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Abstract: In order to support medical doctors in having more versatile health assistance, automatic voice disorder detec-
tion systems enable the remote diagnosis, treatment, and monitoring of voice pathologies. The main problem
for developing the related technology is the availability of audio data of healthy and pathological voices man-
ually labeled by experts. Saarbruecken Voice Database (SVD) was created in 1997, with a collection of more
than 5 hours of healthy and pathologica audio data. This database has been widely used for developing voice
disorder detection systems. However, it has some issues in the distribution of data and the labeling that makes
it difficult to conduct conclusive studies. This paper evaluates an Automatic Voice Disorder Detection (AVDD)
system using the recent Advanced Voice Function Assessment Database (AVFAD) with almost 40 hours of
audio data and SVD as a reference. The system consists of a representation using spectral, prosody, and voice
quality parameters followed by an SVM classifier that can obtain up to 88% accuracy in phrases and 86% in
sustained vowel a. Data augmentation strategy is assessed for handling the problem of data imbalance with the
SMOTE method which improves the performance of male, female, and gender-independent models without
decreasing the results for scenarios with data balance. Finally, we release the system implementation for voice
disorder detection including the list of train-test partitions for both databases.

1 INTRODUCTION

Nowadays, voice disorders have an impressive preva-
lence in the population. Previous studies (Bhat-
tacharyya, 2014) reported an important affectation
due to voice problems among the population, espe-
cially for professionals that use the voice as a pri-
mary tool, such as teachers, telemarketers, TV pre-
senters, singers, etc (Roy et al., 2004). There are
many reasons why affected people do not go to the
doctor in time neglecting the problem while getting
worse. However, with the recent development of re-
mote health services, there is an opportunity to use
smart solutions to assist doctors in remotely screening
patients contributing to early diagnosis and continu-
ous monitoring of patient evolution without the need
for a hospital visit.

Figure 1 shows a scheme of the scenario of ap-
plication for health remote services, where the pa-
tient and the specialist interact with the AVDD sys-
tem from their own side. Behind these services, the
AVDD system (Ali et al., 2017b; Verde et al., 2019)
consists of a traditional machine learning scheme

Figure 1: Illustration of the scenario of application for an
Automatic Voice Disorder Detection system.

where the system learns to identify the pathological
cues from speech audio samples. There are many pre-
vious related approaches for studying suitable repre-
sentations and classifiers for distinguishing between
healthy and pathological speech (Al-nasheri et al.,
2016; Ali et al., 2017a; Harár et al., 2017; Mo-
hammed et al., 2020). However, a principal problem
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is the availability of audio data of healthy and patho-
logical voices manually labeled by experts for devel-
oping the technology related to the AVDD systems.
Usually, these data result from research projects with
medical institutions, where the condition is to keep
data private. Therefore, the availability of datasets for
developing AVDD systems is quite limited.

Saarbruecken Voice Database (SVD) (Pützer and
Koreman, 1997) is one of the few freely avail-
able databases for this task. Considering the num-
ber of studies in the related literature based on this
database, we would not hesitate to say that SVD
is almost a standard for developing AVDD systems
(Sarika Hegde and Dodderi, 2019). SVD contains
many recordings and speakers with labeled healthy
and pathological speech, including more than 5 hours
of speech recordings of the vowels a, i, u and short
phrases. However, there is great inequality in the dis-
tribution of individual pathologies. Some pathologies
only have one audio sample, and they can end up
only in the testing set, which is a problem for train-
ing AVDD systems. Also, there are some issues with
labeling. For instance, there are many audios labeled
with more than one pathology, as well as many di-
agnoses that are not really voice pathologies, such as
Cordectomy or Down’s Disease. All these issues dif-
ficult the interpretation of the AVDD system’s perfor-
mance results over SVD. Typically, these issues are
avoided by selecting those pathologies with enough
audio samples for training and test set (Al-nasheri
et al., 2016; Ali et al., 2017a; Verde et al., 2019;
Mohammed et al., 2020). However, this scenario
doesn’t reflect the realistic case of use, where the sys-
tem would process a wide variability of pathologies
out of a fixed selected set.

