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Abstract: This paper proposes an agnostic and declarative approach to provide different types of symbolic explanations
for multi-label classifiers. More precisely, in addition to global sufficient reason and counterfactual expla-
nations, our approach makes it possible to generate explanations at different levels of granularity in addition
to structural relationships between labels. Our approach is declarative and allows to take advantage of the
strengths of modern SAT-based oracles and solvers. Our experimental study provides promising results on
many multi-label datasets.

1 INTRODUCTION

In many fields such as the medical field, it is sensi-
tive and critical to understand how and why a model
makes a given prediction. This is reinforced by laws
and regulations in several parts of the world (such
as the GDPR in Europe) aiming to ensure that AI-
based systems are ethical, transparent and make in-
terpretable decisions for users. There are currently
many explanation approaches (such as LIME (Ribeiro
et al., 2016), SHAP (Lundberg and Lee, 2017), AN-
CHORS (Ribeiro et al., 2018)) to explain ML models
but they most often address the multi-class classifi-
cation problem (where a data instance is associated
with a single class). Unfortunately, very few stud-
ies have focused on explaining multi-label classifiers
(where a data instance is associated with a subset of
labels). This work proposes a new approach to ex-
plain the predictions of a multi-label classifier. This
approach overcomes several challenges of multi-label
classification. Among the main characteristics of our
approach, we mention the following: - Symbolic: The
symbolic explanations that we propose answer the
question Why a model predicted certain labels (suf-
ficient reasons) ? or What is enough to change in an
input instance to have a different prediction (counter-
factuals) ? This contrasts with the majority of exist-
ing approaches which are numerical and which an-
swer the question To what extent does a feature in-
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fluence the prediction of the classifier? Moreover, the
approach provides both feature and label-based expla-
nations. - Agnostic : Thanks to using surrogate mod-
els, our approach can be used to explain any multi-
label classifier, regardless of the used technique and
implementation.

- Declarative: Our approach to generate symbolic
explanations is based on modeling the problem in
the form of variants of the propositional satisfiability
problem (SAT1) in the spirit of the symbolic explainer
ASTERYX (Boumazouza et al., 2021). This makes it
possible to exploit SAT-based oracles for the enumer-
ation of explanations without implementing dedicated
programs.

2 REVIEW OF RELATED WORKS

A lot of current works focus on binary and multi-class
classification problems compared to the multi-label
ones. The majority of explainability approaches are
posthoc and allow to provide essentially two types of
explanations: (1) symbolic explanations (e.g. (Shih
et al., 2018), (Ignatiev et al., 2019b), (Reiter, 1987))
or (2) numerical ones (e.g. SHAP (Lundberg and Lee,
2017), LIME (Ribeiro et al., 2016)). It is important to
emphasize that these two main categories attempt to
answer two different types of questions: While nu-
merical approaches attempt to quantify the influence

1Boolean satisfiability problem (SAT) is the decision.
problem, which, given a propositional logic formula often
encoded in CNF, determines whether there is an assignment
of propositional variables that makes the formula true
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of each feature on the prediction, symbolic explana-
tions aim at justifying why a model predicted a given
label for an instance through identifying causes (or
sufficient reasons) or listing what should be modified
in an input instance to have an alternative decision
(counterfactuals).
Explanation approaches in multi-label classification
can mainly be categorized into feature importance
explanations and decision rule explanations. In
(Panigutti et al., 2019), the authors propose ”MAR-
LENA”, a model-agnostic method to explain multi-
label black-box decisions. It generates a synthetic
neighborhood around the sample to be explained and
learns a multi-label decision tree on it. The explana-
tions are simply the decision rules derived from the
decision trees. In (Ciravegna et al., 2020), the au-
thors propose an approach to explain neural network-
based systems by learning first-order logic rules from
the outputs of the multi-label model. This approach
completely ignores the features when providing ex-
planations. In (Singla and Biswas, 2021), the authors
focus on multi-label model explainability and propose
a method to merge multiple feature importance expla-
nations corresponding to each label into a single list of
feature contributions. The aggregation of the feature
weights is simply the average feature weights over the
k labels. The same idea is used in (Chen, 2021) except
that they compute Shapley values over the dataset us-
ing kernel SHAP and then compute a global feature
importance per label. Such methods are limited when
it comes to the explanation types they provide. For
instance, one can not identify which part of the fea-
tures is responsible for a given part of the multi-label
prediction.

