
Query Log Analysis for SQL Injection Detection

Alexandra Rocha1, Rui Alves1 and Tiago Pedrosa1,2,3

1Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
2Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança,

Campus de Santa Apolónia, 5300-253 Bragança, Portugal
3Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SuSTEC),

Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

Keywords: SQL Injection, IDS, MySQL, Attacks, Detection.

Abstract: Nowadays, more and more services are dependent on the use of resources hosted on the web. The realization
of operations such as access to the account bank, credit card operations, among other operations, is something
increasingly common in current times, demonstrating not only human dependence on the internet connec-
tion, as well as the need to adapt the web resources to the daily life of society. As a result of this growing
dependency, web resources now provide a greater amount of confidential information, making the risk of a
cyberattack and information leaking grow considerably. In the web context, one of the most well-known at-
tacks is SQL injection that allows the attacker to exploit, through the injection of malicious queries, access to
confidential information. This paper suggests a solution for the detection of SQL injection via web resources,
using the analysis of the logs of the executed queries.

1 INTRODUCTION

The rapid evolution of information technologies has
made today’s society increasingly hostage to an in-
ternet connection (StudyCorgi, 2022). The number
of resource-dependent quotidian services hosted on
the web are increasing massively, something that has
been accentuated more than ever with the appear-
ance of COVID-19 (Subudhi and Palai, 2020), where
many services that were previously manual processes
have been transformed into digital processes (Portela
et al., 2021), (Nachit and Belhcen, 2020). The grow-
ing of digital dependency makes an increasing num-
ber of companies to use web-hosted resources to sup-
port their business model (Dutta and Prasad, 2020).
However, despite the advantages for organizations, it
is necessary to take into account that, in the same
way that digital dependence increases, the risk of cy-
berattack also increases (Ghosh, 2021), where often
web resources are the most ”desirable” targets for at-
tackers for containing information of important value
of the organizations. According to OWASP (Owasp,
2022), one of the most common attacks performed
on web resources is SQL injection(Mukherjee et al.,
2015; Bhateja et al.,). An SQL injection attack is
the ”injection” of a SQL query built from untrusted

input data from an application’s input components.
When successful, an SQL injection exploit allows the
attacker to: read and/or modify sensitive data stored
in the database; perform administration operations on
the database server (such as shutdown the DBMS).
Thus, this paper suggests a solution for the detection
of SQL injection attacks. The proposed solution, fo-
cused for now on the MySQL server, it detects attacks
using the history of query executions on the database
server, using REGEX, and some intelligent processes.
The rest of the paper is organized as follows: Sec-
tion 2 resumes the background analysis and related
work for the detection/prevention of SQL injection at-
tacks; in Section 3 is described the implementation of
the proposed solution; Section 4 presents the prelim-
inary results; Section 5 presents the conclusions and
considerations for future work.

2 RELATED WORK

Many solutions for SQL injection detection have
emerged in the literature of the area, proposing other
approaches besides more conventional mechanisms
such as Web Application Firewalls (WAFs). The use
of machine learning techniques to support the de-

Rocha, A., Alves, R. and Pedrosa, T.
Query Log Analysis for SQL Injection Detection.
DOI: 10.5220/0011667200003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 471-476
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

471

tection process is common in some similar solutions
identified. However, the mode of operation differs
from the solution presented, because they act as an
Intrusion Detection System (IDS) (Hasan et al., 2019)
and use another type of logs (Azman et al., 2021) to
perform the detection. All approaches of this type
have a good success rate in the detection process.

Other solutions (Lee et al., 2012; Katole et al.,
2018) follow an approach closer to that followed by
the presented solution. Building a detection mech-
anism based on removing the content from the at-
tributes values of SQL queries. After removing the
values of the attributes, they perform the comparison
of the new version of the query with the content of the
query defined in a static way. Despite the similarities,
the method of comparison of queries and removal of
values seems to be less efficient than the method used
in the presented approach.

Implementing a proxy between the web server and
the application server was another of the techniques
followed (Boyd and Keromytis, 2004). This solu-
tion presents a proxy, which when receiving SQL,
translates, and validates it before forwarding it to the
database. This is a simple syntactic validation, be-
cause the proxy is not aware of the semantics of the
query itself.