In this paper, we introduce the AVFAD for the
AVDD task. It is a recent dataset with healthy and
pathological speech (Jesus et al., 2017). This cor-
pus is well documented with an extended study of its
acoustic characteristics. However, because of its re-
cent release, it has not been previously used for voice
disorders classification tasks, so its performance re-
sults for AVDD tasks are a novel contribution. In the
following, we evaluate the performance of an AVDD
system using SVD and AVFAD with male, female,
and gender-independent models. Then, we address
the problem of class imbalance using SVD as an ex-
ample of an imbalanced dataset and AVFAD as an ex-
ample of a balanced one. For this aim, we evaluate
a data augmentation strategy in the feature domain
known as Synthetic Minority Oversampling Tech-
nique (SMOTE) (Chawla et al., 2002). This method
generates new samples from existing samples in the
minority class to increase the information for training

the model. SMOTE has been previously used in dif-
ferent classification tasks, including speech process-
ing (He and Ma, 2013; ?). For voice disorder detec-
tion, there are some previous works studying the be-
havior of SMOTE algorithm in this context (Fan et al.,
2021; Chui et al., 2020). Although their systems and
experimental setup differ from our proposal, obtained
results are encouraging and support our motivation to
use SMOTE for balancing the dataset in this frame-
work. Finally, we release the system implementation
to contribute to reproducibility and further develop-
ments.

Contributions of this paper are:

• Performance evaluation of an automatic voice dis-
order detection system for assisting on the diagno-
sis of voice pathologies using AVFAD and SVD
corpus, conformed by a representation using spec-
tral, prosody and voice quality parameters and an
SVM classifier.

• Evaluation of SMOTE algorithm to deal with the
problem of class imbalance in the voice disorder
detection framework.

• Free available implementation 1 of the voice dis-
order detection system based on a machine learn-
ing approach for binary and multi-class classifi-
cation, including the list of train-test partitions in
AVFAD and SVD databases.

In the following, Section 2 comments on the
SMOTE method for handling the problem of class im-
balance. Section 3 presents the materials used in this
study, including the databases and the performance
metrics. Then Section 4 describes the AVDD sys-
tem. Section 5 describes the experimental evaluation
and discusses obtained results. Finally, Section 6 con-
cludes the paper.

2 DATA AUGMENTATION FOR
CLASS IMBALANCE: SMOTE

The main weakness in developing an AVDD system
relies on the data. Therefore, the data accommodation
stage is the most delicate part of the AVDD devel-
opment process. A frequent data problem in health-
related applications is the availability of an unequal
amount of samples for healthy and pathology classes.
However, the usual low availability of data dismisses
the simple solution of discarding some samples to bal-
ance the training set. Thus, training a machine learn-
ing model with an imbalanced dataset produces poor
performance on the minority class, although in some

1https://github.com/dayanavivolab/voicedisorder
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Table 1: Distribution of audio samples by fold for each model gender divided by training and evaluation sets: Male
(Train—Test), Female (Train—Test), Both (Train—Test).

Dataset: SVD Dataset: AVFAD
Model Male Female Both Male Female Both

Audio-type: Sustained vowel a
Fold 1 715—171 916—239 1631—410 168—42 398—100 566—142
Fold 2 700—186 915—240 1615—426 168—42 398—100 566—142
Fold 3 715—171 934—221 1649—392 168—42 398—100 566—142
Fold 4 711—175 921—234 1632—409 168—42 399—99 567—141
Fold 5 703—183 934—221 1637—404 168—42 399—99 567—141

Audio-type: Phrases
Fold 1 709—171 881—227 1590—398 1008—252 2389—598 3397—850
Fold 2 695—185 877—231 1572—416 1008—252 2389—598 3397—850
Fold 3 711—169 895—213 1606—382 1008—252 2390—597 3398—849
Fold 4 707—173 884—224 1591—397 1008—252 2390—597 3398—849
Fold 5 698—182 895—213 1593—395 1008—252 2390—597 3398—849

Figure 2: SMOTE algorithm samples generation.

cases it is the performance of the minority class that
is most important (He and Ma, 2013).

