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Abstract: This paper discusses current advances in mixture models, as well as modern approaches and tools that make
use of mixture models. In particular, the contribution of mixture-based modeling in various area of researches
is discussed. It exposes many challenging issues, especially the way of selecting the optimal model, estimating
the parameters of each component, and so on. Some of newly emerging mixture model-based methods that can
be applied successfully are also cited. Moreover, an overview of latest developments as well as open problems
and potential research directions are discussed. This study aims to demonstrate that mixture models may be
consistently proposed as a powerful tool for carrying out a variety of difficult real-life tasks. This survey can
be the starting point for beginners as it allows them to better understand the current state of knowledge and
assists them to develop and evaluate their own frameworks.

1 INTRODUCTION

Statistical machine learning (SML) has made great
progress in recent years on supervised and unsuper-
vised learning tasks including clustering, classifica-
tion, and pattern identification of large multidimen-
sional data. Data scientists may examine the con-
nections and patterns across datasets with the use of
statistical models, which are mathematical represen-
tations of observable data. It gives them a strong
foundation on which to predict data for the near fu-
ture. Additionally, analysts can approach data analy-
sis systematically by applying statistical modeling to
original data, which results in logical representations
that make it easier to find links between variables and
make predictions. By estimating the attributes of huge
populations based on existing data, statistical models
aid in understanding the characteristics of known data
(Bouveyron and Girard, 2009; Fu et al., 2021). It is
the main principle behind machine learning. For them
to be effective, statistical models must have the capac-
ity to handle data distribution appropriately. Pattern
recognition, computer vision, and knowledge discov-
ery are just a few of the research fields where SML
has been used. Over the past few decades, there has
been a lot of cutting-edge research on SML.

Mixture models (MM), one of the various unsu-
pervised learning techniques already in use, are re-
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ceiving more and more attention because they are ef-
fective at modeling heterogeneous data (Alroobaea
et al., 2020). MM are widely used for modeling un-
known distributions and also for unsupervised clus-
tering tasks. In order to partition multimodal data and
determine the membership of observations with am-
biguous cluster labels, well-principled mixture mod-
els can effectively deployed to achieve this objec-
tive(Lai et al., 2018). Many distributions have been
studied in the past to model multimodal data like
Gaussian, Gamma, inverted Beta, Dirichlet, Liou-
ville, von Mises, and many others. Nevertheless,
some of model-based distributions such as Laplace
or Gaussian entail making a strict hypothesis about
the shape of components, which might result in poor
performance. On the other hand, finding out the ex-
act number of components might be difficult. When
attempting to describe complex real-world problems,
solving such problem can help and prevent issues with
over- and under-fitting. As a consequence, more flex-
ible mixtures have been developed to get around these
restrictions and offering an accurate approximation to
data that contains outliers. For example, some stud-
ies tried to develop infinite mixture models in order
to tackle the limitations of finite instances. In reality,
incorporating an infinite number of components may
enhance the statistical model’s performance. More-
over, various learning techniques (non-deterministic
and deterministic inference methods) were imple-
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mented and used to infer mixture model’s parame-
ters and so to make accurate prediction. The cur-
rent article’s objective is to give a short overview of
the methodological advancements that support mix-
ture model implementations. Many academics are
interested in MM-based frameworks, and they have
discovered a variety of fascinating applications for
them. As a result, the literature on mixture models
has greatly increased, and the bibliography included
here can only give a limited amount of coverage. The
structure of this article is designed to give a quick un-
derstanding of mixture models. In the next section, a
taxonomy related to this area of research is provided.
Then, Section 3 provides a summary of the principal
methods now in use that employ mixture models. A
concise and comprehensive explanation of main chal-
lenges is also provided, along with some suggestions
for the future. Finally, this article is concluded.

2 TAXONOMY

The next paragraphs present a basic and understand-
able taxonomy related to mixture models.

2.1 Statistical Modelling

Making accurate decisions is now probabilistically
possible using statistical modeling. The goal is to
build a model that might logically explain the data.
Mixture models (MM) are well-founded probabilis-
tic models with the benefit of using several distribu-
tions to characterize their component elements. Mix-
ture models offer an easy-to-use yet formal statis-
tical framework for especially grouping and clas-
sification by using well-known probability distribu-
tions (such as Gaussian, Poisson, Gamma, and bino-
mial). Therefore, we can evaluate the likelihood of
belonging to a cluster and draw conclusions about the
sub-populations, unlike conventional clustering algo-
rithms. MM can successfully express multidimen-
sional distributions and heterogeneous data in a finite
(or infinite) number of classes, which makes them
useful for modeling visual features (McLachlan and
Peel, 2004). The core of mixture modeling is se-
lecting the appropriate probability density functions
(PDFs) of each component in the mixture of distribu-
tion. An example of clustering task that divides the
input data set into three groups is shown in Fig.1. It
is noted that a mixture model learns from the input
data during the learning phase and then this model
is evaluated using different set of data (testing phase).
The obtained model will be applicable for further con-
cerns including classification, grouping, and predic-

tion especially if it can produce results with high pre-
cision. Several scientific researchers are interested in
developing efficient unsupervised statistical learning
approaches to address various data mining and ML
problems.