Another major solution in the area is AMNE-
SIA (Halfond and Orso, 2007). This is a fully au-
tomated, generic approach for detecting and prevent-
ing SQL injection attacks. Its two main points are:
through an analysis of the code is built the model of
legitimate queries that can be generated in the ap-
plication; the second point deals with monitoring of
dynamically generated queries at runtime and veri-
fication of compliance with the statically generated
model.

3 PROPOSAL SOLUTION

The solution presented was designed to work as an
IDS. The Figure 1 shows the overall architecture of
the solution. As mentioned, in the current state of
development, the solution was only tested on the
MySQL server, however, on other database servers
(ex: SQL Server (Gribkov, 2022)) it is also possible
to configure a mechanism similar to General Query
Log (Documentation, 2022) present in MySQL to
store the history of executed queries.

The solution requires enabling the MySQL Gen-
eral Query Log. It is based on this mechanism that the
detection of SQL injection attacks is performed, since
it allows the storage of the executed queries. Thus, af-
ter activating this mechanism, in the same execution

MySQL Server Web Server
Queries

Execution

Mobile Apps Web Apps

Table:
mysql.general_log

Save Queries
executed on

Analize data to detect
injection SQL attack

Timer

Access Requests

Figure 1: Overview of the proposed architecture.

environment of the database server, a service is con-
figured to analyze the queries executed with a peri-
odicity defined by the administrator, each query will
be analyzed only once. For cases of non-detection
of suspicious expressions of SQL injection, the query
under analysis is marked as not malicious. When ma-
licious expressions are detected in the queries, the ser-
vice notifies, the administrator via email.

The existence of different techniques for SQL in-
jection, makes one of the main difficulties in detect-
ing this type of attacks is the identification of mali-
cious expressions. In general, the main techniques
can be classified into 2 groups (Rai et al., 2021): In-
band SQL Injection, Inferential SQL Injection, each
possessing several subtypes. Thus, for our first ap-
proach, the service created, performs the analysis of
the stored queries trying to identify injection attacks
with the Boolean based Blind SQL technique (sub-
type of the Inferential SQL Injection group). In List-
ing 1 it’s possible to see the set of regular expressions
used to identify some malicious expressions used in
this technique.

Listing 1: Regular Expressions for Boolean based Blind
SQL detection.
i f r e . f i n d a l l (r ’ [0 −9. −]+=[0 −9. −]+ ’ , s t r (row)) :

D e t e c t number=number
e l i f r e . f i n d a l l (r ’%+’ , s t r (row)) :

D e t e c t %%
e l i f r e . f i n d a l l (r ’−−+ ’ , s t r (row)) : #−−

D e t e c t comments on mysql
e l i f r e . f i n d a l l (r ” ’ ([a−z]\w) ’ ” , s t r (row)) :

D e t e c t ’ c h a r a c t e r ’ = ’ c h a r a c t e r ’
e l i f r e . f i n d a l l (r ” ’+ ’ ” , s t r (row)) :

D e c t e c t f i e l d empty
e l i f r e . f i n d a l l (r ’ [| | +] ’ , s t r (row)) :

D e t e c t s t r i n g s | | +

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

472

e l i f r e . f i n d a l l (r ” IF (1=1 , ’ t r u e ’ , ’ f a l s e ’) ” , s t r (row)) :
D e t e c t i f

Through the expressions illustrated in Listing 1,
expressions such as 1=1 or ’a’=’a’ that are often
used, in the Boolean Based Blind SQL technique are
quickly identified, allowing to alert the administrator
of a possible injection attack in progress. However,
as mentioned, there are several ways to carry out SQL
injection attacks, in this way, to increase the success
of detection, a second check, the queries, is performed
in cases where the first scan does not detect any mali-
cious expression.

