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Abstract: Cost-based optimization is a promising paradigm that relies on execution queries to enable fast and efficient ex-
ecution reached by the database cost model (CM) during query processing/optimization. While a few database
management systems (DBMS) already have support for mathematical CMs, developing such a CMs embedded
or hard-coded for any DBMS remains a challenging and error-prone task. A generic interface must support a
wide range of DBMS independently of the internal structure used for extending and modifying their signature;
be efficient for good responsiveness. We propose a solution that provides a common set of parameters and cost
primitives allowing intercepting the signature of the internal cost function and changing its internal parameters
and configuration options. Therefore, the power of abstraction allows one to capture the designers/develop-
ers intent at a higher level of abstraction and encode expert knowledge of domain-specific transformation in
order to construct complex CMs, receiving quick feedback as they calibrate and alter the specifications. Our
contribution relies on a generic CM interface supported by Model-Driven Engineering paradigm to create cost
functions for database operations as intermediate specifications in which more optimization concerning the
performance are delegated by our framework and that can be compiled and executed by the target DBMS. A
proof-of-concept prototype is implemented by considering the CM that exists in PostgreSQL optimizer.

1 INTRODUCTION

A large amount of DBMS have been proposed and
used to store and manage the problem of data deluge
in storing and accessing. The DB-Engines1 Ranking
of DBMS shows 395 systems (August 2022). In this
context, simulation and optimization of query pro-
cessing are necessary to ensure QoS attributes (e.g.
response time, energy) without having to access the
full database and hardware of end-users. These tech-
niques require mathematical Cost Models (CMs), in
order to be precise and exact. This can be achieved
by defining the cost functions based on the parame-
ters of a database system (Ouared et al., 2018). The
developers of these DBMS are one of the consumers
of the CMs. Consequently, the proposed methods and
tools assisting these developers are becoming an im-
portant issue for industry, science, and open source
communities. To that effect, several studies have been
conducted to design and provide database CMs in
physical design to resolve many important database

a https://orcid.org/0000-0003-1837-832X
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management tasks, including selection algorithms for
physical structures (e.g. materialized views, horizon-
tal partitioning and indexes), buffer management (e.g.
(Bellatreche et al., 2013)); query scheduling (e.g.
(Kerkad et al., 2014)) and system sizing (e.g. (Zhang
and Others, 2011)). The CM is a performance-critical
software that is almost always developed in low-level
code. While implementations at this level have come
a long way, programmers do not trust them to de-
liver the same reliable performance. Note that many
contributions in the open source DBMS community,
like PostgreSQL and MySQL, develop plugins to al-
low database administrators (DBA) to simulate vari-
ous physical design features and receive quick feed-
back on their correctness (e.g. (Pantilimonov et al.,
2019; Perron et al., 2019; Han et al., 2021; Wu et al.,
2013)).

A database CM allows one to statically estimate
the cost of a query execution, i.e. without having to
execute this query on a real database and its under-
lying hardware. By collecting interesting costs es-
timations (on performance, etc.), it enables one to
explore possible settings and select the best execu-
tion plan. However, we have identified some limits
regarding computation of performance using learned
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CMs. First, with the evolution of hardware and soft-
ware technologies, learned CMs need to be trained
on various hardware and data configurations, result-
ing in a time-consuming and expensive process that
has to be repeated when any part of the environment
changes. Second, this task requires a deep knowledge
related to many aspects: databases, hardware, calibra-
tion of hyperparameters for Machine Learning (ML),
statistical data to estimate parameters such as selec-
tivity factors of join predicates, etc. (Ouared et al.,
2018). Third, for a database CMs to be extended
and modified, developers must be parsing a code in-
side a query engine of DBMS and hand coding inside
the source code distribution of the cost model. Cur-
rently, database engines are manually optimizing the
database CM for each processor technology, which
is a costly and error-prone process. To the best of
our knowledge, there are no generic interface man-
agement facilities to build database CMs. To address
this issue, API (Application Programming Interface)
CMs are a promising technique that relies on param-
eterised signature cost functions that enable flexible
extensions and modification of CMs, thereby fully un-
locking the potential of cost model engineering.