Figure 1: Example of density modelled by three Gaussian
probability functions for data clustering (or classification).

2.2 Finite Mixture Models

Mixture models are intended to combine two or more
distributions to produce a distribution with a more
flexible shape than a single distribution. In a mixture
model, observations are produced through a combina-
tion of many unique models, which is an example of a
hidden model. A convex combination of two or more
finite density functions is known as a finite mixture
model (FMM). FMM is used to estimate the likeli-
hood of being a member of each cluster, to calculate
the parameters of each component, to group data into
different classes, and to make inference. They offer
a powerful framework for identifying latent patterns
and studying ambiguous data. A general formulation
of FMM is given as follow. Let y the observed dataset
and that each instance is taken from one of K com-
ponents. In a statistical setting, a FMM might be ex-
pressed as follow:

p(y|Θ) =
K

∑
k=1

πk p(y|θk) (1)

where Θ is the full parameters of the mixture model;
p(y|θk) is a probability density function (pdf) of
the cluster k, and πk represent the relative mixture
weights (different proportions).

2.3 Infinite Mixture Models

Although finite MM are useful, determining the ap-
propriate number of components for a given dataset
and then estimating the parameters of that mixture are
the two most difficult issues that must occasionally be
solved (Brooks, 2001). In many circumstances, we
claim that we have an infinite mixture if the number
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of components is equal to (or more than) the num-
ber of observations. In such cases, it is better to let
the model adjust its complexity to the volume of data
to prevent both underfitting and overfitting. Infinite
models are a kind of non-parametric models. One of
the most attractive methods for converting the finite
mixture model into its infinite counterpart is to use
Dirichlet process mixture model (Fan and Bouguila,
2020; Bourouis and Bouguila, 2021). When new data
is received, infinite models may either add new groups
or eliminate some of the current ones. By taking into
account K → ∞, we may overcome the problem of
calculating K. As a result, the infinite mixture can be
expressed as

p(y|Θ) =
∞

∑
k=1

πk p(y|θk) (2)

2.4 Model Learning

The development of parameter learning techniques
has historically attracted a lot of attention. Estimating
parameters of the mixture from data may be done in a
number of ways, and this issue is still under investiga-
tion. There are several approaches known as estima-
tors that are used for model’s parameters estimation,
including the least square method (LSM), maximum
likelihood estimation (MLE), and so on. Mainly, there
exist two kind of approaches: frequentist (known
also as deterministic) and Bayesian. These two ap-
proaches may be distinguished from many others that
have been derived out. For example, the maximum
likelihood (ML) estimator is the foundation of the fre-
quentist approach. One of the key purposes of ma-
chine learning is to make predictions using the pa-
rameters learnt from the training dataset. Depending
on the kind of predictions and/or our past experience
(prior knowledge), either a frequentist or a Bayesian
technique could be adopted to accomplish the goal.

2.4.1 Frequentist Learning

Deterministic approaches assume that observed data
is drawn from a given distribution (Tissera et al.,
2022). This distribution is referred to as the likeli-
hood, or P(Data | θ) where the objective is to estimate
θ (i.e. the model’s parameters), which is assumed to
be constant number, that might maximize the likeli-
hood (MLE). In statistical modelling, when the model
depends on unobserved latent variables, some funda-
mental algorithms (such as the famous iterative EM
algorithm) could be applied to found the maximum
likelihood or the maximum a posteriori. For this case,
the procedure of maximizing the likelihood is formal-

ized as the following optimization problem:

Θ̂ML = argmax
Θ

{log p(Y |Θ)} (3)

Analytically, this equation cannot be solved. The
expectation maximization (EM) algorithm or other
related methods may be used to generate the MLE
estimates of the mixture parameters. Indeed, the
EM method generates a series of estimates {Θt , t =
0,1,2 . . .} by alternately utilizing two stages until a
convergence: Expectation and Maximization steps.

