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Abstract: This paper presents novel modifications to the Firefly Algorithm (FA) that manipulate the functionality of the 
intensity and attractiveness of fireflies through the incorporation of grouping behaviours into the movement 
of the fireflies. FA is one of the most well-known and actively researched swarm-based algorithms, gaining 
notoriety for the powerful search capability offered and overall computational simplicity.  While the FA is an 
effective optimisation algorithm, it is unfortunately susceptible to the issue of premature convergence and 
oscillations within the swarm, which can lead to suboptimal performance.  In the original FA formulation, at 
each iteration fireflies will instinctively move towards the most intensely bright firefly which is in closest 
proximity to them.  The algorithm proposed in this paper manipulates the movement of the fireflies through 
modification of this intensity and attraction relationship, allowing the swarm to move in different ways, 
ultimately increasing the search diversity within the swarm.  While group-based FAs have been proposed 
previously, the group-based FAs presented in this paper utilise a different approach to creating groups, 
implementing groupings based upon firefly performance at each iteration, resulting in continually varying 
groupings of fireflies, to further increase search diversity and maintain computational simplicity.

1 INTRODUCTION 

Swarm intelligence has been an increasingly 
important and popular field throughout the last 
decade and is inspired by the collective behaviours of 
social swarms of animals and insects that occur 
within nature (Qi et al., 2017).  These swarms are 
typically made up of a collection of unsophisticated 
agents that demonstrate a coordinated behaviour to 
achieve the desired goal of the swarm.  Agents within 
the swarm interact with each other, creating a 
decentralised and self-organising swarm.  Examples 
of notable and frequently used Swarm Intelligence 
optimisation methods are Ant Colony Optimisation 
(ACO), Artificial Bee Colony (ABC), Firefly 
Algorithm (FA) and Particle Swarm Optimisation 
(PSO) (Wang and Liu, 2019). 

Swarm intelligence methods have been applied in 
a variety of optimisation problem areas, such as 
forecasting (Altherwi, 2020), scheduling (Bacanin et 
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al., 2022), medical diagnosis (Nayak et al., 2020) and 
structural design (Chou and Ngo, 2017), 
demonstrating good performance and successful 
outcomes (Wang and Liu, 2019).  FA has shown itself 
to be an effective and powerful optimisation 
technique in a variety of optimisation problems, but it 
is susceptible to issues such as oscillations in the 
swarm during the search process (Wang et al., 2017), 
and premature convergence (Qi et al., 2017). This 
paper proposes a novel Group-based Firefly 
Algorithm (GBFA) to overcome these issues. In the 
original FA, at each iteration fireflies will 
instinctively move toward the most intensely bright 
firefly which is in closest proximity to them. The FA 
variant proposed in this paper manipulates the 
behaviour of fireflies within the swarm through 
modification of the intensity and attraction 
relationship. This modification allows the swarm to 
move in different ways, ultimately increasing search 
diversity within the swarm, which prevents the 
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occurrence of issues such as premature convergence 
or oscillations within the swarm. While group-based 
Firefly Algorithms have been proposed previously in 
work such as (Tong et al, 2017), (Suganya and 
Murugavalli, 2019) and (Cao et al, 2022), the group-
based FA presented in this paper utilises a different 
approach to creating groups. Groupings are 
implemented at each iteration, based upon individual 
firefly performance, resulting in continually varying 
groupings of fireflies, allowing increased search 
diversity within the swarm. 

This paper is organised as follows: Section 2 
presents the standard FA, and a brief review of 
previous applications and research. Section 3 contains 
an overview of the GBFA proposed in this paper and 
briefly discusses related work. Section 4 shows the 
experiment design and describes the optimisation 
benchmark functions used to test the algorithm. 
Section 5 presents and discusses the results obtained 
from the proposed algorithm, and a comparison with 
the standard FA and recent research within the field. 
Section 6 provides a summary of the paper and the 
findings. 

2 FIREFLY ALGORITHM 

The Firefly Algorithm (FA) was originally developed 
in 2008 by Yang, with advances and applications 
noted in (Yang and He, 2013). It is a relatively new 
swarm intelligence algorithm and has been 
successfully applied to a variety of optimisation 
problems such as vehicle route planning, data fitting, 
scheduling, resource allocation (Ariyaratne et al., 
2019). FA has also generated promising results for 
optimisation in engineering systems with applications 
in optimising power flow, micro-hydro applications, 
and the optimisation of electromagnetic devices 
(Parwanti et al., 2021). 