In this paper we address two main challenges: (i)
The Cost Functions should be agnostic of the un-
derlying programming language used for DBMS im-
plementation, in order to allow their generic applica-
tion to DBMS. (ii) Learned Cost Functions should be
trained on diverse hardware platforms to capture spe-
cific weights of the unknown parameters. To provide
generic interface management facilities for building
database CMs, we make the following proposals.
First, we propose the use of a common set of building
CMs facilities (e.g. algebraic operation, basic opera-
tion, primitive cost, parameters, etc.) that are compat-
ible with a wide range of CMs. Secondly, a CM con-
structor to describe the shape of cost functions for op-
erators conforming to our metamodel; and learn a set
of coefficients of these Cost Functions based on mod-
els selected from an ML catalog to support a given
workload and hardware. Finally, a database gener-
ator so that the generated CMs are able to meet the
performance requirements by applying different code
transformations.

We implemented our framework as part of the
PostgreSQL, providing a tool that allows to browse,
edit, and select the existing CMs’ parameters. In addi-
tion, our proof-of-concept prototype provides an au-
tomatic calibration solution to estimate the cost of a
query plan. We successfully observed and controlled
their cost function signatures with the internal param-
eters and the unit cost functions related to the data
primitives of the used data layout, data indexing, and

the chosen algorithm of database operations.
After providing the necessary background

database operations and CMs in Section 2, we
build our framework in Section 3, and describe its
implementation in Section 4. We provide concluding
remarks in Section 5.

2 BACKGROUND AND RELATED
WORKS

In this section, we briefly review the background and
the related work.

2.1 Database Operations

A query Q may be defined as a sequence of relation
algebra operations (i.e. selection in relational algebra)
(Manegold et al., 2002) Q = ⟨O1, . . . ,On⟩. Each op-
erator Oi corresponds to the classical DB operators
such as restriction, projection, join, scan, sort, etc.
(Manegold et al., 2002), and is defined as a quadru-
plet Oi = (Impi,Ti,Ci,ProPi), where

• Impi is the implementation algorithm used for the
operator, e.g. a Nested-Loops-Join algorithm may
implement a Join operation;

• Ti is the set of associated input database objects,
such as tables, indexes, materialized views etc.;

• Ci is the set of options used to execute the opera-
tion, such as adding the buffer option; and

• ProPi is the operator’s programming paradigm,
e.g. Sequential, MapReduce, etc. (cf. Figure 1).

The execution of an operation Oi is performed in
one, or many phases, during which it manipulates re-
sources like relation, buffer allocations, hash table etc.
The variability of database operations and their al-
gorithms appears in how to execute this algorithms
depending on the specification required by hardware
properties (e.g. disk, CPU, GPU technology). For ex-
ample, the hash join operation on two relations (R ⋊⋉
S) has two phases. In the first phase, it reads each re-
lation, applies a hash function to the input tuples, and
hashes tuples into buckets that are written to disk. In
the second phase, the first bucket of the relation R is
loaded into the buffer pool, and a hash table is built
on it. Then, the corresponding bucket of the relation
S is read and used to probe the hash table.
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Figure 1: Implementation of Database algebra operation.

2.2 Mathematical Database Cost
Models

A QoS attribute is a requirement that specifies criteria
that can be used to judge the operation of a system
(e.g. databases, operating systems, software). The
plan for implementing QoS attributes is detailed in the
system architecture and must be captured before the
real deployment. Generally, the aspects of QoS con-
sidered in the query engines are: (i) performance; (ii)
system size, or required size, to the implementation;
and (iii) energy consumption (Ouared et al., 2018).

A CM is a set of formulas used to estimate the
cost of an execution plan. Cost-based query optimiz-
ers select the most efficient execution plan based on
cost estimations. A CM uses two parts:

Logical Cost. uses selectivity and cardinality as
measures to optimise. The selectivity is the per-
centage of rows selected by the query, with re-
gards to the total number of rows. The cardinality
is the number of rows returned by each operation
in an execution plan, which can be derived from
the table statistics.

Physical Cost. represents units of work or resource
used. Usually, the query optimizer uses disk I/O,
CPU usage, and memory usage as units of work.