3 SYMBOLIC EXPLANATIONS
FOR MULTI-LABEL
CLASSIFICATION

This section presents the main types of symbolic ex-
planations for multi-label classification. Explanations
are distinguished according to the associated seman-
tics (sufficient reasons or counterfactuals), the ele-
ments composing an explanation and the level of
granularity of the explanations (the whole prediction
or parts of the prediction).

3.1 Multi-Label Classification

A multi-label classification problem is formally de-
fined by a set of feature variables X={X1, ..,Xn} and a
set of label (binary) variables Y ={Y1, ..,Yk}. A dataset

in multi-label classification is a collection of couples
<x,y> where x is an instance of X and y an instance
of Y encoding the true labels associated with x. Let
us first formally recall some definitions used in this
paper. For the sake of simplicity, the presentation is
limited to classifiers with binary features.

Definition 1 (Multi-label classifier). A multi-label
classifier is a function mapping each input data in-
stance x to a multi-label prediction y. Each input x is
a vector of n values assigned to X. Each output is a
vector y of k binary values assigned to Y . Given the
prediction y= f (x), the instance x is classified by f in
the label Yj if Yj=1 in the prediction y.

3.2 Features-Based Explanations

A feature-based explanation involves only features. It
can be associated with different semantics and differ-
ent granularity levels. We focus on two complemen-
tary types of feature-based explanations that are the
sufficient reasons and counterfactuals. Sufficient rea-
son explanations correspond to the minimal part of
the input data that is sufficient to trigger the current
prediction while counterfactual explanations refer to
the minimal changes needed to make in the input data
to get an alternative, possibly desired target.
Depending on the problem under study, it may be rel-
evant to have different types of explanations. Assume
that we have a MLC problem with a large output set
(eg. hundreds). It may be irrelevant to provide an ex-
planation for the entire outcome of the model, espe-
cially for datasets with very low density. This is true
especially since in most cases, the user is interested
in the few classes predicted positively. For example,
in document categorization tasks, a user may want to
understand why a document is classified in such or
such classes. Why this document was not classified
in all the remaining classes may be irrelevant. Based
on this observation, our approach provides explana-
tions for both the entire prediction and explanations
for parts of the prediction that are of interest to the
user. We summarize in Table 1 the different cases we
distinguish for feature-based explanations:

Table 1: The symbolic-based multi-label explanations.

Entire-outcome Fine-grained
Sufficient Reasons

(Which features cause
the current prediction)

Why f (x)=y ? What causes a subset
of labels to be pre-
dicted by f ?

Counterfactuals
(Which features
modify to have an
alternative prediction)

Which x′ st.
f (x′)=y’ ?

Which x′ st. to force
f to make a desired
partial prediction ?

In order to illustrate the different concepts, let us
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use the following example:

Example 1 (Running example: Classifying Yelp re-
views into 5 categories). The ”yelp reviews classifica-
tion” is a categorization problem of reviews to know
whether a review positively comments on certain as-
pects such as food, service, ambiance, deals and wor-
thiness. The dataset contains more than 10000 re-
views from food and restaurant areas.

Input raw data is first pre-processed and two types
of features are extracted that are i) textual features
consisting of unigrams, bigrams and trigrams and ii)
binary features representing rating 1-2 stars, 3 stars,
and 4-5 stars respectively. The classes are : F (Food),
S (Service), A (Ambience), D (Deals), W (Worthi-
ness). Assume now that we are considering the fol-

Figure 1: Binary Relevance based on decision trees on Yelp.

lowing review ”We went out with friends to have Mex-
ican food, the quesadillas was delicious and came
with a lot of cheese. We find the place a little bor-
ing but the dining room seemed nice” accompanied
with a 4 stars rating. Assume also that we are given
the multi-label classifier f depicted in Fig. 1 and con-
sisting in a Binary Relevance classifier using decision
trees as base classifiers. The predicted outcome for
this review x is f (x)=(1,0,0,0,0).

