAP@50. It is worth men-
tioning that mAP@25 scores of 3DETR-m (P-Fusion
I) and 3DETR-m (P-Fusion II) are higher than the
Group-free and MLCVNet baseline scores on 10%
ScanNetV2 (see Figure 8 and 9). On the other hand,
3DETR-m (P-Fusion III) has higher mAP@25 scores
than the MLCVNet. This proves that our proposed
models can perform on par with the non-transformer
models on the small-scale dataset.

While for the 100% ScanNetV2, Fusion II (Con-
catenation) and Fusion III demonstrated the best
mAP outcomes. As reported in Table 1, 3DETR-
m (P-Fusion II) performance on the full dataset
yielded high results in both mAPs reaching 66.24%

and 47.25%, while 3DETR paper reports 65.0%
and 47.0%. Table 3 illustrates per-class outputs in
mAP@25: 3DETR-m (P-Fusion II) increases the ac-
curacy of 13 object categories, except the chair, book-
shelf, toilet, sink, and bath. Interestingly, the first two
and last three classes are all related objects, meaning
the model understands the relationship between the
objects. The model has significant gains in the detec-
tion of some objects. For example, for the challenging
picture object, it provides 0.85% gain, for the window
7.45%, and the counter 7.53%. 3DETR-m (P-Fusion
III) has the highest mAP@25 and mAP@50 results
reaching 66.46% and 49.46% which provides with
1.46% and 2.46% gains as compared to original pa-
per 3DETR-m scores. Although 3DETR-m (P-Fusion
III) has the best overall score, class-wise it improves
the performance of only 9 object categories (see Ta-
ble 3). Similarly, 3DETR-m (P-Fusion I) improves
the performance over 10 classes and overall it has the
lowest mAP scores. Table 2 compares our modified
models with the rest of the state-of-the-art model per-
formances.

Regarding the qualitative outputs (Figure 10),
3DETR-m-10L baseline misses the window and door
objects, while our 3DETR-m (P-Fusion I) success-
fully detected the door and 3DETR-m (P-Fusion II)
correctly recognized the window. This proves that
our proposed models are more efficient at capturing
the global context. Among three fusion techniques
(P-F I, P-F II and P-F III), 3DETR-m (P-Fusion II)
does not capture redundant object, whereas 3DETR-
m (P-Fusion I) and 3DETR-m (P-Fusion III) have
false positives for another window object. In addi-
tion, 3DETR-m (P-Fusion III) has misses too. Hence,
3DETR-m (P-Fusion II) is the best model.

7 CONCLUSIONS

To summarize, this work focused on exploring the ro-
bustness of 3D detector models toward small dataset
problem. Seeing the gap between PointNet++ based
models (Group-free, MLCVNet) and pure trans-
former models (3DETR, 3DETR-m), we aimed to
push the potential of 3DETR further by leveraging
the architecture with the backbone features. Al-
though transformer self-attention is good at capturing
long-range dependencies in the scene, it may lack in
forming a local shape geometry from grouped clus-
ter points. Hence, we showed that the performance
could be increased by fusing locally aggregated fea-
tures from PointNet++ to 3DETR.
Future Research. As our target was 3D object de-
tection, our research efforts can be extended to other
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(a) 3DETR-m (P-Fusion I) (b) 3DETR-m (P-Fusion II) (c) 3DETR-m (P-Fusion III)

Figure 8: Performance comparison with state-of-the-art on ScanNet at mAP@25.

(a) 3DETR-m (P-Fusion I) (b) 3DETR-m (P-Fusion II) (c) 3DETR-m (P-Fusion III)

Figure 9: Performance comparison with state-of-the-art on ScanNet at mAP50.

(a) GT annotation (b) 3DETR-m-10L (c) 3DETR-m (P-F I)

(d) 3DETR-m (P-F II) (e) 3DETR-m (P-F III) (f) Color reference

Figure 10: Qualitative results comparison between (b) 3DETR-m-10L baseline and our proposed models (c), (d), and (e). P-F
I, P-F II, and P-F III stand for P-Fusion I, II, and III, which are the pre-trained models with the Fusion (I, II, or III) technique.
The objects detected correctly are labeled with a white dashed circle, whereas wrong or missed object detections are shown
with a red dashed circle. The bounding box colors used in visualization images are given in (f). Ground truth (GT) annotation
is depicted in (a). 3DETR-m (PF-1) detects a door object and 3DETR-m (PF-2) detects a window object, while the baseline
fails to detect either of these.

Data-Efficient Transformer-Based 3D Object Detection

621



Table 1: Mean Average Precision (mAP) results on ScanNetv2 validation set with pre-trained weights. Numbers outside
brackets represent the best epoch results, while those inside are the last epoch results. P-Fusion implies a pre-trained model
with the Fusion (I, II, or III) technique. Our proposed models have improvements (highlighted in bold) in all percentage sets
(10%, 25%, 50%, 75%, and 100%) as compared to 3DETR-m baselines.

