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Abstract: Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models
on unseen data. To remediate this problem, many new and diverse data augmentation (DA) methods have
been proposed to supplement or generate more training data, and thereby increase its quality. In this work,
we propose a new DA algorithm: VoronoiPatches (VP). We primarily utilize non-linear re-combination of
information within an image, fragmenting and occluding small information patches. Unlike other DA methods,
VP uses small convex polygon-shaped patches in a random layout to transport information around within an
image. In our experiments, VP outperformed current DA methods regarding model variance and overfitting
tendencies. We demonstrate DA utilizing non-linear re-combination of information within images, and non-
orthogonal shapes and structures improves CNN model robustness on unseen data.

1 INTRODUCTION

Fueled by big data and the availability of powerful
hardware, deep Artificial Neural Networks (ANNs)
have achieved remarkable performance in computer
vision thanks to recent advancements. But deeper
and wider networks with more and more parameters
are data hungry beasts. (Aggarwal, 2018) With these
(often oversized) ANNs a sufficient amount of train-
ing data is critical for good performance and avoiding
overfitting for a wide variety of problems. Unfortu-
nately, data sources can be difficult to appropriately
work with due to mistakes made while acquiring data,
mislabeling, underrepresentation, imbalanced classes,
et cetera (Illium et al., 2021; Illium et al., 2020). In
these cases, learning directly from real-world datasets
may not be straightforward. To overcome this chal-
lenge, Data Augmentation (DA) is commonly used
because of its effectiveness and ease of use (Shorten
and Khoshgoftaar, 2019). Over the years, various
methods (e.g., occlusion, re-combination, fragmenta-
tion) have been developed, reviewed and contrasted.
In this work, we propose a logical combination of
such existing DA-methods: VoronoiPatches (VP).

First, we introduce the concept of DA and Voronoi
diagrams in section 2. A discussion of existing, re-
lated works follows in section 3. We propose our ap-
proach (VP), dataset, and experimental setup and re-
sults in section 4. Finally, we summarize our findings
and give an outlook for future research in section 5.

2 PRELIMINARIES

Data Augmentation (DA) is a technique used to re-
duce overfitting in ANNs, which in the most extreme
cases has perfectly memorized its training data; and
is therefore, unable to generalize well (the major ad-
vantage of ANNs). A function learned by an overfit
model exhibits high variance in its output (Shorten
and Khoshgoftaar, 2019) by overestimating, which
ultimately leads to poor overall performance. The
amount of a model’s variance can be thought of as
a function of its size. Assuming finite samples, the
variance of a model will increase as its number of pa-
rameters increases. (Burnham and Anderson, 2002)
This is where DA methods can be applied (on training
data) to increase the size and diversity of an otherwise
limited (e.g., size, balance) dataset.

In the past and with the advent of deep CNN,
such approaches have been very successful in the do-
main of computer vision (and many others) (Shorten
and Khoshgoftaar, 2019). Image data is especially
well suited for augmentation, as one major task of
ANNs is being robust to object invariance and image
features.DA algorithms, on the other hand, are made
to generate such invariances. We restrict our discus-
sion to image data as many other comparable domains
exhibit their own challenges and characteristics.

Generally, a dataset supplemented with aug-
mented data represents a more complete set of all
possible data, i.e., it closes the real-world gap and
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promotes the ability to generalize. Data warping
methods transform existing data to inflate the size of
a dataset, whereas oversampling methods synthesize
entirely new data to add to a dataset (Shorten and
Khoshgoftaar, 2019).
Voronoi diagrams are geometrical structures which
define the partition of a space using a finite set of
distinct and isolated points (generator points). Every
other point in the space belongs to the closest gener-
ator point. Thus, the points belonging to each gen-
erator point form the regions of a Voronoi diagram.
(Okabe et al., 2000) In the following, we focus on
2-dimensional Voronoi diagrams (spanning Euclidean
space), as used in this work.