The CM assigns an estimated cost to any partial or
complete plan based on the composition of the phys-
ical cost and logical cost. It also determines the esti-
mated size of the data stream for output of every op-
erator in the plan. It relies on the following elements
(Chaudhuri, 1998):

1. A set of statistics maintained on relations and in-
dexes, e.g. number of data pages in a relation,
number of pages in an index, number of distinct
values in a column.

2. Formulas to estimate selectivity of predicates and
to project the size of the output data stream for
every operator node. For example, the size of the
output of a join is estimated by taking the product
of the sizes of the two relations and then applying
the joint selectivity of all applicable predicates.

3. Formulas to estimate the CPU and I/O costs of
query execution for every operator.

EXAMPLE 1 (CM for PostGreSQL.) PostGreSQL
uses a simple CM that merges the I/O and CPU for
different operators O such that its execution cost (i.e.,
time) can be expressed as:

C0 = nn.cn +nr.cr +nt .ct +ni.ci +no.co

where n⋆ represent number of pages, and c⋆ are co-
efficients obtained by ML to build regression models
for the optimizer CM:

• ns, nr , nt , ni and no are respectively the num-
ber of pages sequentially scanned, randomly ac-
cessed, cpu tuple cost, cpu index tuple cost and
cpu operator cost.

• cs seq page cost, the I/O cost to sequentially ac-
cess a page.

• cr random page cost, the I/O cost to randomly
access a page.

• ct cpu tuple cost, the CPU cost to process a tu-
ple.

• ci cpu index tuple cost, the CPU cost to pro-
cess a tuple via index access.

• co cpu operator cost, the CPU cost to perform
an operation such as hash or aggregation.

For instance Figure 2 shows the CM of Post-
greSQL is available in source file costsize.c2 (Pan-
tilimonov et al., 2019). This file contains procedures
to build costs of algebraic operations of any type. It
uses a simple CM that merges I/O and CPU for differ-
ent operators using a fitted model in the form of a lin-
ear model. The query optimizer can create an estimate
of the overall cost of running queries from its knowl-
edge of individual operator costs, and system parame-
ters. So, if we need to modify the function responsible
for creating the CM to extend the cost model. Figure 2
shows a fragment of PostgreSQL CM, the code con-
tains a set of parameters (storage device parameters
(cf. 1⃝), processing device parameters (cf. 2⃝)) and
a set of primitive cost related to the different steps to
execute the scan operation (disk cost (cf. 3⃝), CPU
cost (cf. 4⃝) and calculating predicate selectivity (cf.
5⃝)).

From the example illustrated in Figure 2, the im-
plementation of a database algebra operation depend
on three main impact factors:

• Database-Specific Parameters. As database-
specific factors, we define impacts that are caused
by the DBMS that impact the access and the stor-
age of blocks and tuples: the storage model (e.g.

2src/backend/optimizer/path/costsize.c
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Figure 2: Example of C program fragment of PostgreSQL
CM.

store data in a row or column oriented way) and
the processing model (e.g. tuple-at-a-time, and
operator-at-a-time), Page Size and Buffer Man-
agement (i.e. page replacement strategies used).

• Database Operations Algorithms. the chosen
algorithm of a specific database operation influ-
ences the performance of database operations. For
instance, for join operations, we consider differ-
ent implementations variants, which are: nested-
loops, block-nested-loops, hash, and sort-merge
join.

• Hardware Parameters. changing the process-
ing devices as well as storage devices may influ-
ence processing capabilities as well as algorithm
design. For instance, using graphics processing
units (GPU) as co-processing devices requires to
change the join algorithms by considering the par-
allel execution capabilities of single instruction
multiple data (SIMD) processors.