As already mentioned, the first check was de-
signed to identify the most used SQL injection tech-
niques more quickly. The second verification is based
on the concept of fuzzy string matching (Kuruvilla,
2022; Kalyanathaya et al., 2019; Kostanyan, 2017)
for the detection of malicious expressions. This con-
cept corresponds to the identification of two strings,
string characters or entries that are approximately
similar but are not exactly the same. It can be imple-
mented using different techniques, in our solution, the
Levenshtein Distance(Sharma, 2022; Yujian and Bo,
2007; Haldar and Mukhopadhyay, 2011) is used. This
approach provides a measure of the number of single
character insertions, exclusions or substitutions that
vary between the sequences under analysis. In a real
application context, the execution of a trusted query
may vary. One of the main reasons for this variation is
the content of the parameters inserted in the clause(s)
where for filtering, which can be different from exe-
cution to execution. Thus, the solution presented, in
the analysis of queries, removes, using regular expres-
sions, the content of these parameters, reducing the
occurrence of false positives. This removal allows, in
the context of the proposed solution, that the Fuzzy
string matching technique presents more reliable re-
sults.

Thus, the queries of the application are numbered
(in the current state, this numbering is performed by
the programmer). The Listing 2 shows an example
of this numbering. In the definition of the query, the
identifier that is intended to be assigned to the query is
added as the SQL comment in the begin of the query.

Listing 2: Query Numeration Example.
#1
s e l e c t * from t a b l e where f i e l d = ’ f i e l d ’

In addition to the numbering, an application query
table is created, where all queries that should be moni-
tored by the system are recorded. This table is a JSON
file (see listing 3) where the query identifier and its
contents are registered.

Listing 3: Queries table example.
[

{” i d ” : 1 , ” c o n t e n t ” : s e l e c t * from t a b l e where f i e l d ”}
]

The main function of this table is to save an ex-
ample of the execution (without the contents of the
parameters of the clause(s) where) of the queries that
will be monitored. This example does not contain any
malicious expression and is used, as will be detailed,
by the Fuzzy string matching technique in the analysis
of the queries recorded in the logs.

The analysis process of the second mechanism be-
gins with the search for the identifier that was as-
signed to the query under analysis. After this process,
through regular expressions, is removed all the con-
tents of the parameters of the clause(s) where. With
the identifier found, it is obtained, through the query
table, the secure content of the query under analy-
sis. From this point, a comparison is performed, using
python’s fuzzywuzzy (Foundation, 2022) library, be-
tween the secure content and the contents of the pre-
processed logs of the query in processing. The query
execution is classified as malicious when the differ-
ence obtained is greater than 10%.

The definition of this value is justified because, in
the testing phase, when querys are created dynami-
cally (common in data filtering mechanisms), the In-
ner joins performed between the different tables can
be different. Thus, the definition of Threshold (10%)
was necessary to reduce the rate of false positives.

In cases where the difference is greater than 10%,
as in the first check, the administrator is alerted. For
both analysis processes existing in the proposed solu-
tion, in some contexts, namely, when more than one
execution with suspected SQL injection is detected,
in a short time (default 1m) the database server is
blocked/shutdown preventively.

4 PRELIMINARY RESULTS

False positives/false negatives was one of the prob-
lems identified in the development phase. Thus, to
try to reduce the occurrence of these events, a simpler
test scenario was defined to perform the first valida-
tion of the solution. Using a web platform (iamvinitk,
2022), changed intentionally, to enable the exploita-
tion of SQL injection attacks, along with sqlmap (G
and Stampar, 2022; Bizimana and Belkhouja, 2017;
Baklizi et al., 2022), which is a penetration testing
tool that automates the process of detecting and ex-
ploiting SQL injection failures, it was defined that the
information to be obtained in attacks on the test plat-
form would be:

Query Log Analysis for SQL Injection Detection

473

Table 1: Data obtained in different contexts tested.

BD Name Tables Name User Data
Context 1 Yes Yes Yes
Context 2 Yes Yes Yes
Context 3 Yes No No

• name of the database.

• name of existing tables.

• data of registered users.

4.1 Experimental Conditions

Only one virtual machine was used, where the test
platform was configured, already with the change
made, and installed the respective database server
(MySQL). To obtain the information described above,
the execution of the attack, through sqlmap, was per-
formed in 3 ways:

• without protection/detection mechanisms against
SQLInjection;

• using WAF(SpiderLabs, 2022) with default set-
tings;

• using the solution illustrated in this paper.