Let S be a set of n ≥ 3 generator points p,q,r . . .
in Euclidean space R2. The distance d between an
arbitrary point x=(x1,x2) and the generator point p=
(p1, p2) is given as:

d(p,x) =
√
(p1− x1)2 +(p2− x2)2 (1)

If we examine generator points p and q, we can
define a line which is mutually equidistant as:

D(p,q) = {x|d(p,x)≤ d(q,x)} (2)
A Voronoi region belonging to a generator point

p ∈ S, V R(p,S), is the intersection of half-planes
D(p,q) where q ranges over all p in S:

V R(p,S) =
⋂

q∈S,q̸=p

D(p,q) (3)

In other words, Voronoi region of p (V R(p,S)) is
made up of all points x ∈ R2 for which p is the near-
est neighboring generator point. This results in a con-
vex polygon, which may be bounded or unbounded.
The boundaries of regions are called edges, which are
constrained by their endpoints (vertices). An edge be-
longs to two regions; all points on an edge are clos-
est to exactly two generator points. Vertices are sin-
gle points that are closest to three or more generator
points. Thus, the regions of a Voronoi diagram form
a polygonal partition of the plane, V (P). (Aurenham-
mer, 1991; Aurenhammer et al., 2013)

3 RELATED WORK

With the preliminaries introduced, we now survey
some existing and related work from the field of Data
Augmentation in the context of deep Artificial Neural
Networks.

3.1 Occlusion

Methods employing the principle of occlusion mask
parts of model input. Consequentially, a model en-

counters more varied combinations of an object’s fea-
tures and context forcing stronger recognition of an
object by its structure. Two of the earliest methods
that use occlusion are Cutout (Devries and Taylor,
2017) and Random Erasing (RE) (Zhong et al., 2017).
Both remove one large, contiguous region from train-
ing images (cf. Figure 1, 1A-B). Through Hide-and-
Seek (HaS) Neural Networks (NNs) learn to focus on
the overall object, occluding parts of the input (Singh
et al., 2018). This approach removes more varied
combinations of smaller regions in a grid pattern from
neighboring model input (cf. Figure 1, 3C, 4A). How-
ever, removed regions may also form a larger contigu-
ous region which may lead to the removal of all of an
object (or none of it), which is the same major limi-
tation of early DA methods. GridMask (Chen et al.,
2020) tries to prevent these two extremes by removing
uniformly distributed regions (cf. Figure 1, 1C, 2A).

While the use of simple orthogonal shapes and
patterns is a common characteristic of occlusion-
based methods, Voronoi decomposition-based ran-
dom region erasing (VDRRE) demonstrates a po-
tential advantage of removing more complex shapes
(Abayomi-Alli et al., 2021). For the tasks of facial
palsy detection and classification, VDRRE evaluated
the use of Voronoi tessellations (cf. Figure1, 3A-B).

An additional choice of many regional dropout
methods is the color of the occlusion mask. Op-
tions include random values, the mean pixel value
of the dataset, or black or white pixels (Yun et al.,
2019). Relevant literature includes (Devries and Tay-
lor, 2017; Zhong et al., 2017; Chen et al., 2020;
Singh et al., 2018; Abayomi-Alli et al., 2021). Fur-
thermore, regional dropout methods are not always
label-preserving, depending on the dataset (Shorten
and Khoshgoftaar, 2019).

3.2 Re-Combination of Data

DA methods which re-combine data, mix training im-
ages (non-)linearly. This has been found to be an ef-
ficient use of training pixels (over regional dropout
methods) (Yun et al., 2019), in addition to increas-
ing the variety of dataset samples (Takahashi et al.,
2018). However, mixed images do not necessarily
make sense to a person (Shorten and Khoshgoftaar,
2019) (e.g., lower section in Figure 1, 4A-B + Row 5)
and it is not fully understood why mixing images in-
creases performance (Summers and Dinneen, 2018).

