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Abstract: Memory-based Deep Reinforcement Learning has been shown to be a viable solution to successfully learn 
control policies directly from high-dimensional sensory data in complex vision-based control tasks. At the 
core of this success lies the Long Short-Term Memory or LSTM, a well-known type of Recurrent Neural 
Network. More recent developments have introduced the ConvLSTM, a convolutional variant of the LSTM 
and the MDN-RNN, a Mixture Density Network combined with an LSTM, as memory modules in the context 
of Deep Reinforcement Learning. The defining characteristic of the ConvLSTM is its ability to preserve 
spatial information, which may prove to be a crucial factor when dealing with vision-based control tasks while 
the MDN-RNN can act as a predictive memory eschewing the need to explicitly plan ahead. Also of interest 
to this work is the GridLSTM, a network of LSTM cells arranged in a multidimensional grid. The objective 
of this paper is therefore to perform a comparative study of several memory modules, based on the LSTM, 
ConvLSTM, MDN-RNN and GridLSTM in the scope of Deep Reinforcement Learning, and more specifically 
as the memory modules of the agent. All experiments were validated using the Atari 2600 videogame 
benchmark. 

1 INTRODUCTION 

Memory-based Deep Reinforcement Learning has 
been shown to be a viable solution to successfully 
learn control policies directly from high-dimensional 
sensory data in complex vision-based control tasks 
such as videogames (Hausknecht & Stone, 2015; 
Heess et al., 2015; Sorokin et al., 2015; Tang et al., 
2020). At the core of this success lies the Long Short-
Term Memory (LSTM) (Hochreiter & Schmidhuber, 
1997), a very popular Recurrent Neural Network 
(RNN), featuring a specialized architecture designed 
to overcome the error backflow problems present in 
other RNN designs. 

Recent developments have introduced the 
Convolutional LSTM (ConvLSTM) (Shi et al., 2015), 
a convolutional variant of the LSTM, and the Mixture 
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Density Network (MDN) (Bishop, 1994) combined 
with an LSTM (MDN-RNN) (Ha & Schmidhuber, 
2018) as memory modules in the context of Deep 
Reinforcement Learning (DRL). See (Mott et al., 
2019) and (Ha & Schmidhuber, 2018) for examples 
of such work. 

The defining characteristic of the ConvLSTM is 
its ability to preserve spatial information, which may 
prove to be a crucial factor when dealing with vision-
based control tasks. The MDN-RNN on the other 
hand can be used as a predictive memory (i.e., to 
derive a probability distribution of the future), 
endowing the agent with the ability to act 
instinctively on these predictions of the future without 
the need to explicitly plan ahead.  

Also of interest to this work is the GridLSTM 
(Kalchbrenner et al., 2016), a network of LSTM cells 
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arranged in a multidimensional grid which aims to 
further generalize the advantages of LSTMs to the 
realm of Deep Neural Networks (DNNs). The focus 
of this work is therefore to perform a comparative 
study of several memory modules in the context of 
DRL and more specifically as the memory modules 
of the agent.  The four memory modules tested are 
based on the LSTM, the ConvLSTM, the MDN-RNN 
and the GridLSTM. More concretely, this work aims 
to answer the following questions: 
 Q1: Can the learning process be improved by 

preserving the spatial information inside the 
memory module of the agent, when solving 
vision-based control tasks directly from high-
dimensional sensory data (e.g., raw pixels)? 

 Q2: What are the advantages or disadvantages 
of using a contextual memory (e.g., LSTM) as 
opposed to a predictive one (e.g., MDN-RNN)? 

 Q3: Do different memory modules play 
significantly different roles concerning the 
decision making of the trained agent? 

 Q4: Can the learning process be improved by 
using separate memory sub-modules in parallel 
(e.g., GridLSTM) to process different 
information? 

The visualization technique proposed in 
(Greydanus et al., 2018) was used to derive further 
insight about the different policies learned by the 
different memory modules tested. Also, it should be 
noted that this work does not address external  
memory-based DRL such as in (Graves et al., 2014) 
and (Wayne et al., 2018). Finally, the Atari 2600 
videogame benchmark was the testbed used to 
validate all the experiments. The remainder of the 
paper is structured as follows: section 2 presents the 
related work, including a brief overview of the 
technical background, section 3 discusses the 
experimental setup, which includes the presentation 
of the methods proposed and the training setup, 
section 4 presents the experiments carried out and 
discusses the results obtained and finally section 5 
presents the conclusions. 