To avoid unequal environments with each repetition,
sqlmap was executed on the same installation ma-
chine of the target platform, opting to ignore the
sqlmap cache with each test. Each scenario (form of
attack + information to obtain) was repeated 5 times
with a break of 5s between each execution. The re-
sults obtained for the presented test scenarios will be
detailed in section 4.2.

4.2 Results

BD Name Tables Name User Data
0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

1,24 1,32

2,10

7,55
7,12

7,37

1,84
2,34

2,58

Context 1
Context 2
Context 3

Figure 2: Time, in s, obtained in each context in the execu-
tion of the 3 defined steps.

In the table 1 and the figure 2 it’s possible to analyze
the results obtained in the tests performed. It turns
out, unsurprisingly, that for context 1, the sqlmap can
obtain information in the 3 stages tested with a rel-
atively reduced time. For the case of context 2, the

sqlmap allows the bypass to be performed to the WAF
(Son, 2022), allowing the obtaining of data in the 3
stages tested, despite the elapsed execution time in
the 3 stages (approximately 7s). Finally, the solution
presented in this paper, which presents low execution
times for the 3 steps, however, as the database server
is blocked after the detection of querys with suspected
SQL injection, only makes it possible to obtain the
database name.

5 CONCLUSION

Despite the evolution of programming technologies
and frameworks, it is still quite frequent the emer-
gence of vulnerabilities that enable the exploitation
of SQL injection in applications today, causing high-
value resources to be compromised. The inexperience
of programmers with new technologies (Dinerman,
2015; Kiskis, 2019; Mohd Yunus et al., 2018), lim-
itations of more conventional protection mechanisms
(ex: WAFs) (Vicente, 2019), too old code, are some
reasons for this problem still exist.

The need for solutions that contribute to increased
protection and monitoring against SQL injection at-
tacks gives the solution presented in this paper some
relevance. The simplicity of configuration, use of reg-
ular expressions and the logic of Fuzzy makes the suc-
cess rate and efficiency in the process of detecting at-
tacks is encouraging, as revealed in the first tests still
performed in the development environment.

Another advantage of the solution is the indepen-
dence over the technologies used in the web appli-
cation that monitors, that is, as long as the database
server used is MySQL, this solution can monitor any
web application regardless of the technology used in
its development.

However, despite the advantages described, the
limitations of use to the MySQL server and the cur-
rent mechanism of construction of the query table are
points that must be worked out. Often programmers
do not have any security training ending up not giv-
ing it the proper value (Roshaidie et al., 2020), this
way, assigning the programmer the role of deciding
which queries to put in the query table, may affect
the success of the solution’s attack detection. Finally,
given the popularity (Chand, 2022) of other existing
database servers in the market, the restriction of use
to the MySQL server becomes an unfavorable point
to the solution that should be corrected in future work.
As it was mencioned previously, another problem that
emerged in the early tests, still in the development
phase, was false negatives and/ or false positives. Di-
rect text matching is usually quite complex to perform

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

474

where it is often done using large ML algorithms. An-
other way to give more support to the work will be to
expose the developed system to other test scenarios,
which will certainly allow to refine the regular expres-
sions and the Fuzzy logic used.

In addition, the alert and control mechanisms that
the developed solution has, are contradictory with re-
gard to the positioning of the solution in the IDS
and/ or IPS concepts. The initial requirements, made
this solution as IDS, which although more tests were
needed to refine the detection, was demonstrated in
section 4, which as an IDS produces minimally satis-
factory results. However, the preventive blocking of
the database server, in the case of the detection of a
malicious query, brings the solution closer to the IPS
concept. However, in the current state of develop-
ment, the preventive blocking of the database server
is an aggressive option for production environments,
which, along with the poor maturity of the attack de-
tection mechanism of the presented solution, makes it
impossible to put the solution as a valid IPS option in
SQL injection attacks.

5.1 Future Work

Despite the technical potential of the solution and the
favorable results still obtained in development tests,
there is still a long way to go so that the solution pre-
sented is possible to be used in production. In this
way, the following points were left for future work:

• Testing more realistic scenarios to confirm detec-
tion success rates.

• Perform tests between the solution presented, the
WAF and the solutions presented in section 2.