Architecture Set Backbone mAP@0.25 mAP@0.5
3DETR-m (baseline) 10% - 23.0 (22.99) 5.58 (6.24)
3DETR-m-10L (baseline) 10% - 23.31 (22.21) 6.99 (5.66)
3DETR-m (P-Fusion I) 10% PointNet++ 36.05 (35.03) 15.87 (14.6)
3DETR-m (P-Fusion II) 10% PointNet++ 35.24 (34.41) 13.96 (14.43)
3DETR-m (P-Fusion III) 10% PointNet++ 30.4 (28.98) 10.41 (10.13)
3DETR-m (baseline) 25% - 43.3 (42.76) 21.56 (21.45)
3DETR-m-10L (baseline) 25% - 43.86 (43.51) 22.84 (22.66)
3DETR-m (P-Fusion I) 25% PointNet++ 46.36 (45.49) 25.36 (25.46)
3DETR-m (P-Fusion II) 25% PointNet++ 46.84 (45.82) 22.76 (24.10)
3DETR-m (P-Fusion III) 25% PointNet++ 44.83 (43.18) 20.35 (22.65)
3DETR-m (baseline) 50% - 56.37 (56.05) 35.22 (35.18)
3DETR-m-10L (baseline) 50% - 57.34 (55.84) 34.5 (36.07)
3DETR-m (P-Fusion I) 50% PointNet++ 57.32 (56.08) 37.0 (35.44)
3DETR-m (P-Fusion II) 50% PointNet++ 58.66 (57.27) 35.87 (37.52)
3DETR-m (P-Fusion III) 50% PointNet++ 58.0 (57.17) 33.7 (37.59)
3DETR-m (baseline) 75% - 60.41 (59.76) 41.2 (40.49)
3DETR-m-10L (baseline) 75% - 61.29 (60.48) 41.15 (41.84)
3DETR-m (P-Fusion I) 75% PointNet++ 62.1 (59.94) 39.89 (42.64)
3DETR-m (P-Fusion II) 75% PointNet++ 62.69 (61.06) 42.78 (41.35)
3DETR-m (P-Fusion III) 75% PointNet++ 62.68 (61.20) 42.24 (43.56)
3DETR-m (paper) 100% - 65.0 47.0
3DETR-m (baseline) 100% - 63.93 (62.55) 45.43 (45.52)
3DETR-m-10L (baseline) 100% - 65.34 (64.16) 44.72 (46.22)
3DETR-m (P-Fusion I) 100% PointNet++ 65.68 (64.73) 45.69 (45.6)
3DETR-m (P-Fusion II) 100% PointNet++ 66.24 (65.23) 47.25 (47.0)
3DETR-m (P-Fusion III) 100% PointNet++ 66.46 (65.5) 45.17 (49.46)

Table 2: Mean Average Precision (mAP) performance comparison with the state-of-the-art models trained on ScanNetv2
dataset. PointNet++w2 means the backbone has width of 2 in MLP networks. P-Fusion implies a pre-trained model with
the Fusion (I, II or III) technique. Our proposed model 3DETR-m (P-Fusion III) demonstrates competitive scores as with
Group-free (L6, O256) result.

Architecture Backbone mAP@25 mAP@50
VoteNet Pointnet++ 62.9 39.9
MLCVNet Pointnet++ 64.5 41.4
Group-Free (L6, O256) Pointnet++w2 × 67.3 (66.2) 48.9 (48.4)
Group-Free (L12, O512) Pointnet++w2 × 69.1 (68.6) 52.8 (51.8)
3DETR - 62.7 37.5
3DETR-m - 65.0 47.0
3DETR-m (P-Fusion I) (ours) PointNet++ 65.68 45.69
3DETR-m (P-Fusion II) (ours) PointNet++ 66.24 47.25
3DETR-m (P-Fusion III) (ours) PointNet++ 66.46 49.46

Table 3: Per-class evaluation of 3DETR-m (SUN RBG-D pre-trained) on validation-set on 100% ScanNetV2 at AP@25 IoU.
Numbers in bold show increases with our modification in 3DETR-m (P-Fusion II) as compared to 3DETR-m (paper) results.

Method cab bed chair sofa tabl door windw bkshf pic contr desk curtn frdge showr toilt sink bath grbin mAP
3DETR-m (paper) 49.4 83.6 90.9 89.8 67.6 52.4 39.6 56.4 15.2 55.9 79.2 58.3 57.6 67.6 97.2 70.6 92.2 53.0 65.0
3DETR-m (baseline) 52.71 80.71 89.75 89.92 66.04 54.91 38.14 51.48 13.52 58.76 75.08 47.09 56.6 62.86 94.34 70.17 85.96 51.42 64.88
3DETR-m-10L (baseline) 52.39 82.81 89.25 91.37 67.73 54.32 42.57 46.67 15.56 57.19 74.85 63.76 56.63 73.77 99.53 67.63 89.54 50.61 65.34
3DETR-m (P-Fusion I) 48.04 83.08 91.88 88.89 70.04 56.39 40.44 47.86 14.31 57.39 75.52 62.15 56.19 69.49 99.52 73.05 95.26 52.76 65.68
3DETR-m (P-Fusion II) 51.17 85.48 90.71 90.78 71.21 55.07 47.05 47.49 16.05 63.43 80.59 59 58.52 69.65 95.99 68.36 88.43 53.42 66.24
3DETR-m (P-Fusion III) 47.1 83.35 91.56 89.2 73.24 52.3 46.28 55.54 15.43 56.48 77.69 62.26 58.59 71.72 96.32 75.63 92.11 51.4 66.46
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computer vision tasks such as classification and seg-
mentation.
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