2 RELATED WORK 

This section presents a brief overview of the related 
work and technical background pertinent to this work. 

2.1 Memory-based DRL 

Many control problems must be solved in partially 
observable environments. Most videogames fall into 

this category. In the context of Reinforcement 
Learning (RL), partial observability means that the 
full state of the environment cannot be entirely 
observed by an external sensor (e.g., the agent playing 
the game). The problem of partial observability arises 
frequently in vision-based control tasks, due to for 
example, occlusions or the lack of proper information 
about the velocities of objects (Heess et al., 2015). 

One possible way to address this issue is to 
maintain a ‘sufficient’ history of past observations, 
which completely describes the current state of the 
environment. Deep Q-Network (DQN) (Mnih et al., 
2015) used the last k=4 past observations. The main 
drawback of this technique is its heavy reliance on the 
value of k, which is task dependent and may be 
difficult to derive (Hausknecht & Stone, 2015). 
Another possibility is to use RNNs (e.g., LSTM), to 
compress this ‘sufficient’ history. 

RNNs are well suited to work with sequences and 
can act as a form of memory of past observations. The 
advantages of this solution are twofold. On one hand 
k is no longer necessary, since now the agent only 
needs access to the current state of the environment at 
each time step t. On the other hand, the agent can now 
dynamically learn and determine what a ‘sufficient’ 
history is accordingly to the needs of the task, which 
may entail for example, keeping a compressed history 
spanning more than k past observations. Examples of 
this work include  (Hausknecht & Stone, 2015; Heess 
et al., 2015; Sorokin et al., 2015; Tang et al., 2020). 

2.2 LSTM and Convolutional LSTM 

The LSTM (Hochreiter & Schmidhuber, 1997) was 
introduced to solve the error backflow problems 
present in other RNN designs. Before the introduction 
of the LSTM, RNNs were very unstable and hard to 
train, particularly when dealing with longer 
sequences (the error signals would either vanish or 
blow-up during the optimization process). Since its 
introduction the LSTM has gained widespread 
popularity in many domains of application such as 
speech recognition (Graves et al., 2013), machine 
translation (Sutskever et al., 2014) and video 
sequence representation (Srivastava et al., 2015). 

Equation (1) below, presents the formulation of 
the LSTM as implemented in Pytorch (Paszke et al., 
2019), where xt, ht and ct are the input, hidden state 
and the cell state at time t, respectively (ht-1 is the 
hidden state at time t-1) and it, ft and ot are the input, 
forget and output gates. W* are the weights and b* the 
biases, σ is the sigmoid function and ⊗ represents the 
Hadamard product. 
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it = σ(Wiixt + bii + Whiht-1 + bhi) 

(1)

ft = σ(Wifxt + bif + Whfht-1 + bhf) 
gt = tanh(Wigxt + big + Whght-1 + bhg) 

ot = σ(Wioxt + bio + Whoht-1 + bho) 
ct = ft ⊗ ct-1 + it ⊗ gt 

ht = ot ⊗ tanh(ct) 
 

However, LSTMs do not preserve spatial 
information, which may be important in vision-based 
tasks. The ConvLSTM (Shi et al., 2015) was 
proposed to address this issue. The original 
formulation of the ConvLSTM follows the one 
proposed in the Peephole LSTM (Graves, 2013) 
variant and is presented below in Equation (2). 

It should be noted however, that in the case of the 
ConvLSTM all the involved tensors are 3D, namely, 
the xt inputs, the ht hidden states, the ct cell states and 
the it, ft and ot gates. An example of this work can be 
found in (Mott et al., 2019) where the authors used a 
ConvLSTM in their vision core to implement an 
attention-augmented RL agent. 
 

it = σ(Wxixt + Whiht-1 + Wci ⊗ ct-1 + bi) 
ft = σ(Wxfxt + Whfht-1 + Wcf ⊗ ct-1 + bf) 

ct = ft ⊗ ct-1 + it⊗tanh(Wxcxt + Whcht-1 + bc) (2)
ot = σ(Wxoxt + Whoht-1 + Wco ⊗ ct + bo)

ht =ot ⊗ tanh(ct) 

2.3 GridLSTM 

Similarly to RNNs, DNNs can suffer from the 
vanishing gradient problem when applied to longer 
sequences. Also, in a DNN, layers have no inbuilt 
mechanisms to dynamically select or ignore parts or 
the whole of their inputs. The GridLSTM 
(Kalchbrenner et al., 2016) was proposed to address 
these issues, further generalizing the advantages of 
LSTMs to the realm of DNNs.  