Non-linear mixing methods combine parts of im-
ages spatially. CutMix (Yun et al., 2019) and Random
image cropping and pasting (RICAP) (Takahashi
et al., 2018) are non-linear methods that combine
parts of two or four training images, respectively.
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Figure 1: Combined Augmentations Showcase: Overview
of some DA methods. Rows 1-3 + 4A: Occlusion methods;
4B-C + Row 5: (Non-) Linear combination methods.

Corresponding labels are mixed proportionately to the
area of each image used. CutMix fills a removed re-
gion with a patch cut from the same location in an-
other training image (cf. Figure 1, 5B) (Yun et al.,
2019). RIACP combines four images in a two by two
grid (Takahashi et al., 2018).

Linear mixing methods combine two images by
averaging their pixels (Shorten and Khoshgoftaar,
2019). There are several methods that use this
approach, including Mixup (Zhang et al., 2017),
Between-class Learning (Tokozume et al., 2017), and
SamplePairing (Inoue, 2018) (cf. Figure 1, 4B-C,5C).
(Inoue, 2018) found mixing images across the entire
dataset produced better results than mixing images
within classes. Although mixed images may not make
semantic sense, they are surprisingly effective at im-
proving model performance (Summers and Dinneen,
2018). A critique on how linear methods introduce
“unnatural artifacts”, which may confuse a model, can
be found in (Yun et al., 2019).

3.3 Fragmentation

Fragmentation may occur as a side effect of pixel
artifacts introduced by occlusions (Lee et al., 2020)
or non-linear mixing of images (Takahashi et al.,
2018), which create sudden transitions at the edges
of removed regions or combined images, respectively.
While occluding and mixing information may pre-
vent the network from focusing on easy characteris-
tics, deep ANNs may also latch on to boundaries cre-
ated by these pixel artifacts.

In SmoothMix (Lee et al., 2020) the transition be-
tween two blended images is softened to deter the net-
work from latching on to them. Alpha-value masks
with smooth transitions are applied to two images,
which are then combined. Furthermore, Smooth-
Mix prevents the network behavior of focusing on
“strong-edges” and achieves improved performance
while building on earlier image blending methods like
CutMix.

Cut, Paste and Learn (CPL) (Dwibedi et al., 2017)
is a DA method developed for instance detection. To
create novel, sufficiently realistic training images, ob-
jects are pasted on random backgrounds while the ob-
ject’s edges are either blended or blurred. Although
the resulting images look imperfect to the human eye,
they perform better than manually created images or
training on real data alone (Dwibedi et al., 2017).

While SmoothMix and CPL aim to minimize arti-
ficially introduced boundaries, MeshCut (Jiang et al.,
2020) uses a grid-shaped mask to fragment informa-
tion in training images and purposefully introduces
boundaries within an image (cf. Figure 1, 2B-C). By
doing so, the model learns an object by its many
smaller parts, thereby focusing on broader areas of
an object. In contrast to SmoothMix and CPL, Mesh-
Cut demonstrates that intentionally created bound-
aries can improve model performance.

4 METHOD

Noticing the benefits of using non-trivial edges in-
troduced by randomly organized Voronoi diagrams
(Abayomi-Alli et al., 2021), as well as the power of
occluding multiple small squares (HaS)(Singh et al.,
2018), we opted for a conceptional fusion of these ap-
proaches. From our perspective, there also is the need
for a DA technique which does not occlude wide areas
of the image (that may hold the main features), as the
occlusion of areas with black (zero-values) or Gaus-
sian noise seems to not be fully error-free. There-
fore, we argue in favor of a new category of Data
Augmentation methods: Transport. The main idea
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of transport-based approaches is to preserve features
and reposition them in their natural context, in con-
trast to a replacement by non-informative data. Com-
bined with the concept of non-trivial edges (Voronoi
diagram) and occlusion-of-many HaS, we suggest
VoronoiPatches (VP).