SMOTE is a type of data augmentation for the mi-
nority class (Chawla et al., 2002). It addresses the
imbalanced dataset problem by oversampling the mi-
nority class. SMOTE consists of synthesizing new
samples from the existing examples of the minority
class, increasing the information to train the model.
In order to be less tied to the application, it works
in the feature space rather than in the sample space.
The process consists of selecting a random sample
from the minority class and its k= 5 nearest neighbors
samples. Then a line between the pair of samples is
drawn, and a new feature in a random middle point is
generated. The synthetic examples drive the model to
create larger and less specific decision regions, bring-
ing more generalization for the minority class. Figure
2 shows an illustration of the process.

SMOTE over-sampling is then combined with
under-sampling such that the classifier learns on the
dataset perturbed by over-sampling the minority class
and under-sampling the majority class. It consists
of under-sampling the majority class by randomly
removing samples until the minority class becomes
some specified percentage of the majority class to
produce a higher presence of the minority class in the
training set. It forces the model to experience differ-
ent degrees of under-sampling, so the initial bias of
the learner towards the majority class is inverted in
favor of the minority class.

Some approaches of the SMOTE method have
been developed by focusing on the selectivity of
the minority class examples used for generating new
synthetic observations. For instance, Borderline
SMOTE selects misclassified examples of the minor-
ity class according to a k-nearest neighbor classifica-
tion model. This way, it provides robustness to the
sampling process oversampling only the more diffi-
cult instances. Subsequently, (Nguyen et al., 2011)
proposes an alternative that uses an SVM method to
identify the misclassified examples on the decision
boundary. This approach also includes those regions
with fewer density of observations belonging to the
minority class and attempts to extrapolate towards the
class boundary. Related to this proposal, Adaptive
Synthetic Sampling (ADASyn) SMOTE (He et al.,
2008) also attempts to generate more synthetic exam-
ples in those areas where the density of minority ex-
amples is low, while fewer, where the density is high.

3 EXPERIMENTAL SETUP

3.1 Databases

This study is based on the following databases:

• The Saarbruecken Voice Database (SVD) (Pützer
and Koreman, 1997) which is an open access
dataset including the healthy and pathology-
labeled speech of 71 voice disorders. It has been
broadly used in previous works for studying auto-
matic detection and assessment of voice patholo-
gies (Sarika Hegde and Dodderi, 2019). It con-
tains around 5 hours of voice recordings of 687
healthy persons and 1356 patients.

• The Advanced Voice Function Assessment
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Database (AVFAD) (Jesus et al., 2017) which is
also an open-access dataset in the Portuguese lan-
guage. It includes almost 40 hours of recordings
for 363 persons with no vocal alterations and 346
clinically diagnosed within 26 vocal pathologies.

In this study, we use the sustained vowel a and
the phrases included in the recording sessions of SVD
and AVFAD. Experiments are carried out in a cross-
validation framework, where audio data are in five
folds, each with train and evaluation sets. Note that
the dataset distribution of SVD is approximately one
healthy by two pathological samples, such that classes
in the evaluation set are imbalanced. On the other
side, the sample distribution in AVFAD provided a
better balance between healthy and pathology classes,
such that the evaluation set are mostly balanced. Ta-
ble 1 presents the information on audio samples dis-
tribution for each fold.

3.2 Performance Metrics

The system performance is evaluated in terms of the
Accuracy

ACC =
T N +T P

T N +T P+FN +FP
, (1)

and Unweighted Average Recall

UAR = 0.5 · T P
T P+FN

+0.5 · T N
FP+T N

. (2)

Both metrics are computed from the true and false
positive and negative rates (TP, FP, TN, FN). The dis-
tributions of ACC and UAR are quite similar for bal-
anced classes. However, if this is not the case, UAR
considers each class by itself, while ACC provides a
more general metric. There is also computed the Re-
call and F1-Score

Recall =
T P

T P+FN
, (3)

F1 = 2 · Precision ·Recall
Precision+Recall

, (4)

where Precision = T P
T P+FP .

4 SYSTEM

The AVDD system consists of the machine learning
classification system depicted in Fig. 3. The follow-
ing subsections describe the main modules of the sys-
tem.

Figure 3: System for Automatic Voice Disorder Detection.