2.3 Related Work

Recently, several studies have developed Deep Learn-
ing (DL) and Machine Learning (ML) models as op-
portunities to develop CMs (e.g. (Hilprecht and Bin-
nig, 2022; Ouared et al., 2022; Kipf et al., 2018; Sun
and Li, 2019; Ryu and Sung, 2021). In the section
of related work, we reviewed the existing languages
that aim to leverage Domain-Specific Language Pro-
cessing for designing database CMs. Similarly, with
our work, the first initiatives serve as a starting point
for more comprehensive efforts covering aspects of

database physical design, optimization, and tuning
(e.g. (Bellatreche et al., 2013; Ouared et al., 2016b;
Brahimi et al., 2016; Ouared and Kharroubi, 2020)).
The work of (Breß et al., 2018) propose a generating
custom code for efficient query execution on hetero-
geneous processors. The same direction is followed in
the approach presented in (Wrede and Kuchen, 2020).

Similar efforts have been conducted to make the
database CM more generic. These works avoid up-
grading and maintaining to rethinking query process-
ing and optimization by adopting the metaphor ’one
size fits all’. Based on this vision, they called zero-
shot learning for unseen databases using Deep Neural
Networks (DNNs) to avoid repeated CM calibration
for every new database (e.g. (Kraska et al., 2021; Hil-
precht and Binnig, 2022; Hilprecht et al., 2020; Hil-
precht and Binnig, 2021)). By exploring the literature,
the authors in (Ouared et al., 2016b) propose the first
language dedicated to describing database CMs and
generate a machinable format. In addition, they pro-
pose a repository called MetricStore that allows users
to upload and download CMs in a structured way, and
eases their search and reuse (Ouared et al., 2017).

In DBMS open source, several studies are related
to the integration of database CMs inside open source
relational DBMS in a way to resolve a specific prob-
lem. However, the CM they are hard-coded in the
DBMS is not uniform. To avoid such a gap, we must
implement a generative and automatic interface to in-
teract with a relational DBMS API using the model-
to-text transformation language available within the
Eclipse environment. This regular transformation lan-
guage that may allow the cost function signature to be
tailored to a specific application.

3 OUR FRAMEWORK

We propose an MDE-based framework called Co-
MoRe (Cost Model Refinement) that allows the cre-
ation of CM cost functions that can be interpreted, and
automatically generated for a target DBMS. Figure 6
depicts an overview of CoMoRe, demonstrating a set
of generic CM management facilities:
CM Metamodel. Language expresses and controls

the CM independently of any DBMS platform,
and validating well formedness rules on the cost
CMs.

Technical Requirements. consist of a set of design
questions relative to aspects of the ML models
(e.g. data distribution, variables linearity, models
type), and from this information, answering the
questions guides users to the kinds of ML models
that can address their needs.
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Figure 3: Overview of our framework CoMoRe.

An ML Catalog. that can be used by designers dur-
ing the designing task of CMs. The selected ML
models are used to calibrate the CMs’ parameters
without developing them from scratch.

Code Generator. In addition, the DSL is comple-
mented with code generators that synthesize CM
implementations from CMs for specific require-
ments. The CM so generated can be deployed in
different DBMS platforms (e.g. PostgreSQL or
MySQL DBMS) to make them available to users.
The generated code via the API that contains pa-
rameters with formulas be compiled and executed
by the target DBMS (see Fig. 6).

CM designers use our DSL to provide a successful
CM product, which can later be exploited by database
CM consumers, who are usually database administra-
tors, database analysts, and database architects, to re-
ceive quick feedback and solve their problems (e.g.,
query optimization and physical design, database ap-
plication deployment over platforms, self-driving the
database systems, etc.)

We now present CoMoRe’s architecture and avail-
able services.

3.1 Layered Design

Modeling the costs in abstraction layers is an impor-
tant step in achieving our objective. Our work mod-
eling cost queries in multiple layers. It is a useful
guideline for our CM building, where different layers
of abstraction increase the level of CMs. We begin
with a basic CM and then incrementally build this ba-
sic model to obtain the global cost.

Database workloads consist of set of queries, and
each query is expressed by a set of algebraic opera-

tions. We start with an query operation (as shown in
Figure 4). At the next layer, these operations provide
basic operation with their variants implementation.
Finally, we introduce the cost function as composi-
tion of the physical cost and logical cost. In this outer
layer, operator costs are derived from the character-
istics of the system, i.e. physical cost) or the cost of
various components (CPU, storage disks, and mem-
ory) and volume data, i.e. logical cost (c.f. Section
2.2).