2.4.2 Bayesian Learning

Under the Bayesian method (Bourouis et al., 2021a),
the parameter of the mixture denoted by Θ is viewed
as a random variable with a specific probability dis-
tribution (the prior). The latter serves to represent our
belief prior before seeing the data. For this case, the
Bayes theorem is used to update the prior distribution
based on the likelihood function. The information in
the prior distribution as well as the data is summa-
rized in a subsequent distribution known as the poste-
rior distribution which is expressed as:

p(Θ|Y ) ∝ p(Y |Θ)p(Θ) (4)

The Markov chain Monte Carlo simulation tech-
nique (MCMC), the Gibbs sampler, and Laplace’s
method are some effective Bayesian approximation
approaches that have been used to various machine
learning applications (Husmeier, 2000).

2.4.3 Variational Learning

It should be emphasized that Bayesian techniques
need a significant computing investment, particularly
when working with massive data sets (Tan and Nott,
2014). For example, MCMCs are widely used to sam-
ple from distributions, however this method is occa-
sionally computationally expensive. As a result, vari-
ational Bayes inference has been explored to solve
these problems. It has actually been used as a more
effective alternative than MCMC. The fundamental
idea is to estimate the model posterior distribution by
minimizing the Kullback-Leibler (KL) divergence be-
tween the true posterior and an approximation distri-
bution.

2.4.4 Expectation Propagation

Expectation propagation (EP) learning (Minka, 2001)
may be viewed as a recursive approximation method
that minimizes a Kullback-Leibler (KL) divergence
between an approximation and the exact posterior
model. EP is a deterministic approach to Bayesian in-
ference that generates the optimal posterior distribu-
tion through an iterative refining process. It is based
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on the so-called Assumed Density Filtering (ADF)
(Minka, 2001). The EP inference differs from the
ADF in that it does not rely on the input data’s order,
and it might be improved by utilizing more than one
data point. Furthermore, the higher computing perfor-
mance of EP over Gibbs sampling and Markov Chain
Monte Carlo (MCMC) is one of its key advantages.

2.4.5 Batch/Online Learning Algorithms

Online algorithms enable the sequential processing of
data instances, which is critical for real-time appli-
cations (Fujimaki et al., 2011). Online learning is
more attractive than batch one and this for many ap-
plications especially when dealing with huge datasets.
With mixture models, it is possible to save time
and ensure performance since we need to update the
model’s parameters progressively. The settings must
be adjusted appropriately without compromising flex-
ibility and efficiency.

2.5 Mixture Model Selection

In order to find the best fit for modeling data, sev-
eral model selection-based techniques have been pro-
posed. Automated selection of the components num-
ber that best describes the observations has been the
subject of several studies and investigations. Finding
the optimal number of components to explain a given
set of data is one of mixture models’ most difficult
tasks. This procedure is called model selection. Many
successful information criteria have been considered
in order to address this challenging issue. Among the
well-known criteria, we may find the Akaike’s infor-
mation criterion (AIC) (Akaike, 1974) and Bayes in-
formation criterion (BIC) (Schwarz, 1978). It should
be noted that these criteria are based on penalizing
a mixture’s log likelihood function. The Kullback-
Leibler divergence between the probability density
function and the mixture model is what the AIC seeks
to reduce. By minimizing the influence of the prior,
the BIC, on the other side, roughly approximates
the marginal likelihood of the mixture. We refer to
the literature for other additional information crite-
ria such as the minimum description length (MDL)
and the minimum message length (MML) (Azam and
Bouguila, 2022). Indeed, several publications have
suggested simultaneously estimating the parameters
of the mixture and selecting the best optimal model
using for example MML or MDL criteria.

3 MIXTURE MODELS AND
APPLICATIONS: OVERVIEW
AND DISCUSSION

Due to the widespread adoption of new technologies,
which has led to millions of people producing enor-
mous volumes of heterogeneous data through smart
devices, there seems to be significant opportunity for
expanding knowledge across a variety of scientific
disciplines. The technological revolution has made
it possible to quickly analyze and extract knowledge
from massive datasets, which is particularly benefi-
cial for a wide range of sectors. Nevertheless explor-
ing the content of these sizeable multimedia databases
is a crucial challenge that may be dealt with by sta-
tistical tools. Using statistical methods like mixture
models (MM), problems like data clustering, object
segmentation, image denoising, pattern recognition,
and many more might be successfully handled. For
various applications of data analysis, a fundamental
mixture model-based architecture requires a number
of processing stages as shown in Fig.2. It has re-
cently been shown that MM can provide prospec-
tive capacity for addressing difficult machine learning
problems. In particular, MM can effectively address
the issue of imbalanced samples and insufficient train-
ing data (McLachlan and Peel, 2004). Typically, the
first step in employing mixture models is to extract
effective visual features (descriptors) from the input
dataset. Different techniques, such as SIFT (Scale
Invariant Feature transform) (Lowe, 2004), could be
used to extract such characteristics. An additional
step is to implement a visual vocabulary by quanti-
fying the attributes into visual words using for exam-
ple a bag-of-words (BOW) model and a simple clus-
tering algorithm like K-means (Csurka et al., 2004).
Furthermore, a probabilistic Latent Semantic Analy-
sis (pLSA) may be utilized to reduce the dimensional-
ity and to produce a d-dimensional proportional vec-
tor (Hofmann, 2001) (that takes any value from 0 and
1). The developed statistical model is then applied as
a classifier to assign each input to the category with
the highest posterior probability in accordance with
Bayes’ decision rule. Typically, datasets are randomly
divided into two parts; the first is utilized for training
and for creating the visual vocabulary, while the sec-
ond is used for testing and assessment.