4.1 VoronoiPatches (VP)

Our goal was to supplement training data using novel
images generated online through a non-linear trans-
formation. To do so, an image is partitioned into a
set of convex polygons (patches) using a Voronoi di-
agram. A fixed number of patches are randomly cho-
sen and copied from the original image. Then, these
are pasted randomly over the center of a polygonal
region (cf. Figure 2). The result is a (novel) image
containing (mostly) the same object features. VP may
occlude and duplicate parts of the object in the orig-
inal image while preserving the original label. The
location, number, and visibility of an object’s parts
in an image vary each time VP is applied. By re-
combining information within the image instead of
replacing them with random values or a single value,
information loss is minimized. Due to the random
nature of a patch’s shape, size, and final location,
patches may overlap or not move at all. This proce-
dure is further described in algorithm 1.

There are three tunable Hyperparameters (HPs):
Number of generator points: The approximate size
and number of patches generated by a Voronoi par-
tition. Using few generator points results in fewer
larger polygons, and v.v. Number of patches: The
number of patches to be transported. Smooth: The
transition style between moved patches and the orig-
inal image. This may be left as they are (sudden)
or smoothed. Sudden transitions may create pixel
artifacts caused by sudden changes in pixel values,
whereas the application of smooth transitions reduces
this effect (cf. Figure 3).

4.2 Setup & Dataset

In this section, we briefly outline our data pipeline and
introduce the dataset and performance metrics used.

First, we use an 85:15 split of our training set as an
additional validation set for model selection. During
the training process, performance metrics were calcu-
lated and collected each epoch on both the training
and validation sets and used to monitor the training
process. Measurements were based on the checkpoint
with the highest measured accuracy; we note that this
may over- or underestimate true performance (Aggar-
wal, 2018).

Algorithm 1: VoronoiPatches.
Input : sample, generators, patches, smooth
Output: aug
begin:

aug← copy of sample
polygons← Voronoi(generators);
centroids← [mean(p) in polygons];
for range(patches) do

p← random(polygons);
c← random(centroids);
Move p such that arith.Mean(p) = c;
for x,y in p do

aug[x,y]← sample[x,y];
if smooth then

s← gauss.Filter(aug);
borders← calc border();
for xyb in borders do

aug[xyb]← s[xyb];

The dataset was chosen based on two factors:
sample size and dataset size. By using medium to
large resolution images, we ensure more variation in
partitions computed and the ability to generate small
enough polygons.

The 2012 ImageNet Large-Scale Visual Recogni-
tion Challenge (ILSVRC) dataset1, colloquially re-
ferred to as ImageNet, consists of 1.2 million train-
ing and 60,000 validation full-resolution images cat-
egorized and labeled according to a WordNet2 based
class hierarchy into 1,000 classes (Russakovsky et al.,
2015). While the images’ resolution is sufficient, the
size of the dataset in its entirety is impractical for our
experiments.

We used the “mixed 10” dataset(Engstrom et al.,
2019), which is a subset of the 2012 ImageNet
dataset.

As “mixed 10” is a well-balanced dataset, we
chose the performance metric classification accuracy
in %. Additionally, we examined the variance and en-
tropy introduced by the DA methods.

4.3 Experimental Setup

Baseline. We first established a baseline model
based on SqueezeNet 1.0 (through grid search), which
provides us with default performance metrics. We
chose SqueezeNet 1.0 because it was designed specif-
ically for multi-class image classification using Im-
ageNet and has a small parameter footprint (Ian-
dola et al., 2016). Using 50x fewer parameters, it
matched or outperformed the top-1 and top-5 accu-
racy (Iandola et al., 2016) of the 2012 ILSVRC win-

1http://www.image-net.org/
2https://wordnet.princeton.edu/
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Figure 2: VP: An example image and its Voronoi diagram (50 generator points), 5 randomly selected patches copied, then
transported to random locations, and the resulting novel image with sudden transitions (left to right).