At a high level, a GridLSTM is a neural network 
that is arranged in a grid with one or more 
dimensions. Layers communicate with each other 
directly through LSTM cells which can be placed 
along any (or all) of these dimensions. Among other 
things, the GridLSTM also proposes an efficient N-
way communication mechanism across the LSTM 
cells, allows dimensions to be prioritized as well as 
non-LSTM dimensions and promotes more compact 
models by allowing the weights to be shared among 
all the dimensions (referred to as a Tied N-LSTM). 

2.4 MDN-RNN 

The MDN (Bishop, 1994) combines a neural network 
with a mixture density model and can in principle 

represent arbitrary conditional probability 
distributions. More formally, given an output y and an 
input x, and modeling the generator of the data y∈Y 
as a mixture model (e.g., Gaussian Mixture Model), 
the probability density of the target data can be 
represented as in Equation (3) below. The parameters 
αi(x), referred to as the mixing components, can be 
regarded as prior probabilities (i.e., each αi(x) 
represents the prior probability of the target y having 
been generated from the ith component of the 
mixture) and the functions ϕi(y|x) represent the 
conditional density of the target y for the ith kernel. 
 𝑝ሺ𝑦 | 𝑥) =  𝛼ሺ𝑥)𝜙ሺ𝑦 | 𝑥)

ୀଵ  (3)

 
The work in (Ha & Schmidhuber, 2018) combined 

an MDN with an LSTM, referred to as MDN-RNN, 
to  derive  a  predictive  memory  of  the  future 
P(zt+1|zt, at, ht), where zt, at and ht are the latent vector 
encoded by the convolutional network, the action 
performed and the hidden state of the RNN at time 
step t respectively, which the agent can query in order 
to act without the need to plan ahead. 

The present work leverages all of the work 
presented in this section to perform a comparative 
study over all these techniques in the context of 
memory-based DRL. 

3 EXPERIMENTAL SETUP 

This section presents the experimental setup used, 
including the presentation of the memory modules 
proposed and the training setup. 

3.1 Baseline Agent 

At a high level, the baseline architecture used to 
compose the agents comprises three main modules, 
namely: the encoder, the memory and the policy. At 
each time step t, the encoder receives a single image 
ot, representing the current state of the game and 
encodes it into a set of feature maps zt. Based on zt 
and the hidden state of the memory module at the 
previous time step ht-1, the policy chooses an action at 
and acts on the environment. Finally, zt, at and ht-1 are 
passed to the memory module, which in turn 
computes the next hidden state ht, see Figure 1. 

While this architecture is common to all the agents 
tested, the internal details of the memory module 
differ and shall be addressed when appropriate. As for 
the encoder, the only difference is that all the LSTM-
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based agents use l=5 convolutional layers whereas all 
the ConvLSTM-based agents use only l=4. In both 
cases the encoders are configured in a similar way. 
The policy module is common to all the agents.  

 
Figure 1: Baseline architecture of the agents, depicting the 
information flow. The three main modules, encoder, 
memory and policy are highlighted in dashed boxes. 

More concretely, and regarding the baseline 
agent, referred henceforth as LSTM, the encoder is 
composed of l=5 convolutional layers configured 
with (1, 32, 64, 64, 64) input channels, (32, 64, 64, 
64, 64) output channels, kernel sizes (8, 4, 4, 4, 4), 
strides (4, 2, 2, 1, 1) and no padding, respectively. 
Each layer is followed by batch normalization (Ioffe 
& Szegedy, 2015) and a Rectified Linear Unit 
(ReLU) nonlinearity. The memory module in turn is 
composed by an LSTM with size 256 (the Pytorch 
implementation was used). 

Finally, the policy comprises a linear layer 
(denoted as FC in the figure) with size 128 followed 
by layer normalization (Ba et al., 2016) and a ReLU 
nonlinearity, which feeds into two other linear layers, 
the actor and the critic, responsible for choosing the 
actions and computing the value of the state, 
respectively. 