FA is a population-based stochastic search 
algorithm, with similarities in functionality to Particle 
Swarm Optimisation (PSO). FA is a nature inspired 
algorithm, and behind the algorithmic design 
concepts of FA are the luminescence attribute, 
behaviour, and movement of tropical fireflies (Jain et 
al., 2021). Subsequently, FA has become a well-
known optimisation technique for complex 
optimisation problems (Napalit and Ballera, 2021). 
Fireflies are individual agents within the swarm, and 
each uses its luminescence property to indicate their 
position within a search domain. Attractiveness of 
fireflies and movements within the swarm are based 
around the attractiveness of a firefly. FA is based on 
the following idealised rules (Yang and He, 2013): 

(i) All fireflies within the swarm are unisex and 
therefore all fireflies will be attracted to one 
and other regardless of gender. 

(ii) The attractiveness of a firefly is proportional 
to the brightness, with brightness decreasing 
as distance increases. 

(iii) For any two flashing fireflies, the less bright 
of the two will move toward the brighter one. 

(iv) If there is no brighter firefly, it will move 
randomly. 

(v) The brightness of an individual firefly is 
determined by the objective function. 

The attractiveness of a firefly is directly 
proportional to the intensity of brightness visible to 
adjacent fireflies, and attractiveness of a firefly is 
defined in (1), 𝛽 = 𝛽଴ିఊ௥మ

 (1)

with 𝛽  as the attractiveness, 𝑟  as the distance, and 
where 𝛽଴ is the attractiveness at 𝑟 = 0 . Firefly 
movement is based on the level of attraction to 
another firefly, as shown in (2), 𝑥௜௧ାଵ = 𝑥௜௧ + 𝛽଴𝑒ିఊ௥೔ೕమ ൫𝑥௝௧ − 𝑥௜௧൯ + 𝛼௧𝜖௜௧ (2)

where the 𝑖௧௛ firefly is attracted to move towards the 𝑗 firefly if it has a higher intensity of brightness. With 
the first term representing the current location of 
firefly 𝑖 and the second term representing movement 
from one position to another, due to attraction to 
firefly 𝑗. With the parameter 𝑟௜௝ being the Euclidian 
distance between the two fireflies. The light 
absorption coefficient is represented by 𝛾, where 𝛾 =1. 𝛽଴ is the original light attractiveness of each firefly 
at 𝑟 = 0, and in the event that 𝛽଴ = 0, the firefly will 
take a simple random walk. The third term of (2) is a 
randomisation with  𝛼௧  acting as the randomisation 
parameter, and 𝜖௜௧  is a vector containing random 
numbers drawn from a Gaussian distribution. The 
framework of FA can be broken down into the three 
stages.  The first stage is initialisation. In this stage, 
the objective function, 𝑓(𝑥) , is defined and a 
population of 𝑛  fireflies are generated through the 
expression shown in (3), where 𝑖  is the population 
(𝑖 = 1,2, … 𝑁), 𝑑 is the dimension, with 𝑙𝑜𝑤 and 𝑢𝑝 
representing the upper and lower bounds of the 
dimension. 𝑥௜,ௗ = 𝑙𝑜𝑤 + 𝑟𝑎𝑛𝑑(0,1)(𝑢𝑝 − 𝑙𝑜𝑤) (3)

The second stage focuses on firefly movement based 
upon attraction. Each solution generated ( 𝑥௜ ), is 
compared with all other solutions within the 
population of fireflies (𝑥௝ ). Firefly 𝑥௜  will change 
position based upon (2), if the objective function 
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result of 𝑥௝  is better than 𝑥௜ . Each firefly is then 
evaluated based upon updated positions and sorted. 
At the third stage, the stopping criteria is checked, and 
the algorithm will end if the stopping criteria is 
satisfied.  If the stopping criteria is not satisfied, the 
second stage will repeat. Pseudo code describing the 
functionality of the standard FA algorithm is as 
follows: 
 