3.1 Visual Features Extraction

One of the critical step in the field of machine learn-
ing is feature extraction. In particular, the extrac-
tion of important and relevant visual characteristics
is of great importance in the computational analysis
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Figure 2: A basic mixture model-based framework for different data analysis applications.

of multimedia data. The first stage for any image
processing framework is to convert the multimodal
data (image, text, and video) into a collection of char-
acteristics. In order to accomplish this, some ex-
isting techniques extract the most representative at-
tributes, from the source data (data set), that aid in
differentiating between input data. The task of fea-
ture extraction has mostly been addressed in the con-
text of image analysis applications. Feature extrac-
tion may be thought of as dimensionality reduction
since only less information is used than in the initial
input data. In order to extract spatial characteristics
from images and videos, one must take into consid-
eration spatial-pixel and spatio-temporal information.
Various techniques, including statistical ones, local or
global methods have been published in the literature
for feature extraction.They might be based on the gray
level value’s first order or higher order statistics. Lo-
cal extraction techniques (eg. SIFT, SURF, and LBP)
do not necessarily need background detection or sub-
traction since it is less prone to noise and partial oc-
clusion.

3.2 Overview

A valuable tool for examining diverse types of data
in many computer science fields is the combination
of statistical approaches with machine learning. A
foundation of machine learning is statistics. Without
it, it is difficult to fully comprehend and apply ma-
chine learning. The basic goal of statistical machine
learning is the design and optimization of probabilis-
tic models for data processing, analysis, and predic-
tion. Statistical machine learning advancements have
a big influence on lots of different sectors including
artificial intelligence, signal/image processing, infor-
mation management, as well as fundamental sciences.
It is important to offer new sophisticated statistical

machine learning (SML) approaches based on a fam-
ily of flexible distributions in order to solve significant
issues with standard machine learning algorithms and
data modeling. SML has made great progress in re-
cent years on both supervised and unsupervised learn-
ing tasks including clustering, classification, pattern
recognition, and many other data analysis-based ap-
plication.

3.2.1 Data Classification with MM

Multimodal data classification, which includes text,
images, and videos, is one of the most important
tasks for many computer vision applications. It in-
volves properly allocating objects to one of a num-
ber of specified classes. When using mixture mod-
els, it is reasonable to assume that the observed data
are drawn from several distributions, and the classifi-
cation problem is then seen as an estimation of the
parameters of these distributions. In recent years,
mixture models have been used to develop efficient
computer-aided systems that successfully classify in-
put scans and/or video sequences. For instance, they
have been used to classify retinal images and detect
diabetic retinopathy (Bourouis et al., 2019) and lung
disease in CXR images (Alharithi et al., 2021). They
have been also exploited to classify biomedical data
(Bourouis et al., 2021a; Bourouis et al., 2021c). It
is notable that a number of models were constructed
for various purposes, including texture categorization
(Norah Saleh Alghamdi, 2022).

3.2.2 Data Clustering with MM

Data clustering is a fundamental and quite well un-
supervised learning technique with use in data min-
ing and information retrieval, among other areas
(McLachlan and Peel, 2004). Often, a clustering tech-
nique is used to discover hidden patterns in data. By
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fitting a variety of probability distributions to the un-
derlying data and then continually modifying their
parameters until they best match it, mixture models
(MM) have the potential to locate clusters. When
we simultaneously have low inter-cluster and signifi-
cant intra-class similarities, an MM-based clustering
method will produce high quality clusters. Numer-
ous research on clustering high-dimensional data have
been done and published in the literature (Melnykov
and Wang, 2023; Tissera et al., 2022; Jiao et al., 2022;
Hu et al., 2019; Lai et al., 2018).