3.2 ConvLSTM-based Agent 

The encoder used by this agent, referred to as 
ConvLSTM, uses l=4 convolutional layers. The 
reasons to use l=4 as opposed to l=5 are twofold: 1) 
some quick empirical tests seemed to indicate that the 
ConvLSTM performed better with l=4 and 2) using 
l=4 allowed the number of parameters of both the 
LSTM and the ConvLSTM-based agents to be almost 
identical (with the exception of the MDN-RNN case), 
thus excluding this (i.e., the number of parameters) as 

a possible explanatory factor when comparing the 
agents performance wise. 

Finally, the memory module comprises a 
ConvLSTM with size 64x8x5 (i.e., a volume with 64 
channels of height 8 and width 5). The 
implementation used is similar to Equation (1), the 
main differences being that: 1) all the inputs, outputs 
and gates are 3D and 2) xt and ht-1 are concatenated, 
not added together. It should be noted that in all the 
agents    tested,    except   the   2-GridLSTM   agent, 
xt = (zt, at), that is, xt is derived by concatenating zt 
and at. Also note that Equation (1) was used in favour 
of Equation (2) mainly due to its greater simplicity. 

As a final note, both the MDN-RNN and the 
GridLSTM-based memory modules, presented next, 
were implemented using the ConvLSTM. The two 
main reasons for this were: 1) the ConvLSTM has 
been less explored in the literature when compared to 
the LSTM and 2) because the ConvLSTM preserves 
spatial information, which may allow visualization 
techniques such as the one proposed in (Greydanus et 
al., 2018) to be used to try to get better insights 
regarding the role of memory in the decision making 
of the trained agent. However, in the case of the 
GridLSTM, yet a different approach uses both an 
LSTM and a ConvLSTM in parallel. 

3.3 MDN-RNN-based Agent 

This agent, henceforth referred to as MDN-RNN, uses 
an l=4 encoder, for the reasons already mentioned. 
Also, similarly to the ConvLSTM agent, the memory 
module comprises a ConvLSTM with size 64. 
Excluding the fact that the memory module is based 
on the ConvLSTM, the implementation of the MDN-
RNN follows the one proposed in (Ha & 
Schmidhuber, 2018) and (Bishop, 1994). 

3.4 GridLSTM-based Agents 

Two different memory modules were tested in this 
category. The memory module of the first agent, 
referred to as GridLSTM, was composed by adapting 
the implementation of the GridLSTM to work with a 
vanilla ConvLSTM, similar to the one used in the 
ConvLSTM agent. The memory module of the second 
agent implemented, referred to as 2-GridLSTM, on 
the other hand, exploits the fact that different 
information is being passed to memory. 

As already mentioned and depicted in Figure 1 
and also of interest to the following discussion, the 
memory module receives zt and at as inputs at each 
time step t. On top of representing two different 
pieces of information, the format of these two inputs 
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is also different (3D and 1D respectively). This in turn 
opens the opportunity to process each piece of 
information separately (and in parallel) using a 
memory sub-module suited to their format. This is the 
purpose of the 2-GridLSTM agent. 

Contrary to all other agents, where zt is flattened 
and concatenated with at, the memory module of the 
2-GridLSTM agent processes zt and at separately and 
in parallel using a ConvLSTM (size 64) and an LSTM 
(size 64) respectively. In Figure 1, ht-1 = (hi

t-1,hj
t-1), 

where the first memory component hi
t-1 corresponds 

to the hidden state of the ConvLSTM and the second 
memory component hj

t-1 corresponds to the hidden 
state of the LSTM. The ConvLSTM preserves the 
spatial information contained in zt whereas at (one-hot 
encoded in this case) can be processed by an LSTM 
since it does not hold any spatial information. More 
specifically, this flow of information occurs over the 
depth dimension. 

As a final note, the GridLSTM agent uses shared 
weights across dimensions. Also, the depth 
dimension is prioritized in both agents. Finally, both 
agents use an l=4 encoder similar to the one used by 
the ConvLSTM agent. 

3.5 Training Setup 

In terms of pre-processing steps, the input image at 
each time step t is converted to grayscale and cropped 
to 206 by 158 pixels to better fit the encoder used. No 
rescaling is performed. All agents are trained for a 
minimum of 16,800,000 frames, which can be 
extended until all current episodes are concluded, 
similarly to what is proposed in (Machado et al., 
2018).  In this context an episode is a set of m lives. 