For example, the cost calculation can be ex-
pressed using SUM function as follows: (Cost (Opi) =
∑i=1,K ;(oi), Cost(Query) = ∑h=1,m(Oph), and
Cost(Workload) = ∑l=1,n(Ql)).

Figure 4: Layer abstraction Model.

3.2 Framework Architecture

CoMoRe is an extension of CostDSL (Ouared et al.,
2016a), and enables the design of CMs conformant
to the metamodel presented in Figure 5. CoMoRe is
technically composed of four Ecore packages:
GenericCostModel. This package captures the ele-

ments allowing designers to express their CMs.
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Figure 5: General framework architecture.

Every Context of a given CM is described by
a set of database system Parameters. Those
Parameters are related to different categories
(i.e. Database, Hardware, Query, and Architec-
ture parameters), and help identify data features
in a dataset. Thanks to the CostFunction pack-
age, the formula of a CM can be expressed using
the CM context that allows defining variables of
equations.

DataSet. This package provides the test data corre-
sponding to a specific experimental environment
including the database, workload, DBMS, de-
vices, platforms, queries, and the quality criteria
(e.g. response-time, energy consumption) used
to generate these results. Dataset represents the
root class that regroups the data features related to
a database benchmark. In this case, the value can
be generated by a dataset (for example the TPC
benchmarks3), workload and DBMS. This kind of
DataSet of an execution environment is also of-
fered by CoMoRe and is grouped in a category
which is dedicated to build CMs.

TechnicalRequirements. CM designers may have
difficulties choosing the most suitable ML model
that matches the characteristics of the CM un-

3http://www.tpc.org/tpch

der design. TechnicalRequirements helps
define different design decisions by giving a
precise answer to each question (true, false,
undefined) to recommend an appropriate ML
model. This concept is connected to CM con-
text and Technical Requirements through the
MachineLearningMappingRelation class. This
latter is based on constraints that are implemented
by using OCL (Object Constraint Language) to
provide guidance about what is the ML models
can be used.

LearningMetaModel. CoMoRe uses several learning
models available in (Hartmann et al., 2019). This
package comes with a set of catalogs that repre-
sent an organized body of ML models, and is con-
ceived as generalized notions of different learn-
ing algorithms available in TensorFlow, Keras, or
WEKA. Meta-learning frameworks have been im-
ported to automatically derive these models from
certain specifications.
In order to estimate the parameters’ values, the
metalearning package offers some models (e.g.
linear and non-linear multivariate models) to
train a CM. They allow selecting ML models to
define the cost function of each CM. The val-
ues of the cost function are calibrated by using
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ML algorithms, with the necessary features com-
ing from the parameters of the CM under de-
sign. Furthermore, through the relationship ”de-
rived from” among LogicalCost, PhysicalCost
and LearningModel, one can estimate the cost
parameters in the cost function.

3.3 CoMoRe Services

After having presented the architecture of our frame-
work, we can now define the CM services provided
by our framework. As before, we consider that the
DBMS always has access to its internal CM. In addi-
tion, the model DBMS manager is available through
its API manager; also, the source code files of the CM
are available through the open source DBMS distri-
bution. Figure 6 depicts an excerpt of the interactions
between the cost model services and the DBMS opti-
mizer, and the external control panel. We define this
generic interface as the set of following services: In-
tercepting CM Service, Exploratory CM Service, Up-
dating CM Service, Calibrating CM Service and Inte-
grating CM Service.

3.3.1 Intercepting Cost Model Service

This service is invoked when the designer needs
to return the list of parameters (i.e. a SELECT
statement) and unit cost functions with information
such as the parameter definitions. However, the code
for the parser can easily be adapted to a CM of other
DBMS. For instance, in the case of PostgreSQL,
the database CM is stored in two main files: the file
src/backend/optimizer/path/cost.c and the
file src/backend/optimizer/path/costsize.c.
The file cost.c contains function signatures and
related definitions for the functions implemented in
costsize.c. The file costsize.c has a function
to estimate its cost in terms of the primitive cost
variables (page reads, operator evaluation, etc.),
given estimates about the numbers of rows, total
data size, etc. We believe that displaying the internal
parameters with its cost primitives in structured way
helps designers to understand more the signature of
CMs to be extended or calibrated.

