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Abstract: Fingerprint reconstruction from minutiae performed by model-based approaches often lead to fingerprint pat-
terns that lack realism. In contrast, data-driven reconstruction leads to realistic fingerprints, but the reproduc-
tion of a fingerprint’s identity remain a challenging problem. In this paper, we examine the pix2pix network
to fit for the reconstruction of realistic high-quality fingerprint images from minutiae maps. For encoding
minutiae in minutiae maps we propose directed line and pointing minutiae approaches. We extend the pix2pix
architecture to process complete plain fingerprints at their native resolution. Although our focus is on biomet-
ric fingerprints, the same concept fits for synthesis of latent fingerprints. We train models based on real and
synthetic datasets and compare their performances regarding realistic appearance of generated fingerprints and
reconstruction success. Our experiments establish pix2pix to be a valid and scalable solution. Reconstruction
from minutiae enables identity-aware generation of synthetic fingerprints which in turn enables compilation
of large-scale privacy-friendly synthetic fingerprint datasets including mated impressions.

1 INTRODUCTION

Fingerprint is a widely accepted and broadly used
means of biometric user authentication. Applications
making use of fingerprint authentication range from
unlocking mobile phones to access control to finan-
cial and governmental services. Hence, further devel-
opment and continuous improvement of fingerprint
matching systems cannot be overrated. The validity
of fingerprint processing and matching algorithms is
assessed empirically in experiments with large-scale
fingerprint datasets. Taking into account the current
trend of using machine learning and in particular deep
convolutional neural networks, an abundant amount
of training and validation samples is an indispensable
part of the development process.

Recent cross-border regulations on protection
of private data are a hurdle that make usage of real
biometric datasets difficult. For instance, the article
9 of the EU General Data Protection Regulation
(GDPR) prohibits processing of biometric data for
the purpose of uniquely identifying a natural person,
however with some exceptions. In general, biometric
data are seen as a special case of private data imply-
ing that collection, processing and sharing of such
data are under strong regulation. Many biometric
datasets have been recently removed from the public
access due to possible conflicts with regulations. The

prominent examples are the NIST fingerprint datasets
SD4, SD14 and SD27. The documentation of the
new NIST fingerprint dataset SD300 confirms that
all subjects whose biometrics appear in the dataset
are deceased (https://www.nist.gov/itl/iad/image-
group/nist-special-database-300). A straightforward
way to overcome the restrictions is introduction of
virtual individuals and synthesis of biometric samples
which belong to them. The synthetic fingerprints
should possess the same characteristics as real ones,
but it should be impossible to link them to any natural
person.

Fingerprint synthesis is a special case of realis-
tic image synthesis that has recently been solved by
generative adversarial networks (GAN). Generation
of random realistic fingerprints which inherit visual
characteristics of fingerprints in a training dataset is
not challenging looking at the current state of tech-
nologies. For instance, the established NVIDIA GAN
architectures such as StyleGAN (Karras et al. 2018)
can easily be trained to solve this task (Seidlitz et al.
2021 and Bahmani et al. 2021). The challenging
part is synthesis of mated impressions which requires
identity-aware conditional generation and a mecha-
nism for simulating intra-class variations.

Based on the fact that the majority of algorithms
rely on minutiae for fingerprint matching, it can be
stated that the fingerprint identity is de facto given

Makrushin, A., Mannam, V. and Dittmann, J.
Data-Driven Fingerprint Reconstruction from Minutiae Based on Real and Synthetic Training Data.
DOI: 10.5220/0011660800003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP, pages
229-237
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

229



by minutiae co-allocation. Minutiae are the local
characteristics of fingerprint ridges e.g. bifurcations
where a line splits up into two or terminations where
a line ends. A list of extracted minutiae is referred
to as minutiae template. There are several standards
describing the structure of a minutiae template e.g.
ISO/IEC 19794-2:2011 or ANSI INCITS 381-2004.

Hence, the straightforward way to control the
identity of synthetic fingerprints is reconstruction
from a minutiae template. On the one hand, recon-
struction from minutiae is clearly an ill-posed prob-
lem, on the other hand, minutiae locations reveal in-
formation about the ridge flow so that a reconstructed
fingerprint has both minutiae at correct locations and
a proper basic pattern. Note that reconstruction from
pseudo-random minutiae helps to fulfill requirements
on anonymity and diversity of synthetic fingerprints
(Makrushin et al. 2021) and also enables synthesis of
mated impressions.