A total of eight training environments were used 
in parallel to train the agent using the Advantage 
Actor-Critic (A2C) algorithm, a synchronous version 
of the Asynchronous Advantage Actor-Critic (A3C) 
(Mnih et al., 2016). Adam (Kingma & Ba, 2015) was 
used as the optimizer. The learning rate is fixed and 
set to 1e-4. The loss was computed using Generalized 
Advantage Estimation with λ=1.0 (Schulman et al., 
2016). 

In terms of the remaining hyperparameters used, 
an entropy factor was added to the policy loss with a 
scaling factor of 1e-2, the critic loss was also scaled 
by a factor of 0.5, rewards were clipped in the range 
[-1, 1] and a discount factor of γ=.99 was used. No 
gradient clipping was performed.  Concerning frame 
skipping, this is in-built in OpenAI Gym (Brockman 
et al., 2016) (i.e., at each step t OpenAI Gym will skip 
between two to four frames randomly).  

Finally, at the beginning of training the internal 
state of the memory component is set to an empty 
state (i.e., all zeros) representing the state of no 
previous knowledge. and is never reset to zero during 
the remainder of the training procedure (e.g., at the 
end of each episode or life).  

It should also be noted that during training (i.e., 
backpropagation) the gradient flow from the memory 
module to the encoder is cut. This is done to ensure 
that the memory module only manages information as 
opposed to also participate in its optimization. This 
compartmentalization allows the scrutiny of the 
responsibility of the memory module as a standalone 
factor concerning the decision making of the trained 
agent. The number of trainable parameters for each of 
the memory modules implemented is as follows: 
LSTM 1,287,795, ConvLSTM 1,161,395, MDN-RNN 
5,109,181, GridLSTM 1,276,787 and 2-GridLSTM 
1,424,243. 

4 EXPERIMENTAL RESULTS 

This section presents the training and test results 
obtained. Each different memory module 
implemented was trained using three agents 
initialized with different seeds The training results 
were computed at every 240,000th frame over a 
window of size w=50 and correspond to the return 
scores (averaged over all the agents) obtained during 
training in the last w fully completed episodes. After 
the training process was completed, each of the three 
agents trained, played 100 games for a total of 300 
games which were used to derive the test results. For 
the statistical significance tests both the one-way 
ANOVA as well as the Kruskal-Wallis H-test for 
independent samples were used with α=0.05. 

The benchmark used to perform and validate the 
experiments was the Atari 2600 videogame platform, 
available via the OpenAI Gym toolkit. Due to 
hardware and time constraints only two games were 
used, namely, RiverRaid and ChopperCommand. 
These games were selected given that their 
performance, as presented in (Mnih et al., 2015), was 
below human level (57.3% and 64.8% respectively), 
but not so low that it prevented the agents from 
learning any meaningful policy. These games also 
present a wide range of different challenges. In 
RiverRaid the agent must manoeuvre over sometimes 
narrow waterways while avoiding the enemies trying 
to intercept and destroy it and refuelling to avoid 
death. In ChopperCommand the agent must destroy 
the enemy airships while avoiding their projectiles.  
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4.1 Results 

Figures 2 and 3 below, present the training results 
obtained for RiverRaid and ChopperCommand, 
respectively. As it can be seen, in the case of 
Riverraid, all agents seem to exhibit a plateauing 
behaviour during the initial phase of training, which 
can be more prolonged for some of the agents (e.g., 
LSTM and GridLSTM). At the end of training, 
however, all the agents seem to achieve roughly the 
same performance. Regarding ChopperCommand, 
the LSTM agent seems to learn much more rapidly 
than the ConvLSTM-based agents. 

 
Figure 2: Training return per episode for RiverRaid. The 
confidence interval used was .95. 

 
Figure 3: Training return per episode for 
ChopperCommand. The confidence interval used was .95. 

Much more interesting are the return (or 
cumulative reward) results obtained by the trained 
agents. Performance wise the best agents were the 
ConvLSTM agent in Riverraid and the LSTM agent in 
ChopperCommand (although followed very closely 
by the GridLSTM agent), see Figure 4 and Figure 5, 
respectively. These results are also statistically 
significant: we reject the null hypothesis (H0) that all 
the agents have the same return mean results, with p-
values 2.1e-70 and 6.7e-51 for the ANOVA and 4.6 

e-50 and 3.8e-50 for the H-test for RiverRaid and 
ChopperCommand, respectively. 