3.3.2 Exploring Cost Model Service

The presence of a service allowing browsing the ex-
isting CM parameters, editing, selecting, predicting,
calibrating them, etc. represents a valuable asset for
developers/designers. While this service provides an
hierarchical taxonomy of concepts indicates hints, in-
forming the designer of any hidden parameters that
are not be considered in several CMs. We propose the

Exploring Service as a solution to provide a common
set of parameters and cost primitives allowing inter-
cepting the signature of the internal cost function, and
changing its internal parameters and configuration op-
tions. For instance, by using this service, designers
can display various internal performance parameters
like Shared SQL Pool, Redo Log Buffer and other in-
formation concerning the performance.

3.3.3 Updating Cost Model Service

The logic flow in this service follows a set of primitive
costs related to the different steps to execute an alge-
braic operation: (1) estimate the input/output cardi-
nality; (2) compute the CPU cost based on cardinality
estimates; (3) estimate the number of accessed pages
according to the cardinality estimates; (4) compute
the I/O cost based on estimates of accessed pages; (5)
compute the total cost as the sum of CPU and I/O cost.
Hence, our main task in calibrating is to refine the
input/output cardinality for each operator. All these
steps need to perform a write during an update opera-
tion on a specialized cost formula for each relational
algebra operator.

3.3.4 Calibrating Cost Model Service

This service is invoked when the designer needs to
calibrate the parameters related to the hardware de-
vice. Using technical requirements at the early phase
of the design will help perform the right ML model
for a specific CM context. This service generates cal-
ibrating code to automate the code within program-
ming, the service edits the parameters with its values
and lets users do the same thing based on our inter-
face without hand-coding programs. For instance in
PostgreSQL DBMS, different types of parameters and
configuration options need to be calibrated to update
and maintain a CM with each change in hardware de-
vices.

3.3.5 Integrating Cost Model Service

This service is invoked when the developer commits
a change to the CM source-code. It handles the tar-
get list entries to update or replace existing CM. The
list entries are provided with an UPDATE or INSERT
statement before or after parsing to modify the server
behavior after parsing. Target lists of the element that
can be committed are a list of parameters and expres-
sions used in the cost formulas that make the calcula-
tion logic of the cost change.

In order to transform any CM conforming to Co-
MoRe to a target DBMS (PostgreSQL DBMS in
our case), we have analyzed 20 well-known DBMS
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API and selected the most common structure to en-
able the management of their internal CMs (Figure
7). CoMoRe can generate code corresponding to
the target DBMS thanks to the model-to-text capa-
bility provided by the MDE settings. CoMoRe in-
vokes the DBMS via our API to integrate the CM of
the database operation under design. Our API pro-
vides: (i) Connection (e.g. PostgreSQL and Ora-
cle), (ii) SQLImplementation (Native SQL functions
and clauses) and (iii) QueryPhysicalPlan (Spe-
cific interpretation of execution plans). For a new
RDBMS, we can extended the set of methods (ex-
tractClauses, extractTables, extractColumns and ex-
tractParams) and Execution query Plan (getTotal-
Cost, getTupleNumber, getTupleSize, getOperations,
getDuration, and extractData).

Thanks to the MDE interoperability facilities, this
service transforms an SQL query instance according
to our DSL in the corresponding CM cost function.
Note that every CM instance is generated according
to the CoMoRe design language. For that, a set of
structural rules have been injected in the metamodel.
These rules are expressed as OCL invariants. Listing
1 shows an example of OCL structural rule. This rule
means that all physical costs and logical costs, which
are inputs of a given cost function, have to be refer-
enced as values instances in the cost function.