• Change the solution so that it is possible to use in
other database servers (SQL Server, Oracle).

• Modify the current query table generation mecha-
nism for a mechanism that does not depend on the
programmer.

• Redesign the solution to work as an Intrusion Pro-
tection System (IPS).

• Replaced the blocking of the database server, for
redirecting traffic to a honeypot.

• Explore the solution as a forensic analysis tool for
SQL injection attacks.

ACKNOWLEDGEMENTS

This work was partially supported by the Norte
Portugal Regional Operational Programme(NORTE
2020), under the PORTUGAL 2020 Partnership

Agreement, through the European Regional Devel-
opment Fund (ERDF), within project “CybersSe-
CIP” (NORTE-01-0145-FEDER-000044). The au-
thors are grateful to the Foundation for Science and
Technology (FCT, Portugal) for financial support
through national funds FCT/MCTES (PIDDAC) to
CeDRI (UIDB/05757/2020 and UIDP/05757/2020)
and SusTEC (LA/P/0007/2021).

REFERENCES

Azman, M. A., Marhusin, M. F., and Sulaiman, R. (2021).
Machine learning-based technique to detect sql injec-
tion attack. Journal of Computer Science, 17(3):296–
303.

Baklizi, M., Atoum, I., Abdullah, N., Al-Wesabi, O. A.,
Otoom, A. A., and Hasan, M. A.-S. (2022). A techni-
cal review of sql injection tools and methods: A case
study of sqlmap. International Journal of Intelligent
Systems and Applications in Engineering, 10:75–85.

Bhateja, N., Sikka, S., and Malhotra, A. chapter 34.
Bizimana, O. and Belkhouja, T. (2017). Sql injections and

mitigations scanning and exploitation using sqlmap.
Boyd, S. W. and Keromytis, A. D. (2004). Sqlrand: Pre-

venting sql injection attacks. In Jakobsson, M., Yung,
M., and Zhou, J., editors, Applied Cryptography and
Network Security, pages 292–302, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Chand, M. (2022). Most popular databases in the
world. https://www.c-sharpcorner.com/article/what-
is-the-most-popular-database-in-the-world/. Up-
dated: Jan 17, 2022 Accessed: 2022-07-09.

Dinerman, K. (2015). Why sql injection vulnerabilities
still exist: 8 reasons developer’s can’t eliminate them.
https://www.rapid7.com/blog/post/2015/10/27/eight-
reasons-why-sql-injection-vulnerabilities-still-exist-
a-developer-s-perspective/. Updated: Thu, 31 Aug
2017, Accessed: 2022-07-09.

Documentation, M. (2022). The general query log. https:
//dev.mysql.com/doc/refman/8.0/en/query-log.html.
Accessed: 2022-07-10.

Dutta, I. and Prasad, P. (2020). The global impact of online
resources in business management. pages 805–807.

Foundation, P. S. (2022). fuzzywuzzy 0.18.0. https:
//pypi.org/project/fuzzywuzzy/. Accessed: 2022-07-
14.

G, B. D. A. and Stampar, M. (2022). sqlmap - auto-
matic sql injection and database takeover tool. https:
//sqlmap.org/.

Ghosh, A. (2021). An overview article on 600
Gribkov, E. (2022). How to check sql server query

history. https://blog.devart.com/sql-server-query-
history.html. Updated: September 25th, 2020 Ac-
cessed: 2022-07-10.

Haldar, R. and Mukhopadhyay, D. (2011). Levenshtein dis-
tance technique in dictionary lookup methods: An im-
proved approach. CoRR, abs/1101.1232.

Query Log Analysis for SQL Injection Detection

475

Halfond, W. G. J. and Orso, A. (2007). Detection and pre-
vention of sql injection attacks. In Christodorescu, M.,
Jha, S., Maughan, D., Song, D., and Wang, C., edi-
tors, Malware Detection, pages 85–109, Boston, MA.
Springer US.

Hasan, M., Balbahaith, Z., and Tarique, M. (2019). De-
tection of sql injection attacks: A machine learning
approach. In 2019 International Conference on Elec-
trical and Computing Technologies and Applications
(ICECTA), pages 1–6.

iamvinitk (2022). Online-retail. https://github.com/
iamvinitk/Online-Retail. Updated: 29 Jun, 2022 Ac-
cessed: 2022-07-09.