3.2.1 Entire-Outcome Explanations

An entire-outcome explanation explains all the pre-
dicted labels simultaneously. Our feature-based ex-
planations are based on the definition of sufficient
reason explanations and counterfactuals proposed ini-
tially for the multi-class case (Shih et al., 2018; Ig-
natiev et al., 2019a; Ignatiev et al., 2019b; Bouma-

zouza et al., 2021).

Entire-Outcome Sufficient Reasons Explanations

An entire-outcome explanation (SR for short) iden-
tifies the minimal part of a data sample x (namely,
the subset of features) capable to trigger the current
multi-label outcome. Formally,

Definition 2 (SR Explanations). Let x be a data in-
stance and y= f (x) be its prediction by the multi-label
classifier f . An entire-outcome sufficient reason ex-
planation x̃ is such that:

1. x̃ ⊆ x (x̃ is a part of x),
2. ∀x́, x̃ ⊂ x́ : f (x́)= f (x) (x̃ suffices to trigger f (x)),
3. There is no x̂⊂ x̃ satisfying 1 and 2 (minimality).

While the two fist conditions in Definition 2
search for parts of x allowing to fire the same predic-
tion, the minimality one allows to find parsimonious
explanations (in terms of the number of features in-
volved in the explanation).

Example 2 (Example 1 Continued). SR ex-
planations: In order to explain the prediction
y=(1,0,0,0,0) for the review in hand, an ex-
ample of sufficient reason is [’IsRatingBad:0’,
’waitress:0’, ’looking:0’, ’this place is:0’, ’deli-
cious:1’, ’the staff is:0’, ’staff:0’, ’excellent:0’,
’service great:0’, ’great place:0’, ’really cool:0’,
’the atmosphere is:0’, ’daily specials:0’,
’happy hour menu:0’, ’prices good:0’,
’for happy hour:0’, ’the bar area:0’, ’pleas-
antly surprised:0’, ’reasonably priced:0’]. One can
check that this SR forces the five decisions trees to
predict y=(1,0,0,0,0) (see Table 2).

Table 2: An SR for the prediction y=(1,0,0,0,0).

Labels y Sufficient Reason explanations

Food 1 [’IsRatingBad : 0’, ’waitress : 0’, ’looking
: 0’, ’this place is : 0’, ’delicious : 1’]

Service 0 [’the staff is : 0’, ’staff : 0’, ’excellent : 0’,
’service great : 0’]

Ambience 0 [’great place : 0’, ’really cool : 0’,
’the atmosphere is : 0’]

Deals 0 [’daily specials : 0’, ’happy hour menu :
0’, ’for happy hour : 0’]

Worthiness 0 [’daily specials : 0’, ’happy hour menu :
0’, ’the bar area : 0’, ’pleasantly surprised
: 0’, ’reasonably priced : 0’]

Entire-Outcome Counterfactual Explanations

Another important type of explanations that are ac-
tionable are the ones of counterfactuals. Given a tar-
get outcome ý, an entire-outcome explanation (CF for
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short) is the minimal changes to be done in x in or-
der to obtain ý. In other words, if for some reason,
one wants to force the classifier to predict ý, then a
counterfactual explanation is those minimal changes
x́ needed to make on x such that f (x[x́])=ý (the no-
tation x[x́] denotes the instance x where the variables
involved in x́ are inverted).
Definition 3 (CF Explanations). Let x be a complete
data instance and y= f (x) be its prediction by the
multi-label classifier f . Given a target outcome ý,
an entire-outcome counterfactual explanation x̃ of x
is such that:
1. x̃⊆ x (x̃ is part of x),
2. f (x[x̃]) = ý (fire target prediction),
3. There is no x̂ ⊂ x̃ such that f (x[x̂])= f (x[x̃]) (minimal-

ity).