Class CostFunction

self.globalmathematicalformula.values ->

includesAll(self.logicalcost)

and self.globalmathematicalformula.values ->

includesAll(self.physicalCost)

Listing 1: An OCL structural rule

vo id
c o s t s e q s c a n ( Pa th * pa th , P l a n n e r I n f o * r o o t ,

R e l O p t I n f o * b a s e r e l , P a r a m P a t h I n f o * p a r a m i n f o )
{

Cost s t a r t u p c o s t = 0 ;
Cos t r u n c o s t = 0 ;
Cos t i o c o s t = 0 ;
Cos t c p u c o s t = 0 ;
Cos t p o w e r c o s t = 0 ;
do ub l e s p c s e q p a g e c o s t ;
Qua lCos t q p q u a l c o s t ;
Cos t c p u p e r t u p l e ;

/ * Should on ly be a p p l i e d t o base r e l a t i o n s * /
A s s e r t ( b a s e r e l −> r e l i d > 0) ;
A s s e r t ( b a s e r e l −>r t e k i n d == RTE RELATION ) ;

/ * Mark t h e p a t h wi th t h e c o r r e c t row e s t i m a t e * /
i f ( p a r a m i n f o )

pa th −>rows = p a r a m i n f o −>p p i r o w s ;
e l s e

pa th −>rows = b a s e r e l −>rows ;
. . . .
}

Listing 2: Example of Displaying CM of scan database
operation

Table 1 presents some mapping rules between the
CoMoRe concepts and the optimizer CMs concepts.
Using this mapping, the designer does not have to
worry about implementation details. The implemen-
tation of the code generator is based on MDE settings
using the model-to-text transformation, since our ob-
jective is to obtain the cost function of the CM. The
implementation relies on the utilization of Acceleo.
Listing 2 shows the generated CM of scan database
operation.

4 PROOF-OF-CONCEPT

CoMoRe is developed as a plugin for Eclipse, based
on Java Eclipse Modeling Framework (EMF).
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Figure 7: API relationships between our DSL and RDBMS Optimizer.

Table 1: CoMoRe to RDBMS Optimizer.

CoMoRe Concept RDBMS API Comment
Algebra Operation Op relational algebra operations one-to-one correspondence

Database

SQLImplementation
- extractClauses():List
- extractTable():List
- extractColumn():List
- extractParams():List

Extract statistical values of database
(e.g. tuples width, number of rows)

CostModel

PostgreSQLExecutionPlan
-getTotalCost():int
-getTupleNumber():int,
-getTupleSize():int
-getOperations ():PhysicalOperation
-getPlaningTime():double

Cost values of physical query operators
(e.g. I/O cost of the join operation)

QueryPlanner
Execution Plan Implmentation
-instantiate(plan: String):void
-extractData():EElist

assignOi (Imp j , C j , ProPi ): Assign
an implementation algorithm ,
a set of option used as buffer pool
and execution mode
to physical operation Oi

In order to integrate our framework into Post-
greSQL to change CM inside the planning query. We
implemented CoMoRe as a plugin for PostgreSQL,
which extends PostgreSQL (into the flight planning
process) allows to designers browse, edit, select, pre-
dict, and calibrate the existing CMs’ parameters. Co-
MoRe is composed of two parts, the graphical user
interface and the backend contains the DBMS. We

based our study on PostgreSQL as it is both open
source and based on the C programming language.
However, our techniques can be integrated into any
other DBMS. Due to the CoMoRe language, the CM
of each iteration was modelled and then the code
was generated automatically. This process helps to
shorten the CM development time. If we would like
to do the same stuff with MySQL, it is totally possi-
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ble we will need to develop a code generator enabling
one to transform CoMoRe instances into MySQL pro-
grams.

CM Code Inspector

This service shows a visual representation of our
metamodel and presents the user guide as a hier-
archical taxonomy of CoMoRe vocabulary (Figure
8). In the hierarchy each level describes the compo-
nents, and the elements of the subordinate-level are
instances of elements contained in the superordinate
tier. CoMoRe inspects the cost function needed as
function block to make the CM code more readily us-
able. Thus, users can display the the cost function
as code, signature and components. Since the code
structure reflecting the CM domain knowledge. Note
that, a cost function may appear in one or more source
code fragments (see Figure 9).