/* Define objective function 𝑓(𝑥௜), 𝑥௜ = (𝑥ଵ,ଵ, … , 𝑥௜,ௗ) 
/* Initialise population of fireflies 𝑥௜(𝑖 = 1,2, … , 𝑛) 
/* Begin 
 while (t < MaxIteration) 
   for 𝑖 = 1 to 𝑛 do 
     for 𝑗 = 1 to 𝑛 do 
      /* Calculate brightness 
      𝑏௜ = 𝑓(𝑥௜), 𝑏௝ = 𝑓(𝑥௝) 
      /* Determine movement     
       if (𝑏௝ > 𝑏௜) 
         Move 𝑥௜ towards 𝑥௝ 
       end if 
     end for 𝑗 
   end for 𝑖 
Rank fireflies and set current best 
end while 
/* End 

 
While the FA is a powerful optimisation 

algorithm, it is still susceptible to issues such as 
swarm oscillations and premature convergence, 
usually occurring because of fireflies moving towards 
non-optimal solutions within their local vicinity 
(Suganya and Murugavalli, 2019). The next section 
of this paper discusses the proposed algorithm to 
address these issues. 

3 PROPOSED FIREFLY 
ALGORITHM 

This paper proposes a novel Group-based Firefly 
Algorithm (GBFA) to alleviate the issues standard FA 
is susceptible to, such as oscillations within the 
swarm during the search process, resulting in 
decreased search diversity (Wang et al., 2017), and 
premature convergence (Qi et al., 2017). FA 
implementations which utilise grouping behaviours 
have been previously proposed in research such as 
(Tong et al, 2017) and (Cao et al, 2022) and have 
demonstrated positive results and successes in 
preventing premature convergence or swarm 
oscillations. Oscillations within the swarm is usually 
caused by too many or too few attractions within the 

swarm during the search process (Wang et al., 2017), 
and therefore manipulation of attraction of fireflies 
within the swarm is an important area for research.  

In their work, (Tong et al, 2017) attempted to 
solve the problem of premature convergence by 
creating a modified evolutionary mechanism, with the 
swarm divided into fixed groups, each with different 
model parameters. While they achieved positive 
results, showing a good balance between exploration 
and exploitation, the implementation was not without 
flaws, the main being that the overall computational 
simplicity of the FA was reduced through these 
augmentations. In other work, (Cao et al, 2022) 
proposed groupings based upon visual fields and an 
observer strategy and encouraged collaboration 
between groups by having individual fireflies existing 
in multiple groups. Again, while the work of Cao et 
al. shows promising results, the implied overhead of 
the additional behaviours added to the algorithmic 
design of FA sacrifices computational simplicity for 
more powerful search results. 

While it is important to increase search diversity 
within the swarm, reductions in computational 
simplicity can have negative impacts on real-time 
systems implementing swarm intelligence algorithms 
that require updating to changes in the problem 
domain, such as vehicle route planning (Chandrawati 
and Sari, 2018), or controlling drone swarms 
(Siemiatkowska and Stecz, 2021). It is therefore 
important to try and obtain a balance between 
ensuring computational simplicity and algorithmic 
performance. The GBFA proposed in this paper seeks 
to alleviate issues with the standard FA, by increasing 
search diversity with the addition of dynamic groups, 
whilst maintaining computational simplicity. 

3.1 Group-Based Firefly Algorithm 
Functionality 

In the standard FA, fireflies will instinctively move 
toward the most intensely bright firefly that is in 
closest proximity to them. In the GBFA algorithm, the 
intensity and movement relationship is manipulated 
through the addition of dynamic groupings to each 
iteration. At each iteration, fireflies are ranked based 
on their brightness. Groupings are then dynamically 
allocated based upon the position of fireflies within 
this ranking and will fluctuate at each iteration based 
upon the new rankings. For example, if the group size 
is set to five, the highest ranked firefly (the current 
best) will be the leader of the first group, which 
contains the fireflies ranked second to fifth. The 
second group leader will be the firefly ranked at the 
sixth position, with the fireflies ranked seventh to 
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tenth forming the rest of that group. Example 
groupings are visualised in Figures 1 and 2. Each of 
the groupings is assigned a group leader, which all 
other fireflies within the group will move toward. 
Movement is handled in the same way as the standard 
FA, as shown in equation (2), except with the caveat 
that group members move only toward the leader of 
their group. If a group member has the same value 
returned from the objective as the group leader, the 
group member will complete the same random walk 
as in the standard FA.  This modification increases 
search diversity and allows the swarm to move in 
different ways, overcoming issues such as premature 
convergence and oscillations. Groups are dynamically 
allocated at each iteration, based on sizing parameter 𝑔, which must be defined before the algorithm begins. 
The pseudo code for the GBFA can be seen below, 
where the group size is set to 5 (𝑔 = 5). 
 