Example 3 (Example 2 Continued). Assume that
the initial prediction y is (1,0,0,0,0) and that the
target prediction ý is (0,1,1,1,1). An example of
entire-outcome counterfactual is : [’delicious:1’,
’IsRatingModerate:0’ ’staff:0’, ’great place:0’,
’daily specials:0’, ’little:1’, ’the bar area:0’] . Table
3 shows how this CF forces each decision tree to
trigger the target outcome ý.

Table 3: Example of entire-outcome CF explanation.

Labels y ý Counterfactual explanations

Food 1 0 [’delicious : 1’, ’IsRatingModerate : 0’]

Service 0 1 [’staff : 0’]

Ambience 0 1 [’great place : 0’]

Deals 0 1 [’daily specials : 0’]

Worthiness 0 1 ’little : 1’, ’the bar area : 0’]

3.2.2 Fine-Grained Explanations

In practice, it can be more useful to get explanations
about a label or a subset of labels of interest rather
than an explanation for the entire prediction (a vec-
tor of k labels). We say that the Yj label is positively
predicted if Yj = 1, and negatively predicted if Yj = 0.

Fine-Grained Sufficient Reasons Explanations

Similar to the definition of sufficient reasons for the
entire-outcome, a fine-grained sufficient reason is
limited to explaining the part of y that is of interest
to the user.
Definition 4 (SRy Explanations). Let x be a data in-
stance, y= f (x) be its multi-label (entire) prediction by
the classifier f and ỹ a subset of y representing the la-
bels of interest (ỹ can involve labels that are predicted
positively of negatively). A fine-grained sufficient rea-
son explanation x̃ of x is such that:

1. x̃ ⊆ x (x̃ is a part of x),
2. ∀x́, x̃ ⊂ x́ : f (x́)=ỹ (x̃ suffices to trigger ỹ),
3. There is no x̂⊂ x̃ satisfying 1 and 2 (minimality).

Example 4 (Example 7 Continued). Assume we
want to explain the predictions regarding labels
”Food”, ”Service” and ”Ambience” (i.e (Y1 =
1,Y2 = 0,Y3 = 0)). The following is an exam-
ple of a fine-grained SRy explanation : [’IsRating-
Bad:0’, ’waitress:0’, ’looking:0’, ’this place is:0’,
’delicious:1’, ’the staff is:0’, ’staff:0’, ’excellent:0’,
’service great:0’, ’great place:0’, ’really cool:0’,
’the atmosphere is:0’].

Fine-Grained Counterfactual Explanations

Definition 5 (CFy Explanations). Let x be a data in-
stance, y= f (x) be its multi-label prediction by the
classifier f . Let ỹ a subset of y representing the labels
of interest (namely, the labels to flip). A fine-grained
counterfactual explanation x̃ of x is such that:
1. x̃⊆ x (x̃ is a part of x),
2. f (x[x̃]) = y[ỹ] (inversion of labels into ỹ),
3. There is no x̂ ⊂ x̃ such that, f (x[x̂])= f (x[x̃]) (minimal-

ity)

The term y[ỹ] denotes the prediction y where labels
included in ỹ are inverted (set to the target outcome).

Example 5 (Example 4 Continued). Let us assume
that we want to invert the prediction of the labels
”Service” and ”Ambience” (i.e ỹ = (Y2 = 1,Y3 = 1)).
The following is an example of fine-grained CFy ex-
planation: [ ’staff:0’, ’great place:0’].

3.3 Label-Based Explanations

Up to now, we explain the predictions of a classifier
only using the features of the input data. Relying
solely on features to form symbolic explanations can
be problematic in terms of the clarity and relevance
of explanations to the user. As shown in the figures
of the example 6, explaining a complex concept or
label based solely on features can be difficult for the
user to understand. In some cases, this aspect can be
greatly improved by exploiting relationships or struc-
tures between the labels. For instance, if a label Yi is
subsumed by a label Yj according to the multi-label
classifier f , then clearly sufficient reasons of Yi are
also sufficient reasons for Yj. Other examples of re-
lations that can be easily extracted and exploited are
label equivalence and disjointedness.