Figure 3: Voronoi Patches: The original image (left), the
same image augmented with sudden (middle), or smooth
transitions (right).

ner, AlexNet, which has approximately 60 million pa-
rameters (Krizhevsky et al., 2017).

We made one modification to the original net-
work architecture by introducing a batch normaliza-
tion layer. This serves to normalize the distribution
of our training dataset in a batch-wise fashion. Since
DA is performed online, it is our only chance to do
so consistently across all models and DA methods.
Initial model HPs were adjusted in a “best guess ap-
proach” according to literature. There is no guarantee
that we found an optimal configuration; however, our
goal was to set up an efficient and well-functioning
model for evaluation.

Furthermore, we chose cross-entropy as a com-
mon multi-class classification loss (Wang et al., 2022)
and ADAM (Kingma and Ba, 2014) as optimizer,
which uses adaptive learning rates that typically re-
quire less tuning and converge faster (Ruder, 2016).
Optimizer HPs: lr = 0.0001, betas = (0.9,0.999),
and eps = 1e− 08 with batch size = 32. As the
SqueezeNet 1.0 architecture (using ReLU) requires
images at 224x224x3 (Iandola et al., 2016), we re-
sized to this resolution and scaled all images channel-
wise in the range of [0,1] using min-max normaliza-
tion 3. By completing this step, the pixel values of our
dataset have the same scale as the networks’ parame-
ters, which may improve convergence time by stabi-
lizing the training procedure (Aggarwal, 2018). There
were no further transformations or augmentations for
the baseline model.

3Scikit-learn/Preprocessing: Min-Max-Scale

Our choice of VoronoiPatches HPs was influenced
by the characteristics of our dataset and reflects the
two main goals: To preserve the label of each aug-
mented image and to occlude or repeat the features of
an object or its context in a distributed manner. The
diversity of samples in our dataset creates a challeng-
ing situation for choosing an optimal number of gen-
erator points. Specifically, the object-to-context ra-
tio can vary greatly. In an image where the object
is tiny, the danger of all features being occluded by
VP is still present. Given the variety of this ratio
in the “mixed 10” dataset, it is difficult to estimate
what size patch might be too small or large, or how
many patches (i.e., total pixels2 moved) are necessary
to have a positive impact on model performance. To
balance the parameter space of our grid search with
the variation in object-to-context ratio in our dataset,
we chose generators = {50,70,90}, cf. Figure 4. To
explore how the size and number of patches might
impact performance, we chose patches = {5,10,15}.
For all combinations, we also considered both transi-
tion styles, smooth = {true, f alse}.

Figure 4: Voronoi Diagrams: Computed with (left) 50,
(middle) 70, and (right) 90 generator points.

Reproducibility. To ensure the reproducibility of
our results, we seeded our interpreter environment,
as well as all random number generators involved in
the training process. All models (and DA methods)
along all grid searches use the same seed to ensure
reproducibility and validity. Seeds were chosen at
random from [0,232− 1]. To calculate the avg. ex-
pected performance, we re-trained our baseline model
with the best performing HP values with the afore-
mentioned seeded grid search. After training to con-
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Figure 5: 1: Train and val. accuracy (100 epochs); 2: CE-loss. Over-fitting visible; 3: Avg. SSIM for VP and RE; 4: Avg.
effect of VP (dark blue=sudden, light blue=smooth transitions) and RE (gray lines) measured in entropy H.

vergence (100 epochs, max. acc. 80.1% at epoch
74), the highest accuracy checkpoints are selected for
each seed. To find suitable VP HPs, we performed a
grid search over all combinations of generators and
patches, w/ and w/o smoothing. Predefined by the
baseline model, the training of DA methods was lim-
ited to 100 epochs.
Results. For all numbers of patches and patch
sizes of VP used while training, we observed a per-
formance improvement over baseline performance.
While this improvement is clear, our results showed
this gain varies across HP combinations. The high-
est validation accuracy for VP that can be reported
is 83.6% with HPs: generators=70, patches=15, and
smooth=False. We observed an improvement in val.
acc. by about 1.3-3.5% over the baseline models
for all models trained with VP. On the test set (un-
seen in training and validation), we evaluated the
performance of the resulting best baseline and op-
timal VP models. The avg. expected performance
is 80.9% accuracy, 80.9% macro-recall, and 81%
macro-precision. The avg. expected performance of
a model trained using VP is 83.3% accuracy, 83.5%
macro-precision, and 83.3% macro-recall.