/* Define objective function 𝑓(𝑥௜), 𝑥௜ = (𝑥ଵ,ଵ, … , 𝑥௜,ௗ) 
/* Initialise population of fireflies 𝑥௜(𝑖 = 1,2, … , 𝑛) 
/* Define group size 𝑔 = 5 
/* Begin 
 while (t < MaxIteration) 
   for 𝑖 = 1 to 𝑛 do 
     Create groupings based on size 𝑔 
     Assign group lead as 𝑔ଵ 
     /* Calculate brightness of 𝑔ଵ 
     𝑏௚భ = 𝑓(𝑔ଵ) 
     for 𝑗 = 1 to 𝑔 do 
       /* Calculate brightness 
       𝑏௝ = 𝑓(𝑔௝) 
       /* Determine movement     
       if (𝑏௚భ > 𝑏௝) 
         Move 𝑔௝ towards 𝑏௚భ 
       end if 
     end for 𝑗 
   end for 𝑖 
Rank fireflies and set current best 
end while 
/* End 
 

Group sizes can be set to allow groups to operate 
independently of each other, Figures 1 and 2 show a 
visualisation of how groups are organised. With 
Figure 1 showing a group size (𝑔) set to five (𝑔 = 5), 
with a population (𝑛) of 50 (𝑛 = 50), where each 
colour represents a different group of fireflies within 
the swarm, and the visible group leaders are 𝑥ଵ, 𝑥଺, 𝑥ସଵ and 𝑥ସ଺. Figure 2 shows a group size of ten (𝑔 =10), with a population of 80 (𝑛 = 80), again where 
each group within the swarm is represented by a 

different colour and the visible group leaders are 𝑥ଵ, 𝑥ଵଵ, 𝑥଺ଵ and 𝑥଻ଵ. 

 
Figure 1: GBFA group example where 𝑔 = 5 and 𝑛 = 50. 

 
Figure 2: GBFA group example where 𝑔 = 10  and 𝑛 =80. 

4 EXPERIMENT DESIGN 

To review the performance of the proposed GBFA, a 
standard FA and the GBFA were implemented using 
Python 3.9, along with eight bound constrained global 
optimisation problems that are commonly used to test 
the performance of optimisation algorithms (Ackley, 
Easom, Griewank, Michalewicz, Rastrigin, 
Rosenbrock, Schwefel and Sphere). These were 
chosen based on the optimisation problems noted by 
(Fister et al., 2013), which have seen continued usage 
in modern optimisation algorithm testing in work 
such as (Wang et al., 2017) and (Zivkovic et al., 
2022). Functions were implemented using the 
NumPy Python library and each of the benchmark 
functions are outlined within this section. 

All experiments were conducted using 30 runs, 
each with 200 iterations and a population of 𝑛 = 40 
fireflies. The group size for the GBFA is 𝑔 = 5 and 
the number of dimensions is 𝑑 = 2. 
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4.1 Ackley 

The Ackley function is shown in (4), it is highly 
multimodal and has a global minimum of 𝑓 = 0 at 𝑠 = (0,0, … ,0) , where 𝑠௜ ∈ [−32.768,32.768], 𝑖 =1,2, … , 𝐷. 
 𝑓ଵ(𝑠) ෍(20 + 𝑒 − 20𝑒ି଴.ଶට(଴.ହ(௦೔శభమ ା௦೔మ)஽ିଵ

௜ୀଵ − 𝑒଴.ହ(ୡ୭ୱ(ଶగ௦೔శభ)ାୡ୭ୱ(ଶగ௦೔)) (4)

 

4.2 Easom 

The Easom function is shown in (5) has several local 
minimum and global minimum, 𝑓 = −1  at 𝑠 =(𝜋, 𝜋, … , 𝜋), where 𝑠௜ = [−2𝜋, 2𝜋]. 
 𝑓(𝑠) = (−1)஽ ൭ෑ cosଶ(𝑠௜)஽

௜ୀଵ ൱ 

exp ൥− ෍(𝑠௜ − 𝜋)ଶ஽
௜ୀଵ ൩ 

(5)