3.2.3 Pattern Recognition with MM

The usage of mixture models in the field of unsuper-
vised pattern recognition has become common. In
fact, a pattern is viewed as an entity, represented
by a feature vector, and may then be described us-
ing a combination of distributions. To deal with the
problem of recognizing complex patterns, such as hu-
man activities, hand gestures, face expressions, and
so forth, several unsupervised-based mixture models
have been established (Yang et al., 2013; Najar et al.,
2020; Bouguila, 2011; Bourouis et al., 2021b; Al-
harithi et al., 2021). In (Yang et al., 2013), a method
for simulating articulated human movements, ges-
tures, and facial expressions is suggested. Addition-
ally, an expectation propagation inference approach
based on inverted Beta-Liouville mixture models was
suggested to handle diverse pattern recognition appli-
cations (Bourouis and Bouguila, 2022).

3.2.4 Data Segmentation with MM

Image segmentation is the process of partitioning an
image’s pixels into a number of homogeneous sub-
groups (segments). Image segmentation presents a
variety of challenges, including choosing the right
number of segments (Su et al., 2022). Smooth ob-
ject segmentation may be challenging, particularly if
the image contains noise, a complex foreground, poor
contrast, and irregular intensity. The main factors
for grouping pixels that we seek for in image seg-
mentation are proximity, color, and textures, which
are frequently present in pixels. Different mixture
model-based approaches were implemented to tackle
the issue of object segmentation, and some of them
have shown to produce better outcomes (Cheng et al.,
2022; Channoufi et al., 2018; Allili et al., 2008).

3.3 Discussion

Standard distributions, such as the Gaussian, have
been employed for many years as the primary dis-
tributions to address data analysis concerns. These

probabilities are unfortunately not the most accu-
rate approximation when dealing with non-Gaussian
data. Effectively modeling data vectors requires
both choosing the best approximation for the treated
dataset and the most effective inference technique for
learning mixture models. Recent studies have shown
that mixtures based on the Dirichlet, inverted Dirich-
let (ID), and generalized Dirichlet distributions out-
perform the conventional Gaussian for a range of data
analysis tasks. Meanwhile, certain distributions con-
tinue to have a number of shortcomings (such as the
restrictive covariance matrix structure) that restrict
their application in a number of different real-world
scenarios. Furthermore, other distributions fail to find
the right number of components to adequately char-
acterize the input vectors without over-fitting and/or
under-fitting. To overcome these issues, even when
doing so requires expensive computing resources, it
is strongly advised to employ other methods and in-
corporate additional criteria, such as the Akaike in-
formation criterion (AIC), MML, and MDL. Future
studies should go deeply into the fundamental issues
with MM-based models. First, determining the opti-
mal number of components is a difficult problem that
needs more investigation. Then, when dealing with
model parameter estimation using various methodolo-
gies, such as the EM algorithm, initial values selec-
tion and convergence issues are frequently encoun-
tered. On the other side, to reproduce the optimal
log-likelihood, non-normal distributed mixtures re-
quire more random starting values than do normal
distributed mixtures. Additionally, although they are
quite time-consuming, Bayesian approaches based on
the MCMC methodology have gained popularity and
may be able to assist prevent issues with EM algo-
rithms. Each component must be specified before the
entire mixture model can be constructed. As a result,
if the model is not properly defined, inconsistent es-
timations for the set of parameters may happen. Fur-
thermore, when several statistics must be calculated
simultaneously, choosing the best model is a desired
but challenging problem. It is also necessary to make
more adjustments in order to compare potential mod-
els and evaluate the fit quality. On the other hand, it
should be emphasized that while many probabilistic
models may successfully categorize comparable data,
they occasionally fail when the data is severely influ-
enced by noise and outliers. In light of these short-
comings, it is theoretically possible that discrimina-
tive classifiers, in particular the support vector ma-
chine (SVM), might be used. Therefore, it is advis-
able to investigate hybrid methods that take into con-
sideration both the benefits of probabilistic and dis-
criminative models in order to gain superior perfor-
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mance. For instance, designing robust mixture-based
probabilistic SVM kernels can help with this. Last but
not least, it is crucial to emphasize that the output of
various statistical MM models frequently depends on
the dataset’s sample size.

4 CONCLUSION

Mixture models (MM), an emerging statistical
method for modeling complex multimodal data,
is discussed in this paper. The current study presents
a recent brief review of the advances in MM mod-
els. Although there hasn’t been much research on
MM-based methods, and only a few publications have
time-varying indicators, we are optimistic that more
significant and insightful results will soon be made
available to the public.
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