Kalyanathaya, K., D., A., and G., S. (2019). A fuzzy
approach to approximate string matching for text re-
trieval in nlp. Journal of Computational Information
Systems, 15:26–32.

Katole, R. A., Sherekar, S. S., and Thakare, V. M. (2018).
Detection of sql injection attacks by removing the pa-
rameter values of sql query. In 2018 2nd International
Conference on Inventive Systems and Control (ICISC),
pages 736–741.

Kiskis, A. (2019). Why sql injection attacks are still plagu-
ing databases. International Journal of Hyperconnec-
tivity and the Internet of Things, 3:11–18.

Kostanyan, A. (2017). Fuzzy string matching with finite
automat. In 2017 Computer Science and Information
Technologies (CSIT), pages 9–11.

Kuruvilla, V. P. (2022). A comprehensive guide to
fuzzy matching/fuzzy logic. https://nanonets.com/
blog/fuzzy-matching-fuzzy-logic/. Accessed: 2022-
07-14.

Lee, I., Jeong, S., Yeo, S., and Moon, J. (2012). A novel
method for sql injection attack detection based on re-
moving sql query attribute values. Mathematical and
Computer Modelling, 55(1):58–68. Advanced Theory
and Practice for Cryptography and Future Security.

Mohd Yunus, M. A., Brohan, M., Mohd Nawi, N., Salwana,
E., Najib, N., and Liang, C. (2018). Review of sql
injection : Problems and prevention. JOIV : Interna-
tional Journal on Informatics Visualization, 2:215.

Mukherjee, S., Sen, P., Bora, S., and Pradhan, C. (2015).
Sql injection: A sample review. In 2015 6th Interna-
tional Conference on Computing, Communication and
Networking Technologies (ICCCNT), pages 1–7.

Nachit, H. and Belhcen, L. (2020). Digital transformation
in times of covid-19 pandemic: The case of morocco.
SSRN Electronic Journal.

Owasp (2022). Top 10 web application security risks. https:
//owasp.org/www-project-top-ten/. Accessed: 2022-
07-09.

Portela, D., Brito, D. V., and Monteiro, H. (2021). Us-
ing digital technologies in response to the covid-19
pandemic in portugal. Portuguese Journal of Public
Health, 39(3):170–174.

Rai, A. K., Miraz, M. M. I., Das, D., Kaur, H., and Swati
(2021). Sql injection: Classification and prevention.
2021 2nd International Conference on Intelligent En-
gineering and Management (ICIEM), pages 367–372.

Roshaidie, M., Liang, P., Jun, C., Yew, K., and tuz Zahra,
F. (2020). Importance of secure software development
processes and tools for developers.

Sharma, S. (2022). Fuzzywuzzy python library.
https://www.geeksforgeeks.org/fuzzywuzzy-python-
library/. Updated: 29 Jun, 2022 Accessed: 2022-07-
09.

Son, D. (2022). Sqlmap tamper script for bypass-
ing waf. https://securityonline.info/sqlmap-tamper-
script-bypassing-waf/. Updated: 29 Jun, 2022 Ac-
cessed: 2022-07-09.

SpiderLabs (2022). Open source web application fire-
wall. https://github.com/SpiderLabs/ModSecurity.
Updated: 29 Jun, 2022 Accessed: 2022-07-09.

StudyCorgi (2022). Impact of the internet on soci-
ety. https://studycorgi.com/impact-of-the-internet-on-
society/. Updated: Sep 24th, 2021 Accessed: 2022-
07-09.

Subudhi, R. and Palai, D. (2020). Impact of internet use
during covid lockdown. Journal of Humanities and
Social Sciences Research, 2.

Vicente, G. (2019). The top 5 reasons why waf users are
dissatisfied. https://hdivsecurity.com/bornsecure/the-
top-5-reasons-why-waf-users-are-dissatisfied/. Up-
dated: May 21, 2019, Accessed: 2022-07-09.

Yujian, L. and Bo, L. (2007). A normalized levenshtein dis-
tance metric. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(6):1091–1095.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

476