The main advantage is that we will have a parsi-
monious explanation which will be easier for a user to
understand, and by reducing the number of the expla-
nations generated, it will simplify their presentation.
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Example 6. Let us consider the example of dig-
its classification using an augmented version of the
MNIST dataset with labels ”Odd”, ”Even” and
”Prime”. The existing labels Yi∈0...9 indicate whether
the input image x is recognized as an i-digit while the
new labels YODD, YEV EN and YPRIME correspond re-
spectively to the labels ”Odd”, ”Even” and ”Prime”.
Assume an input image x, and its multi-label predic-
tion f (x)=(0,0,0,0,0,0,0,0,0,1,1,0,0) (namely, x is
predicted to be the digit ”9” and ”Odd”), we have the
following explanations:

Figure 2: Feature-based explanations for a sample from
augmented MNIST dataset.

4 A MODEL-AGNOSTIC
SAT-based APPROACH

As mentioned in the introduction, our approach
for providing symbolic explanations is agnostic and
declarative. It is based on modeling the multi-label
classifier and our explanation enumeration problems
as variants of the propositional satisfiability problem
(SAT) exactly in the spirit of ASTERYX (Bouma-
zouza et al., 2021). The modeling goes through two
steps: a first step for encoding the multi-label classi-
fier in an ”equivalent” (or ”faithful” in case of using
a surrogate model) canonical symbolic representation
then a second step for enumerating the explanations.
Before diving into more details, Fig. 3 depicts a gen-
eral overview of our approach:

4.1 Step 1: Classifier Modeling

The aim of this step is to associate the multi-label
classifier with a symbolic an equivalent/faithful sym-
bolic representation that can be processed by a SAT-
based oracle to enumerate our symbolic explanations.
As shown in Fig. 3, two cases are considered:
- Direct Encoding : Some machine learning mod-
els have direct encoding in conjunctive normal form

Figure 3: Overview of the proposed approach.

(CNF). For instance, the authors in (Narodytska et al.,
2018) proposed a CNF encoding for Binarized Neu-
ral Networks (BNNs) for verification purposes. The
authors in (Shih et al., 2019) proposed algorithms for
compiling Naive and Latent-Tree Bayesian network
classifiers into decision graphs. Hence, in some cases,
a multi-label classifier can be directly and equiva-
lently encoded in CNF. For instance, the Binary Rel-
evance classifier using decision trees as base classi-
fiers can be equivalently encoded in CNF as illus-
trated in our running example (same thing holds of
random forests, Binarized Neural Networks and some
Bayesian network classifiers). The idea is to associate
a CNF Σi with each base classifier fi such that the
binary prediction of fi for a data instance x is cap-
tured by the truth value or consistency of Σi and Σx
(Σx stands for the CNF encoding of the data instance
x). Formally, fi is said to be equivalent to Σi iff for
any data instance x :

Σi∧Σx =

{
> if fi(x) = 1
⊥ otherwise. (1)

Where > means that the conjunction of Σi and Σx
is satisfiable, corresponding to a positive prediction.
Similarly, ⊥ means that the conjunction of Σi and Σx
is unsatisfiable (in case of negative prediction).
- Surrogate Modeling : In case the multi-label clas-
sifier cannot be directly encoded in CNF or in case the
encoding is intractable, our approach proceeds by as-
sociating with the multi-label classifier a faithful sur-
rogate model that can be encoded in CNF. In addi-
tion to allowing the handling of any multi-label clas-
sifier, the surrogate modeling offer another useful ad-
vantage that is providing local explanations. Indeed,
it is challenging to explain a model’s prediction over
the whole dataset where the decision boundary may
not be easily distinguished. The surrogate model built
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locally will make it possible to provide explanations
in the neighborhood of x. Our approach associates a
surrogate model si for each label Yi. The surrogate
model si is trained on the vicinity of the data sample
x using the original training instances with the pre-
dictions from the MLC model as targets or generated
data through perturbing the input instance x. A good
surrogate model is the one able to ensure a good trade-
off between a high faithfulness to the initial model and
tractability of the CNF encoding.