4.3 Griewank 

The Griewank function, shown in (6), has a global 
minimum of 𝑓 = 0  at 𝑥 = (0,0, … ,0) , where 𝑠௜ ∈[−600,600], 𝑖 = 1,2, … , 𝐷 . It is also important to 
note that when the number of variables is higher than 
30, this function is highly multimodal. 
 𝑓(𝑠) = − ෑ cos ൬ 𝑠௜√𝑖൰஽

௜ୀଵ + ෍ 𝑠௜ଶ4000 + 1஽
௜ୀଵ  (6)

4.4 Michalewicz 

The Michalewicz function, in two-dimensional 
parameter space, has the global minimum of 𝑓 =−1.8013 at 𝑠 = (2.20319,1.57049) and is shown in 
(7). 
 𝑓(𝑠) = − ෍ sin(𝑠௜)஽

௜ୀଵ ቈsin ቆ𝑖𝑠௜ଶ𝜋 ቇ቉ଶ⋅ଵ଴
 (7)

4.5 Rastrigin 

The Rastrigin function is shown in (8), where 𝑠௜ ∈[−15,15], 𝑖 = 1,2, … , 𝐷. It has a global minimum of 𝑓 = 0 at 𝑥 = (0,0, … ,0) and is highly multimodal. 
 
 

𝑓(𝑠) = 𝐷 ∗ 10 + ෍(𝑠௜ଶ − 10 cos(2𝜋𝑠௜))஽
௜ୀଵ  (8)

4.6 Rosenbrock 

The Rosenbrock function is also commonly known as 
the ‘banana function’. It has several local optima and 
is shown in (9), where 𝑠௜ ∈ [−15,15], 𝑖 = 1,2, … , 𝐷. 
The function has a global minimum of 𝑓 = 0 at 𝑠 =(1,1, … ,1). 𝑓(𝑠) = ෍ 100(𝑠௜ାଵ − 𝑠௜ଶ)ଶ஽

௜ୀଵ + (𝑠௜ − 1)ଶ (9)

4.7 Schwefel 

The Schwefel function is shown in (10), where 𝑠௜ ∈[−500,500], 𝑖 = 1,2, … , 𝐷 . This is a highly 
multimodal function and has a global minimum of 𝑓 = 0 at 𝑠 = (1,1, … ,1). 𝑓(𝑠) = 418.9829 ∗ 𝐷 − ෍ s௜sin ඥ|𝑠௜|஽

௜ୀଵ  (10)

4.8 Sphere 

De Jong’s Sphere function is shown in (11), where 𝑠௜ ∈ [−600,600], 𝑖 = 1,2, … , 𝐷 . This is a unimodal 
and convex function and has a global minimum of 𝑓 = 0 at 𝑠 = (0,0, … ,0). 

𝑓(𝑠) = ෍ 𝑠௜ଶ஽
௜ୀଵ  (11)

5 RESULTS 

The primary goal of the experiments conducted was 
to show that the GBFA could outperform a standard 
FA implementation through the incorporation of 
grouping behaviours into the movement of the 
fireflies. The data shown in Table 1 is the average best 
results for the FA and GBFA when benchmarked 
using each of the eight optimisation functions 
described in Section 4.  The experiments were 
conducted over 30 runs at 200 iterations each, in 2 
dimensions, with a population of 40.  Based upon the 
population size used, GBFA was configured to run 
with a group size defined as 5, meaning there would 
be a total of eight groups dynamically allocated at 
each iteration of execution. 
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Table 1: Comparison of the average best results of FA and 
GBFA, with the best result in bold. 

Function FA GBFA
Ackley 1.59E-01 1.32E-01 
Easom -1.00E+00 -1.00E+00 

Griewank 2.31E-02 2.12E-02 
Michalewicz -1.80E+00 -1.80E+00 

Rastrigin 5.78E-02 4.86E-02 
Rosenbrock 2.93E-03 1.36E-03 
 Schwefel 8.60E-01 6.05E-01 

Sphere 5.83E-01 4.36E-01 

The results shown in Table 1 are promising, with 
the GBFA outperforming the standard FA in six of 
the eight benchmark functions: Ackley, Griewank, 
Rastrigin, Rosenbrock, Schewefel and Sphere, and 
performing equally as well as the standard FA in the 
remaining benchmark functions: Easom and 
Michalewicz. This shows us that the increased search 
diversity offered by the GBFA is capable of 
addressing issues with FA that lead to suboptimal 
performance, such as premature convergence or 
oscillations within the swarm. Table 2 shows a 
comparison of results with a recent study (Wahid et 
al. 2018), which presents a hybrid FA. The standard 
FA is combined with a Genetic Algorithm (GA) and 
an embedded search pattern and is referred to as GA-
FA-PS.  The GA is used to modify the positions of the 
fireflies within the swarm after the fireflies have been 
randomly placed within the search domain, before the 
first execution of the FA. At the end of each iteration, 
the embedded search pattern is used to increase 
search diversity, through the introduction of further 
exploitation and exploration. 