 
Figure 4: Test return per episode for RiverRaid. The overall 
median values as well as the average result and standard 
deviation obtained by the best agent for each memory 
module were: LSTM 6205 (7600/726), ConvLSTM 7605 
(8090/2076), MDN-RNN 6160 (7225/765), GridLSTM 
6330 (7618/831) and 2-GridLSTM 7265 (7997/1050). 

 
Figure 5: Test return per episode for ChopperCommand. 
The results are presented similarly to Figure 4 and were: 
LSTM 2700 (3003/948), ConvLSTM 1300 (2302/1285), 
MDN-RNN 1200 (2147/1117), GridLSTM 2600 
(3814/2362) and 2-GridLSTM 1400 (2447/1242). 

Also, the difference observed in the return results 
obtained by the LSTM and MDN-RNN agents in 
RiverRaid does not seem to hold statistical 
significance (H0 is not rejected with p-values 0.13 for 
the ANOVA and 0.07 for the H-test). Similarly, in 
ChopperCommand the difference observed in the 
return results obtained by the ConvLSTM and MDN-
RNN agents and the LSTM and GridLSTM agents 
does not seem to hold statistical significance: in the 
first case H0 is not rejected with p-values 0.4 for the 
ANOVA and 0.1 for the H-test and in the second case 
H0 is not rejected with p-values 0.7 for the ANOVA 
and 0.08 for the H-test. 

These tests were also performed using an image 
perturbed with gaussian noise with σ=.1, see Figure 
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6. The percentage reduction ratios for each agent were 
the following (for RiverRaid and ChopperCommand 
respectively): LSTM (57/59)%, ConvLSTM (29/38)%, 
MDN-RNN (55/50)%, GridLSTM (20/65)% and 2-
GridLSTM (59/21)%. As it can be seen by the results, 
and overall, the ConvLSTM agent seemed to be more 
resilient to the noise introduced to the image. The 
remaining agents suffered a loss in performance 
greater or equal than 50% in one or both games. 

 
Figure 6: Examples of image perturbation for Riverraid 
(second image) and ChopperCommand (last image). 

To try to assess possible behavioural differences 
in the different memory modules, the results for the 
‘number of steps’ and ‘reward per step’ obtained 
during testing were also investigated, see Figure 7 and 
Figure 8 for a graphical depiction of the results for the 
latter and consult Table 1 and Table 2 for the 
numerical results concerning both experiments. 

 
Figure 7: Test reward obtained per step (per episode) for 
RiverRaid. 

After inspection, it can be seen that, similarly to 
the results obtained for the return experiments, the 
agents with the highest reward/step ratio are the 
ConvLSTM agent for RiverRaid and the LSTM agent 
in the case of ChopperCommand. An interesting note 
to point out, concerning the results in Riverraid, is the 
fact that although being the second-best performant 
agent in this game, the 2-GridLSTM agent presents 
the lowest reward per step among all agents (and also 
the highest number of steps, which explains its second 
place). Also noteworthy is the low reward/step ratio 
of the ConvLSTM and MDN-RNN agents in 
ChopperCommand when compared to the high 

number of steps achieved by their best agents. After 
visual inspection it was found that in certain points of 
the game the agent would just turn the chopper 
alternately back and forth for a considerable amount 
of time. 

 
Figure 8: Test reward obtained per step (per episode) for 
ChopperCommand. 

Table 1: Test results for the ‘reward per step’ and ‘number 
of steps’ experiments in RiverRaid. The overall median 
values as well as the average result and standard deviation 
obtained by the best agent for each memory module are 
depicted. In both cases the differences found on the results 
were statistically significant. 

RiverRaid reward per step number of steps
Med Best Med Best

LSTM 5 5.2/0.3 1339 1445/116
ConvLSTM 5.4 5.6/0.3 1362 1554/340
MDN-RNN 4.8 5/0.3 1328 1507/130
GridLSTM 5 5.2/0.3 1299 1455/123
2- GridLSTM 4.6 4.7/0.3 1568 1688/231

Table 2: Test results for the ‘reward per step’ and ‘number 
of steps’ experiments in ChopperCommand. The results are 
presented similarly to Table 1. Again, in both cases the 
differences found on the results were statistically 
significant. 