Example 7. Let us continue our running example.
The encoding of the decision trees of Fig. 1 into
CNF is direct as shown in the following (encoding
a decision tree in CNF comes down to encoding the
paths leading to leaves labeled 0).

Food y1 ⇔ (IsRatingModerate ∨ co f f ee ∨ waitress ∨
¬IsRatingBad) ∧

(IsRatingModerate ∨ co f f ee ∨ ¬waitress ∨
IsRatingGood) ∧

(IsRatingModerate∨¬co f f ee∨¬amazing¬looking) ∧
(¬IsRatingModerate∨ f lavors∨delicious) ∧
(¬IsRatingModerate ∨ f lavors ∨ ¬delicious ∨
¬this place is)

Service y2 ⇔ (service great ∨ the sta f f is∨ excellent ∨ sta f f )∧
(service great ∨ the sta f f is∨¬excellent ∨¬deal) ∧
(service great ∨¬the sta f f is∨¬size) ∧
(¬service great ∨¬and the service∨¬dont)

Ambiencey3 ⇔ (really cool∨ the atmosphere is∨great place)∧
(really cool ∨ the atmosphere is ∨ ¬great place ∨
¬high) ∧

(really cool ∨ ¬the atmosphere is ∨ ¬the service is ∨
point)

Deals y4 ⇔ ( f or happy hour ∨ happy hour menu ∨ daily specials)
∧

( f or happy hour∨¬happy hour menu¬can see) ∧
(¬ f or happy hour∨ prices good∨¬out) ∧
(¬ f or happy hour∨ prices good∨out ∨¬without)

Worth y5 ⇔ (nice∨daily specials∨happy hour menu) ∧
(nice ∨ daily specials ∨ ¬happy hour menu ∨
¬there was a) ∧

(¬nice ∨ the bar area ∨ reasonably priced ∨
pleasantly surprised) ∧

(¬nice∨ the bar area∨¬reasonably priced∨money) ∧
(¬nice∨¬the bar area∨¬little)

Once the encoding step is achieved, we can rely on
SAT-based oracles to provide explanations as follows:

4.2 Step 2: Explanation Enumeration

Recall that in Step 2 we are given a set of CNFs
Σ1,..,Σk encoding the MLC f and a data instance x
encoded in CNF and denoted Σx. The aim is to ex-
plain the prediction y= f (x). Recall also that in order
to provide sufficient reasons or counterfactuals for a

given label Yi, we rely on a SAT oracle on Σi and Σx.
In the following, let SR(x,si) (resp. CR(x,si)) denote
the set of sufficient reasons (resp. counterfactuals) to
explain individual prediction si(x). Such explanations
are obtained thanks to a SAT-based oracle (see for in-
stance (Boumazouza et al., 2021) how one can use a
SAT oracle to provide sufficient reasons and counter-
factuals for binary classifiers).

4.2.1 Feature-Based Explanations

Depending on the type of explanations to provide, our
approach proceeds as follows:
- Entire-Outcome Sufficient Reasons SR: Since we
can provide sufficient reasons for each label Yi, then it
suffices to combine (join) an SR from each classifier
Si to form an SR for the whole outcome as shown in
the example of Table 2.
- Entire-Outcome Counterfactuals CF: Similar to
sufficient reasons, one can form entire-outcome coun-
terfactual CFx as far as we have counterfactuals CFi
for each label Yi. More precisely, let the MLC f pre-
dict y for x (namely, f (x)=y). Let us assume that
the user wants to force the prediction to y′. Then, an
entire-outcome CF is formed by joining a counterfac-
tual from each CFi (see example in Table 3).
- Fine-Grained Sufficient Reasons SRy: For fine-
grained explanations, we proceed in a similar way
while restricting to the part y′⊆y of interest to the user.
Namely, given sufficient reasons for each label yi∈y′,
then joining an SRi from each classifier fi with yi∈y′

is enough to form an SRy for the partial outcome y′ as
shown in Example 4.
- Fine-Grained Counterfactuals CFy: Given coun-
terfactuals for each label yi∈y′, then joining an CFi
from each classifier fi such that yi∈y′ allows to build
an CFy allowing to obtain y′ as in Example 5.