Even though macro-measures are quite similar,
the performance of individual classes varies as ex-
pected.

However, the classes Car and Truck both perform
about 10-30% worse than the others due to noisy la-
bels and for which ImageNet was recently strongly
critiqued (Beyer et al., 2020).
Smoothing. Unfortunately, we did not observe any
clear improvement in the performance of VP using
smooth over sudden transitions (smooth=false). The
best performing models use sudden transitions, based
on our observations in model training; however, we
cannot rule out a possible advantage at this time.
Dependent on the other HPs, either approach can
be of advantage. We implemented the width of the
smoothed transition between patch and image with
a fixed factor. In future works, this could be intro-
duced as another HP. Both smoothing and the factor
could also be bound to a stochastic process (sampled
on each VP application).

Comparisons. To verify the validity and utility of
VP, we evaluated the performance of the RE, VDRRE
and a combination of both, using the same procedure
as outlined above. For RE HPs outlined in (Zhong
et al., 2017), black (0) and random (uniform [0,1))
pixel values were chosen. Figure 5: 1 shows an
avg. acc. improvement by VP over RE of 0.6%-
0.7%. VDRREs parameters were chosen as sug-
gested. (Abayomi-Alli et al., 2021) used six regions,
of which one was then occluded with noise. On our
dataset, VDRRE achieved results, which are close to
RE. MeshCut (augmentation schedule and HPs as
stated by (Jiang et al., 2020)) behaved worse than
‘Random’ VP. Inspired by the occlusion with Gaus-
sian noise, we also tested a VP version with randomly
filled patches, rather than transporting sections of the
image (more or less comparable with VDRRE, but at
smaller scale). ‘Random’ VP achieved better results
than both, VDRRE and RE, while performing close
to VP.
Entropy H. To measure the effect of our method
on the training data, we employed entropy H involv-
ing the resulting prob. distribution of each image x
(with P := prob., K := classes): H(x)=−∑kεK P(k)∗
log(P(k)) (Goodfellow et al., 2016). We then aggre-
gated the entropy scores for all images with the arith-
metic mean (cf. Figure 5): 4. The avg. entropy is a
measure of how balanced the prob. distributions are
on avg. (Goodfellow et al., 2016). For a prob. dis-
tribution of 10 values (for 10 classes) the lower and
upper bounds for entropy are 0.00 and 3.32, respec-
tively. The bounds correspond to the case of a perfect
classification with 1.0 probability for one class and
0.0 for all others (low entropy) and the case of per-
fectly balanced probability of 0.1 across all classes
(high entropy). As anticipated, the more data trans-
ported within an image by VP the more uncertainty
is embedded in the model’s output (i.e., the more bal-
anced the model’s prob. distributions are). We ob-
serve that this effect is greater among all VP HP com-
binations than RE with either black or random pixels.
We attribute the reduced entropy of RE using random
pixels over black pixels to the model finding patterns
in these values.
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Main Findings. (1) Figure 6 shows the measured
variance for examined DA methods. Over all seeded
runs, our proposed method (VP) exhibits the lowest
variance, even lower than training on non-augmented
training data. Taking the results of the entropy analy-
sis (above) in to consideration, we found the last point
to be quite a surprising finding.
(2) By inspecting the avg. acc. and the CE-loss in Fig-
ure 5: 2 we observe an additional interesting finding.
All training runs (w/ and w/o DA) came at the cost
of still overfitting to the training data of “mixed 10”.
Our method VP, in contrast to all those compared,
showed the least amount of overfitting. This can be
observed in the growing distance of the CE-loss in
Figure 5: 2.