Chopper 
Command 

reward per step number of steps
Med Best Med Best

LSTM 3.3 3.7/1.0 721 967/1852
ConvLSTM 2.2 2.9/1.0 814 7275/4161
MDN-RNN 1.9 2.2/0.9 844 5585/4637
GridLSTM 2.8 3.6/1.0 842 2927/3799
2- GridLSTM 2.6 3.2/1.0 633 2344/3708

The last experiment carried out consisted of 
testing the trained agents without their memory 
component. In other words, at each time step t, ht-1 
was completely zeroed out before being inputted into 
the policy, which means that the only information 
available to the trained agent was zt (the latent vector 
representing the current screen of the game). This also 
means that when analysing the results, the greater the 
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reduction ratio observed in the performance, the more 
reliant the agent is on its memory module. If on the 
other hand there is no significant change in 
performance or performance increases, this may be a 
hint that the agent does not rely on its memory 
module. This may be the case for example, due to a 
poor-quality memory module (obtained after 
optimization) or simply because the agent was able to 
memorize the dynamics of the game to some extent. 

When compared to the results presented in Figure 
4 and Figure 5 we see that for RiverRaid the 
percentage reduction ratio was: LSTM 2.6%, 
ConvLSTM 26.6%, MDN-RNN 0.16% increase, 
GridLSTM 19.95% increase and 2-GridLSTM 15.8%. 
Interestingly, both the MDN-RNN and the GridLSTM 
agents improved their return performance values 
when the memory component was removed from the 
policy input. The differences observed for the MDN-
RNN agent were however not statistically significant 
(p-value 0.58 for the ANOVA and 0.62 for the H-
test). The differences observed for the GridLSTM 
agent on the other hand were statistically significant 
(p-value 9.8e-6 for the ANOVA and 3.5-e5 for the H-
test). For ChopperCommand, removing the memory 
information did not produce any (statistically) 
significative changes, except for the GridLSTM agent 
with a percentage reduction ratio of 42%. 

4.2 Saliency Visualization 

The saliency metric proposed in (Greydanus et al., 
2018) was used to better assess the different agents 
implemented. For this purpose, the saliency maps 
were derived using both image perturbation, as 
proposed by the referred paper, and memory 
perturbation. Memory perturbation was achieved, 
similarly to image perturbation, but in this work the 
memory positions were zeroed out as opposed to 
‘blurred’. Memory perturbation is possible this way 
since the ConvLSTM preserves spatial information.  

The results reported here were derived by taking 
the best trained agent for each memory module, 
running it over 20 games and then choosing the game 
where the agent achieved a better return score to 
perform saliency visualization. The policy network 
saliency is displayed in blue whereas the value 
network policy is displayed in red. Also, since the 
results obtained in ChopperCommand were very poor 
for most of the agents, the saliency visualization is 
performed mostly in RiverRaid. Figures 9, 10 and 11 
depict the saliency maps derived for the memory 
agents using image perturbation for Riverraid.  

 
Figure 9: The LSTM agent focusing on the main elements 
of the game (left). The value network saliency of the 
ConvLSTM agent seems to recognize the value inherent to 
having the tank almost empty but still the agent does not 
refuel and ends up dying (right). 

 
Figure 10: The MDN-RNN agent focusing on its projectile 
(left). The GridLSTM agent refuelling (right). 

 
Figure 11: The 2-GridLSTM agent: near miss (left) and 
refuelling for the second time (right). 

Generally speaking, all of the agents seem to 
focus on the main elements of the game, namely: the 
enemies near or further away, the riverbank closer to 
the agent and the agent projectile. However, none of 
the agents seems to have learned to refuel in a 
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consistent way. Some agents seem to focus their value 
network on the display information showing that the 
tank is empty (e.g., LSTM) but never attempt to refuel, 
while others refuel although not in a consistent away 
(i.e., GridLSTM one time and 2-GridLSTM two 
times).   

Overall, the difference in performance observed 
seems to stem from how the agents prioritize their 
targets and how assertive they are at destroying or 
avoiding their enemies and avoiding crashing into the 
riverbank. The ConvLSTM agent seems to be better at 
this, together with the LSTM agent. The remaining 
agents seem to have more trouble choosing their 
targets, miss more shoots, seem to be more undecisive 
at times, MDN-RNN in particular, gets too close to its 
enemies, making it more prone to collisions, and 
GridLSTM and 2-GridLSTM are prone to colliding 
with the riverbank. 