4.2.2 Label-Based Explanations

Recall that label-based explanations denote structural
relationships between labels. In order to extract some
relationships, one can also rely on a SAT-based ora-
cle since each individual labels Yi is associated with a
CNF Σi. Hence, checking whether some relationships
hold between subsets of labels comes down to check-
ing the corresponding logical relationships between
CNF formulas.

For instance, assume we are given an input x and
the we want to check whether Y1≡Y2 (label equiva-
lence relation) in the vicinity of x. We can easily
check if the CNF Σ1 is logically equivalent to Σ2 in
which case they must share the same models. Another
simple method consists simply in checking if for any
prediction y′= f (x′) such that x′ is an instance from the
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Table 5: Evaluating the CNF encoding over different datasets.

Dataset radius avg RF’s
accuracy

min CNF
size

avg CNF size max CNF size min
enc runtime(s)

avg
enc runtime(s)

max
enc runtime(s)

YELP Review Analysis 60 92.67% 96/232 4827/13004 13732/36864 0.48 3.29 13.73
180 92.73% 4625/12416 6812/18395 15963/428941 2.97 4.64 15.32

Augmented MNIST 150 93.97% 509/1268 12095/32353 14308/38344 0.68 12.58 16.13
250 96.27 423/1119 9556/25455 15105/40530 1.35 7.93 14.41

IMDB Movie Genre Pred 30 99.53% 863/2344 1282/3533 3149/8558 0.82 1.09 2.73
Patient Characteristics

(NYS15)
63 96.73% 2446/6615 7887/21370 11305/30594 1.91 6.73 10.12

neighborhood of x that Y1=1 iff Y2=1.

5 EMPIRICAL EVALUATION

Due to the page limit, this study concerns only
feature-based explanations. The datasets used in our
experiments are publicly available and can be found
at Kaggle or at UCI. Numerical and categorical at-
tributes are binarized. The textual datasets used are
pre-preprocessed and binarized. In order to enu-

Table 4: Properties of the different data-sets used.

Dataset #instances #classes #features data type
Augmented MNIST 70000 13 784 Images
Yelp Review Analysis 10806 5 671 Textual
IMDB Movie Genre
Prediction

65500 24 30 Textual

Patient Characteristics
Survey (NYS 2015)

105099 5 63 Textual/
Numeric

merate our symbolic explanations for binary classi-
fiers, we rely on two SAT-based oracles: the enu-
meration of counterfactuals is done using the enumcs
tool(Grégoire et al., 2018) and the sufficient rea-
sons are enumerated using the PySAT (Ignatiev et al.,
2018) tool. The time limit for the enumeration of
symbolic explanations was set to 300 seconds.

5.1 Results

In order to generate entire-outcome explanations,
each base classifier of the a binary relevance (BR)
model is approximated using a random forest and then
encoded into a CNF. Table 5 lists the average size
and time of the encoding step computed over surro-
gate models. We can see that the average accuracy of
the surrogate random forest classifiers is high mean-
ing that the surrogate models can achieve high faith-
fulness levels wrt. the MLC. Regarding the size of
the generated CNFs expressed as the number of vari-
ables (#Vars) and number of clauses (#Clauses), one
can see that it is tractable and it is easily handled by
the SAT-solver (in Step 2).

Table 6 shows the results of enumerating both suf-
ficient reasons and counterfactuals. Using local sur-
rogate models over multiple values of the radius, the
symbolic explanations of each base classifier are enu-
merated, and then the average is computed and given
in Table 6 and Table 7. The average time necessary
to enumerate all the explanations for a given instance,
this latter varies between 2 and 20 seconds. The same
finding holds for the number of explanations where
one can see that on average this number increases pro-
portionally to the size of the feature set. We also no-
tice that the number of SR explanations is of the same
order as the number of CF ones. Interestingly enough,
one can notice that the time required to find one suffi-
cient reason (resp. counterfactual) explanation is very
negligible, meaning that the proposed approach is fea-
sible in practice.