PostgreSQL Cost Model Signature

This service shows for each cost function, its shape,
its signature and. its components. In addition,
users can display and customize various internal per-
formance parameters like the PostgreSQL’s standard
parameters that can be setting in postgreSQL.conf.
The configuration file of PostgreSQL4 has the de-
fault value of the five-cost unit (cpu index tuple cost,
seq page cost, random page cost, cpu tuple cost,
and cpu operator cost).

CM Calibration

This service provides a model refinement (ML) to pre-
dict the output with input parameters to generalize
linear/non-linear models. The input parameters are
used to learn a CM under design. These parameters
relate to the configuration of the initial dataset (e.g.
TPC-CH) and configuration of test queries. The best
solution is to automatically provide the optimal ML
model, by choosing from all possible ML candidates.
However, this is a very long and complex task. For
the first version of our proof-of-concept prototype, we
leave the choice to the user of CoMoRe to decide what
fits his/here requirements. As we said before, the cat-
alog systematically organizes ML models. Our imple-
mentation uses several different learning algorithms
available in WEKA with an alternative library imple-
mentation. (Zeileis et al., 2004). The ML model is a
pluggable component of our framework, so any other
appropriate statistical model can be used.

41 /bin/data folder/posgresql.conf

Server Connection and Testing

The server connection responsible for the connec-
tion establishment with the DBMS server. When
connected, the user has first to select the TPC-H
schema database, and evaluate the quality of the
database CMs. We relied on mathematical CMs and
real DBMS Server across diverse datasets, queries
and hardware parameters. After quantitative evalua-
tion, we calculate in terms of the mean relative er-
ror (MRE= Avg( |real−estimate|

real ×100)) between esti-
mation (i.e. using the mathematical cost model) and
real cost (i.e. query execution cost after having access
to the full databases and hardware of end-users). The
obtained results show the quality of the CM. The de-
sired CM should possess the following features: accu-
racy, robustness, fast response and portability. If the
CM accuracy is acceptable, i.e. have no improvement,
the original CM. Otherwise, this process is repeated
until requirements are acceptable.

Finally, we can say, with the diversity of database
technology, testing in early stages ensures that the de-
signed CM conforms to its requirements and will en-
able one to explore the performance behavior in terms
QoS attributes (e.g. response time, energy consump-
tion) without having to deploy it on a real system, and
to compare different alternatives. This solution is in
the opposite direction of Hardware Experimentation
that spends a lot of time/money in testing to compare
different alternatives.

5 CONCLUSION

Mathematical database CM is a promising estimation
approach for DBMS that enables efficiently execution
of the execution of a query. While most open source
DBMS already have database CMs, bringing flexible
adaptation for a cost model to any relational DBMS
is a tedious and error-prone task. A generic solution
must support a wide range of relational DBMS inde-
pendently of the CMs for their implementation, and
must be generic to ensure the responsiveness of the
CM. We presented a framework based on a generic
API, defined independently of any DBMS, and sup-
ported by efficient generic interface management fa-
cilities. This API is supported by Model-Driven Engi-
neering paradigm to create cost functions for database
operations as intermediate specifications that can be
interpreted and generated to a target DBMS. Our con-
tributions include an implementation of a prototype
tool for the PostgreSQL DBMS. For the first version,
we have provided a semi-automated solution to iden-
tify the right ML model. However, to fully unlock
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Figure 8: Proof-of-concept prototype (Screenshots).

Figure 9: Excerpt of relevant files forming default PostgreSQL cost model: The file costsize.c contains the source code
distribution of the cost model, to calibrate the cost of each relational algebra operator in an execution plan (e.g. Nested-
loops-join algorithm to implement a Join Operation), developer needs to modify this files and its dependent files (cost.h,
pathnode.c, indxpath.c, clausesel.c, and joinpath.c).

the potential of CM engineering, the ML models must
be extracted automatically according to designers’ re-
quirements. Future work includes an in-depth study
of relationships about a technical requirements and
ML models. This will be achieved using a dedicated
language to explicitly define the ML model for a spe-
cific CM context. We envisage providing an external

API to explore the possible internal parameters and
configuration options of database CM. Other future
work includes addressing some of the limitations of
CM services; a usability study would also help to im-
prove the user experience.
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