Figure 12 below, depicts the same saliency maps 
for ChopperCommand. Overall, all the agents seem to 
concentrate on the main elements of the game, 
namely: the mini map, the enemies, near or further 
away and the agent itself. However, none of the 
agents has learned to focus on the projectiles fired by 
the enemy fighters. Performance wise both the LSTM 
and GridLSTM agents seem to be more assertive and 
better at destroying and avoiding the enemy fighters. 
The 2-GridLSTM agent for example, often fails to 
destroy the enemy fighters and ends up suffering from 
frequent near misses due to that fact, which hinders 
its performance.  

 
Figure 12: The LSTM agent is focused on the mini map as 
well as on its closest enemy (left). Similarly, the GridLSTM 
agent is also focused on the same areas and also on the agent 
itself (right). None of the agents is focused on the projectiles 
fired by the enemy fighters. 

Concerning memory perturbation, and generally 
speaking, all the memory modules seem to be more 
active and focused on the area immediately in front of 
the agent and also on the closest enemy. Interestingly, 

the area of focus seems to mimic the lateral 
movement of the enemies, see Figure 13 and 14.  

 
Figure 13: The memory module of the ConvLSTM agent is 
focused on the closest enemy and mimics its lateral 
movement (left). The memory activation of the MDN-RNN 
agent is faintly focused on the closest enemy (right). 

 
Figure 14: The memory module of the GridLSTM agent is 
focused on the closest enemy and mimics its lateral 
movement and will focus on the next enemy (left). The 
memory activation of the 2- GridLSTM agent is focused on 
the closest enemy (just destroyed) and also on a further 
away enemy (right). 

4.3 Discussion 

Concerning Q1 and considering the results obtained 
in Riverraid, it seems that at least in some cases 
preserving the spatial information does indeed help 
improve the quality of the trained agents. Proof of this 
is the fact that all ConvLSTM-based agents, with the 
exception of the MDN-RNN agent (which obtained 
similar results) obtained better performance results 
than the LSTM agent. The poor results obtained by the 
ConvLSTM-based agents in ChopperCommand, 
alongside the better performance obtained by their 
GridLSTM-based counterparts, on the other hand, 
may be an indication that the ConvLSTM is likely to 
be more sensitive to the architecture of the encoder or 
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and memory module or even the size of the memory 
itself due to the fact that it is preserving spatial 
information. 

Regarding Q2, the results do not seem to support 
any evidence that a predictive memory such as the 
MDN-RNN brings any benefit over the use of a 
contextual memory (e.g. LSTM), at least under the 
context of the experiments performed. It should be 
noted however, that the MDN-RNN relies on the 
predictions of a predictive model (being optimized 
simultaneously with the agent), which may be wrong 
sometimes. 

Concerning Q3 and considering Riverraid, it 
seems to be the case that in fact different memory 
modules produce different behaviours. The 
ConvLSTM and LSTM agents seem to be more 
greedy, decisive, assertive and efficient whereas 
MDN-RNN is prone to near misses and collisions with 
the enemies and GridLSTM and 2-GridLSTM are 
prone to colliding with the riverbank (and also 
enemies to a lesser extent). Some hints to this can be 
seen in Table 1, concerning the ‘reward per step’ and 
‘number of steps’ results. 

Finally, regarding Q4, the results do not seem to 
decisively support any claim that using separate 
memory sub-modules in parallel brings any 
significant improvement in terms of the policies 
obtained. While the 2-GridLSTM agent performed 
better than the GridLSTM agent in Riverraid, this was 
due to a higher number of steps, since the reward per 
step obtained was the lowest among all the agents 
(and in particular GridLSTM). On the other hand, in 
ChopperCommand the GridLSTM agent performed 
better than 2-GridLSTM. 

5 CONCLUSIONS 

Memory-based DRL has achieved much success and 
will likely continue to do so. As more memory 
architectures and designs are proposed and evolve 
over time it is important to perform comparative 
studies to assess their capabilities. This was the focus 
of this work.  For this purpose, four memory modules 
based on the LSTM, ConvLSTM, MDN-RNN and 
GridLSTM were assessed in the context of DRL, 
using the Atari 2600 gaming platform as a testbed. 
The results reported here are merely indicative as the 
modules used were parameterized out of the box and 
further fine tuning, whether be it the architecture of 
the encoder and or the memory module or the size of 
the memory may significantly improve the results. 
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