6 CONCLUDING REMARKS

This paper proposed a declarative and model-agnostic
multi-label classification explanation method. We de-
fined several symbolic explanation types and showed
how we can enumerate them using the existing SAT-
based oracles. We introduced the concept of the label-
based explanations in order to take advantage of the
structural relationships between labels in order to re-
duce the number of generated explanations and im-
prove their presentation to the user. It is worth notic-
ing that the contributions of this work are not sim-
ple extensions from the multi-class framework to the
multi-label one since there are, for example, concepts
specific to the multi-label case such as label-based
and fine-grained explanations.
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Table 6: Enumeration of entire-outcome counterfactual explanations.

Dataset radius min #CFs avg #CFs max #CFs enumtime One
CF (s)

min enumtime (s) avg enumtime (s) max enumtime (s)

YELP Review Analysis
60 1891 2025 6858 ≤ 10−3 ≤ 10−3 2.29 13.46
180 2601 3203 9693 ≤ 10−3 0.009 4.5 29.97

Augmented MNIST
150 96 4971 9347 ≤ 10−3 0.02 15.61 33.27
250 1158 5027 11323 ≤ 10−3 1.77 15.9 45.36

IMDB Movie Genre Pred 30 5 14 22 ≈ 0 0.13 2.78 7.47
Patient Characteristics (NYS15) 63 134 1052 2399 ≤ 10−4 0.15 2.83 9.37

Table 7: Enumeration of entire-outcome sufficient reasons explanations.

Dataset radius min #SRs avg #SRs max #SRs enumtime One
SR (s)

min enumtime (s) avg enumtime (s) max enumtime (s)

YELP Review Analysis 60 13116 23167 38620 0.028 10.94 19.37 31.95
Augmented MNIST 150 11292 11956 12621 0.053 12.26 13.06 13.85

IMDB Movie Genre Pred 30 3 41.83 161 0.004 0.003 0.02 0.07
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Grégoire, É., Izza, Y., and Lagniez, J.-M. (2018). Boosting
mcses enumeration. In IJCAI, pages 1309–1315.

Ignatiev, A., Morgado, A., and Marques-Silva, J. (2018).
PySAT: A Python toolkit for prototyping with SAT or-
acles. In SAT, pages 428–437.

Ignatiev, A., Narodytska, N., and Marques-Silva, J. (2019a).
Abduction-based explanations for machine learning
models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1511–1519.

Ignatiev, A., Narodytska, N., and Marques-Silva, J.
(2019b). On relating explanations and adversarial ex-
amples. In Advances in Neural Information Process-
ing Systems, volume 32.

Lundberg, S. M. and Lee, S.-I. (2017). A unified ap-
proach to interpreting model predictions. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv,
M., and Walsh, T. (2018). Verifying properties of
binarized deep neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Panigutti, C., Guidotti, R., Monreale, A., and Pedreschi, D.
(2019). Explaining multi-label black-box classifiers
for health applications. In International Workshop on
Health Intelligence, pages 97–110. Springer.

Reiter, R. (1987). A theory of diagnosis from first princi-
ples. Artificial intelligence, 32(1):57–95.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ” why
should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
2016, pages 1135–1144.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). Anchors:
High-precision model-agnostic explanations. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32.

Shih, A., Choi, A., and Darwiche, A. (2018). A sym-
bolic approach to explaining bayesian network clas-
sifiers. In IJCAI-18, pages 5103–5111. International
Joint Conferences on Artificial Intelligence Organiza-
tion.

Shih, A., Choi, A., and Darwiche, A. (2019). Compiling
bayesian network classifiers into decision graphs. In
Proceedings of the AAAI-19, volume 33, pages 7966–
7974.

Singla, K. and Biswas, S. (2021). Machine learning explan-
ability method for the multi-label classification model.
In 2021 IEEE 15th International Conference on Se-
mantic Computing (ICSC), pages 337–340. IEEE.

Symbolic Explanations for Multi-Label Classification

349