Table 2: Comparison of the average best of the GBFA and 
a modified FA presented by (Wahid et al. 2018), with the 
best results in bold. 

Function GBFA GA-FA-PS
Ackley 1.32E-01 2.52E-01 

Rosenbrock 1.36E-03 -1.92E+00 
Sphere 4.36E-01 -3.01E+00 

The work presented by Wahid et al. attempts to 
address the premature convergence issues within the 
swarm by modifying the functionality of the FA, 
much like the algorithm presented in this paper. 
Wahid et al. conducted their research study using only 
three optimisation benchmark functions: Ackley, 
Rosenbrock and Sphere. The data is again quite 
positive, as while the hybrid FA proposed by Wahid 
et al. showed the capability to outperform the 
standard FA, the GBFA presented in this paper was 
able to significantly outperform the hybrid FA, 
particularly in the Rosenbrock and Sphere 
optimisation benchmark functions. 

Table 3 shows a comparison of results with 
another recent study (Gamao et al., 2019), which 
presents a modified mutated FA, to attempt to address 
the premature convergence issue of the standard FA 
and improve results. In this study three FA variants 
have been proposed: Mutated Firefly Algorithm 
(MFA), Modified Mutated Firefly Algorithm-Las 
Vegas (MMFA-LV) and Modified Mutated Firefly 
Algorithm-Monte Carlo (MMFA-MC). These 
algorithms have been implemented in an attempt to 
increase search diversity of the swarm through 
mutation of the lower performing fireflies and higher 
performing fireflies. 

Table 3: Comparison of the average best results of GBFA 
and (Gamao et al., 2019), with the best result in bold. 

Function GBFA MFA MMFA-
LV 

MMFA-
MC

Ackley 1.32E-01 5.97E+00 5.59E+00 3.87E+00
Rosenbrock 1.36E-03 7.54E+01 7.21E+01 4.69E+01

Sphere 4.36E-01 3.98E+00 1.80E+00 1.77E+00

The proposed mutation process enhances features 
and attractiveness of the bottom forty percent of the 
swarm, by mutating them with the top forty percent 
of the swarm. The algorithms presented by Gamao et 
al. also attempt to improve the search capabilities of 
FA by combining the mutation principles with a Las 
Vegas (LV) search algorithm and a Monte Carlo 
(MC) search algorithm. Gamao et al. used only three 
optimisation benchmark functions: Ackley, 
Rosenbrock and Sphere to test their algorithms. 
Again, while the algorithm variants proposed by 
Gamao et al. were able to show improvements on the 
standard FA, the GBFA presented in this paper shows 
significantly improved results. 

6 CONCLUSIONS 

The attraction behaviour of FA has an extremely 
important role within the search process of the FA and 
controls how the swarm moves and finds candidate 
solutions. As previously noted, modification of the 
attraction behaviour within the FA is an important area 
to research when trying to alleviate issues such as 
premature convergence or oscillations within the 
swarm, as it can result in having the firefly and swarm 
move in different ways to the standard FA, ultimately 
increasing search diversity also. The GBFA presented 
in this study has shown that positive results can be 
achieved through modification of this attractiveness 
relationship and can allow for fireflies to move toward 
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positions that they would normally not, allowing for 
greater search capabilities and enhanced performance. 

While the results observed in this study are 
extremely positive, further experimentation with the 
GBFA is required. The next stage of research for this 
algorithm is to tune the group size parameter and the 
number of groups within a swarm, to evaluate the 
performance when using larger or smaller group 
sizes. Additionally, concepts such as the cross-group 
communication behaviour seen in other research 
within the area, such as (Cao et al., 2022), that allows 
individual fireflies to exist across multiple groups can 
be incorporated into the GBFA to investigate the 
impact that this has on the performance of the 
algorithm. 
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