4.1 Speech Parameters

The representation module uses a set of parameters
designed for automatic recognition of paralinguistic
issues during the Computational Paralinguistics Chal-
lengE (ComParE)2 in 2013. It was implemented in the
openSMILE toolkit3 for extracting suprasegmental
audio feature sets in real time. The ComParE acous-
tic feature set includes spectral, cepstral, prosodic,
and voice quality parameters of speech signals ob-
tained by applying a large set of statistical functionals
to acoustic low-level descriptors. These descriptors
cover a broad set of parameters usually employed for
representing speech signals, such as Mel Frequency
Cepstral Coefficients (MFCC) and RASTA. As well
as sound quality descriptors frequently used for voice
pathology analysis such as jitter, shimmer, and Har-
monic to Noise Ratio (HNR) (Teixeira et al., 2013).
See all parameters in Table 2. On top of this, several
statistical functions are applied to low-level descrip-
tors to obtain better representations, including mean,
variance, kurtosis, skewness, percentiles, etc. The fi-
nal dimension of the ComParE feature set is 6373 pa-
rameters.

In (Huckvale and Buciuleac, 2021) authors re-
ported results with ComParE for phrases in the SVD
dataset with an accuracy of 80.71% (taken from table
2 in (Huckvale and Buciuleac, 2021)) similar to the
accuracy of 82.8% reported in (Barche et al., 2020)
for /aiu/ concatenated vowels using SVD.

4.2 Model

Support Vector Machine (SVM) is selected for the
classification module (Schölkopf and Smola, 2002).
SVM has been widely used for speech pathology
analysis in previous works (Sarika Hegde and Dod-
deri, 2019). This method attempts to find the opti-
mal hyperplane to establish the boundary between the
samples of different classes in the training set. To

2http://www.compare.openaudio.eu/
3https://github.com/audeering/opensmile
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Table 2: Speech parameters in the ComParE audio set used
as frontend (Weninger et al., 2013).

Spectral and cepstral parameters
RASTA spectrum (bands 1-26, frecuency 0-8 kHz)
Spectral energy 250-650 Hz (1-4 kHz)
Spectral roll-offf point (0.25, 0.50, 0.75, 0.90)
Spectral Flux, Centroid, Entropy, Slope
Psychoacoustic Sharpness, Harmonicity
Spectral Variance, Skewness, Kurtosis
MFCC (coefficients: 1-14)

Prosodic parameters
Sum of the auditory spectrum (loudness)
RASTA spectrum (energy)
RMS Energy, Zero-Crossing Rate
F0 (SHS and Viterbi smoothing)

Voice quality parameters
Probability of voicing
Log. HNR, Jitter (local, delta), Shimmer (local)

choose the suitable configuration of SVM, we con-
ducted several auxiliary experiments to test the kernel
and the hyper-parameters C for error control. Finally,
we selected the linear kernel with C = 1.

4.3 Implementation

The AVDD system is implemented in python and re-
leased for reproducibility. We used open and standard
python libraries such as OpenSMILE for the repre-
sentation, Sklearn for the classifier, and Imbalanced-
learn for the data augmentation. The free available
implementation is located in the following link4.

5 EXPERIMENTS AND RESULTS

The following subsections present the experiments
carried out for assessing the performance of the auto-
matic voice disorder detection system in a binary for-
mat, namely healthy vs. pathology. Experiments are
evaluated in two data scenarios related to the balance
between the number of samples of the classes healthy
and pathology, which is represented by the datasets:

1. SVD: Data imbalanced 30% health vs. 70% path.

2. AVFAD: Data balanced 50% health vs. 50% path.

Then, several experiments are designed for handling
the class imbalance using the SMOTE data augmen-
tation strategy.

5.1 Voice Disorder Detection

This section presents the results of the performance of
the AVDD system for the SVD and the AVFAD cor-
pora in terms of classification accuracy, specifying the
recall for healthy and the pathology classes, F1-Score,
and UAR to assess the imbalance between classes.
There are results for three different types of models
by gender (male, female, and gender-independent),
where the training and evaluation sets include audio
samples of the specific gender.

Results in the first columns of Table 3 corre-
spond to the models trained with audios of the sus-
tained vowel a. Considering that spectral character-
istics between males and females are usually remark-
able (Priya et al., 2022), a better performance could
be expected for the gender-dependent models (male
and female). However, results show that compar-
ing gender-dependent and gender-independent mod-
els there is not a great difference in SVD, while in
AVFAD we can see better performance for those mod-
els, including females samples. Note that the best F1
for experiments with vowel a corresponds to female
models in AVFAD (F1 = 87.81). This could be re-
lated to females’ audio samples being almost double
of males’ audio samples in AVFAD (table1), so the
female model is expected to be more robust.