Figure 6: Model Variance Comparison Avg. test variance
(std) of VP and the other DA methods.

Further Analysis. The number of generator points
determines the avg. patch size. We collected the avg.
pixels2 (2D area) for bounded polygons using 50, 70,
and 90 generator points. The avg. patch sizes are 932,
673, and 528 pixels2, respectively. We observe that
using many smaller patches (15 patches, 528 pixels2),
as well as using fewer larger patches (5 patches, 932
pixels2) results in better model performance on avg.
We observe no clear improvement using smooth tran-
sitions; we assume, either, that the transition areas’
width is not optimal or that the pixel artifacts have
a positive effect similar to the mesh mask in (Jiang
et al., 2020).

To measure how different HP values change our
images, we calculate the Structural SIMilarity In-
dex (SSIM) between orig. and augmented images.
SSIM was developed as a measurement ([0-1]) of
degradation by comparing the luminance, contrast,
and structures of two images (Wang et al., 2005).
SSIM(original,augmented) = 1.0 represents the triv-
ial case of a perfect match (identical images) (Wang
et al., 2005). Collecting and aggregating (arith. mean)
SSIM values for 1,000 iterations with several HP
combinations Figure 5 confirmed that by increasing
the number of patches or decreasing the number of
generators, the SSIM of original and augmented im-
ages decreases. The relationship between the avg.

SSIM and avg. entropy is approximately linear. As
the structural difference in augmented images in-
creases, so does the entropy of the predictions for
these images.

Further, we observe a drop-off in performance
when more than approx. 10,000 total pixels2 are
transported. The best performance was achieved
with 10,095 total pixels2 (generators= 70, patches=
15,smooth= False), a re-combination of 20.1% of an
images’ data.

There appears to be an optimal avg. patch size
and/or number of patches moved similar to the op-
timal ratio of the grid mask of uniformly distributed
squares in (Chen et al., 2020), which controls how
many squares make up the mask, as well as how
much space masked between. As a point of reference,
the avg. rectangle size generated by Random Eras-
ing (RE) is 10,176 pixels2. In accordance with the
default values in (Zhong et al., 2017), RE was applied
with a probability of 50%. On avg., RE removes a
rectangle equal to 20.3% of an image when applied,
whereas VP re-orders patches equal to 20.1%, com-
bined, in each image.

We noticed an improvement in performance by
re-combining many small VP patches over randomly
erasing one large contiguous rectangle with 50%
probability (RE).

Variance in patch sizes is also determined by
how generator points are distributed across the image.
Through visual inspection, a trend of smaller patches
resulting from more generator points, and v.v., can be
observed.

5 CONCLUSION

In this work we introduced VoronoiPatches (VP), a
novel DA method, and data warping category (trans-
port) to solve the problem of overfitting for CNNs.
We sought to minimize information loss and pixel ar-
tifacts, as well as exploit non-orthogonal shapes and
structures in DA. Our method, which employs non-
orthogonal shapes and structures to re-combine infor-
mation within an image, outperforms the existing DA
methods regarding model variance and overfitting ten-
dencies. Additional experiments analyzed VP’s influ-
ence on predictions, as well as the influence of HP
values on performance. We show that there are further
opportunities to build on our findings and add validity
to our initial evaluation of VP. This includes: opti-
mizing smooth transitions, exploring different pixel
values or patch shapes (to better understand the con-
tribution to DA), mixing images across the training
set, and eventually exploring applications of VP in
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other tasks or fields (e.g., medical image analysis or
the field of audio in the form of mel spectrograms).
From a practical standpoint, solving the limitation of
expensive training would enable more efficient usage
of the available datasets. Currently, expensive train-
ing is a limitation of VP, which is also a possible fu-
ture task.
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