The right columns in Table 3 present the results
for phrases. Compared to the models with the vowel
a the system performance increases for all gender-
dependent models, though this is more remarkable for
SVD dataset. It is an expected result, considering that
phrases have larger and more diverse audio material
than a single vowel. Therefore beyond the sustained
sound, there is information in the transition among
sentence phonemes that would be useful for disor-
der detection. Again gender-independent models do
not present better performance than gender-dependent
models, especially for the SVD. In AVFAD, there is
also better performance for models with female au-
dio samples, supporting the results obtained for the
vowel a. So, looking at the trade-off between data and
performance, we could conclude that training gender-
independent models is more convenient, especially
when the availability of training audio is reduced.

The system works better for the AVFAD than the
SVD dataset, mainly in experiments with vowel a.
This result reflects that AVFAD has more hours of
speech data than SVD, even though the amount of
speakers is less for AVFAD than for SVD. In both
datasets, RecallHealthy is lower than RecallPath for all
models, indicating the difficulty of detecting healthy
samples over pathological ones. This behavior could

4https://github.com/dayanavivolab/voicedisorder
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Table 3: Performance metrics for binary voice disorder classification: healthy vs. pathology.

SVD Audio type: Vowel a Audio type: Phrases
Gender ACC Recall Health Recall Path F1 UAR ACC Recall Health Recall Path F1 UAR
Male 72.81 42.94 85.42 81.62 64.18 82.64 63.90 90.02 88.04 76.96
Female 72.18 55.49 82.14 78.74 68.81 83.38 73.82 88.48 87.43 81.15
Indep. 71.94 46.58 84.82 80.03 65.70 83.27 71.26 88.86 87.83 80.06

AVFAD Audio type: Vowel a Audio type: Phrases
Gender ACC Recall Health Recall Path F1 UAR ACC Recall Health Recall Path F1 UAR
Male 78.57 72.53 85.80 78.33 79.17 85.32 79.66 91.95 85.26 85.80
Female 86.75 77.94 95.62 87.81 86.78 88.15 79.30 96.99 89.12 88.15
Indep. 86.44 78.76 94.63 87.18 86.70 86.84 78.49 95.57 87.65 87.03

be related to including pathological samples with low
severity in the pathology class of the training set, such
that they could be closer to the healthy than the patho-
logical class. For instance, a voice sample of a patient
with a low level of dysphonia could sound similar to
a healthy voice. Thus, there will be misses close to
the SVM boundary, inducing some uncertainty dur-
ing model training.

In order to see the possible improvement margin
for accuracy-related metrics, Table 4 shows the oracle
reference5 for the models with gender-independent
models. Note that the best RecallHealthy is again worst
than the best RecallPath. It confirms that detecting
healthy samples is more difficult for system classifi-
cation than a pathological sample.

Table 4: Oracle reference of gender-independent models in
SVD and AVFAD datasets.

Dataset ACC Recall Recall F1 UAR
Healthy Path

Audio type: Vowel a
SVD 86.86 72.41 94.19 90.48 83.30

AVFAD 91.63 84.04 99.56 92.08 91.80
Audio type: Phrase

SVD 92.19 84.50 95.79 94.35 90.14
AVFAD 90.03 82.17 98.25 90.60 90.21

5.2 Classes Imbalance: SMOTE

In order to handle the class imbalance problem,
the following experiments assess the system perfor-
mance when applying the data augmentation method
SMOTE. To illustrate the data distribution, Fig. 4
shows a 2-dimensional visualization of the features
using TSNE before and after class balancing for
gender-independent models of phrases. In both
datasets, the feature distribution in SVD is consider-
ably overlapped compared to AVFAD.

5Oracle reference means the system trained and evalu-
ated with the same training partition.

Figure 4: Visualization of features after a dimension reduc-
tion using TSNE for gender-independent models of phrases.

Table 5: Oracle reference with SMOTE for gender-
independent models in SVD and AVFAD datasets.

Dataset ACC Recall Recall F1 UAR
Healthy Path

Audio type: Vowel a
SVD 89.25 95.27 83.23 88.55 89.25

AVFAD 91.52 83.45 99.59 94.64 91.52
Audio type: Phrase

SVD 94.80 97.73 91.87 92.15 94.80
AVFAD 90.22 81.75 98.69 90.98 90.22

Then, Table 5 shows results for the oracle ref-
erence when using SMOTE balancing method for
gender-independent models. Comparing between or-
acle reference of SMOTE with the original data (Ta-
ble 4), the system performance improves indicating
that the data augmentation provides some amount of
new information by means of oversampling. Note that
the improvement is noticeable for SVD (UAR=89.25
and 94.80 in Table 4 with respect to UAR=83.30 and
90.14 in Table 5), where the SMOTE really increases
the samples because as AVFAD’s folds are already
balanced, the data augmentation is slight or none.

Fig. 5 shows the system results with gender-
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Figure 5: Results of ACC, RecallHealthy, RecallPath, F1-Score, and UAR for the original data distribution in SVD and AVFAD
(green-left bars) and the SMOTE method for balancing classes (orange-right bars) for the gender-independent model.

independent models for the original imbalanced
classes along with classes after balancing. First, note
that adjacent result bars in AVFAD charts are almost
equal. This shows no improvement with the data aug-
mentation in AVFAD experiments because classes in
each fold are originally balanced. This achievement
is consistent with results in Table 3, where ACC and
UAR are similar in AVFAD experiments, indicating
that these models are well-balanced for classes.

Applying data augmentation in SVD’s experi-
ments there is a clear improvement in the recall of
healthy class. Even though the recall of the pathol-
ogy class decreases, the trade-off between these met-
rics produces a final UAR improvement. For the
original system (green bars), the difference between
ACC and UAR is 6.24% for vowel a and 3.21% for
phrases. Then, when applying the balance compen-
sation method, it reduces to 0.07% for vowel a and
0.97% for phrases. In both cases, SMOTE makes
ACC and UAR approach, which indicates that the
models are more robust for the class imbalance sce-
nario. Concluding the data augmentation technique
successfully handles the class imbalance in the SVD,
while at the same time, it does not harm the system
performance for the already balanced AVFAD dataset.

Further experiments were carried out for compar-
ing the original SMOTE with the extensions SVM-
SMOTE and ADASyn. However, obtained results do
not show a remarkable performance difference among
the methods. This could be related to the high over-
lap among the intrinsic distribution of these datasets
(Fig. 4), which does not allow finding isolated areas
of the minority class for taking advantage of the data
augmentation.

6 CONCLUSIONS

This work studied the problem of data availability
for detecting voice disorders using two different sce-
narios determined by the dataset. On the one hand,
the SVD, which is almost a standard for evaluating
AVDD systems, is an imbalanced dataset with more

pathological samples than healthy ones. On the other
hand, the AVFAD is a recently released dataset with
almost balanced healthy and pathological audio sam-
ples. This dataset has not been previously evaluated
for classification tasks. The AVDD system employed
here is a state-of-the-art system that uses spectral,
prosody, and voice quality parameters for represent-
ing speech, followed by an SVM model for classify-
ing between healthy and pathology samples. Exper-
imental results include the performance for gender-
dependent and gender-independent models and em-
ploying phrases and the sustained vowel a. Compar-
ing the results among models, we conclude that it is
more convenient to use gender-independent models to
not be forced of training two models with fewer data
each, especially when there is low availability of data.

Then we evaluated the performance of data aug-
mentation by means of the SMOTE method for han-
dling the class imbalance. The results show that the
AVDD system augmented with the SMOTE method
increases the recall of the healthy class and makes
ACC and UAR closer together in SVD, considering
that SVD- is a class-imbalanced dataset. While at the
same time, it do not decrease the performance of the
system for AVFAD that is originally balanced. Fur-
ther experiments with SMOTE method extensions did
not show performance improvement on top of the ba-
sic SMOTE method in the datasets evaluated.

In the future, we plan to extend the study on
the performance of the SMOTE algorithm to mul-
ticlass classification, considering the wide range of
pathologies in the datasets. First, we will study how
to establish an organization of the labeled diagnosis
on this corpus by speech characteristics related to
the pathology condition. Furthermore, we plan to
study the behavior of the system performance when
defining different operation points related to the
application use case of use.
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