As stated in (Mistry et al. 2020), fingerprints re-
constructed from minutiae based on mathematical
modeling lack realism. Recently, realistic finger-
prints have been reconstructed by applying condi-
tional GAN (Makrushin et al. 2022, Bouzaglo and
Keller 2022 and Wijewardena et al. 2022). Although
the identity control is a challenging part of such a
data-driven approach, it has been demonstrated that
the vast majority of reconstructed fingerprints match
the reference fingerprints.

Here, we further investigate the application of
the pix2pix network (Isola et al. 2017) to fingerprint
reconstruction from minutiae focusing on 512x512
pixel images with an optical resolution of 500 ppi.
Both, the generator and discriminator of the original
network are extended by one convolutional layer to
handle the aforementioned image size. Motivated by
(Kim et al. 2019, Makrushin et al. 2022 and Bouza-
glo and Keller 2022) we explore several minutiae en-
coding schemes for the optimal reconstruction. Last
but not least, we train the reconstruction (generative)
models not only from real but also from realistic syn-
thetic fingerprints to figure out the suitability of our
previously generated synthetic dataset for this task.
Since visual characteristics of GAN-synthesized fin-
gerprints are inherited from training samples, such a
synthesis approach is applicable not only for biomet-
ric (plain) or forensic (latent) fingerprints but also for
style transfer: plain to latent or latent to plain.

Our contribution can be summarized as follows:

• Modification of the pix2pix architecture to pro-
cess 512x512 pixel images

• Introduction of a dataset of 50k synthetic finger-
prints generated by our StyleGAN2-ada model
trained from the Neurotechnology CrossMatch

fingerprint dataset
• Training of pix2pix models from real and syn-

thetic datasets with two different types of minu-
tiae encoding: directed line and pointing minutiae

• Comparing synthetic and real datasets for the pur-
pose of training pix2pix models

• Comparing directed line and pointing minutiae
encoding approaches

Hereafter, the paper is organized as follows: Section
2 outlines the related work. Section 3 introduces our
concept of applying pix2pix to fingerprint reconstruc-
tion. Training of our generative models is described in
Section 4. Our experiments are in Section 5. Section
6 concludes the paper with the summary of results.

2 RELATED WORK

2.1 Model-Based Reconstruction

The de facto state-of-the-art approach to model-
based fingerprint synthesis is implemented in the
commercial tool SFinGe (Cappelli 2009). In or-
der to create realistic patterns the physical charac-
teristics of fingers, the contact between finger and
the sensor surface as well as sensor characteristics
are simulated. An open source implementation of a
model-based fingerprint generator similar to SFinGe
is called Anguli (Ansari 2011) and is available at
https://dsl.cds.iisc.ac.in/projects/Anguli/.

The most prominent study on inversion of finger-
print templates is (Cappelli et al. 2007). Based on the
zero-pole model (Sherlock and Monro 1993), the lo-
cations of singular points are estimated from the given
minutiae followed by estimation of orientation and
ridge frequency maps. Alternatively, ridge patterns
can be reconstructed using the minutiae triplet model
(Ross et al. 2007) or the AM-FM model (Feng and
Jain 2009 and Li and Kot 2012) which makes use of
eight neighbouring minutiae. An approach proposed
in (Cao and Jain 2015) reconstructs ridge patterns
based on patch dictionaries which allows for gener-
ating idealistic ridge patterns clearly lacking realism.

2.2 Data-Driven Reconstruction

Recently, fingerprint synthesis using GAN or a com-
bination of GAN and autoencoder has become a trend.
An identity-aware synthesis requires, however, a con-
ditional GAN in which the network is guided to gen-
erate specific data by conditioning over some mean-
ingful information rather than feeding a random latent
vector as proposed in the original GAN.
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As originally shown in (Kim et al. 2019) the task
of fingerprint reconstruction from minutiae can be
replaced by the image-to-image translation so that
minutiae points are drawn on an image called minu-
tiae map and then the minutiae map is translated to a
fingerprint image. The original pix2pix network has
been applied as one delivering state-of-the-art results
in image-to-image translation. The experiments are
conducted with an in-house fingerprint database. The
generalization ability of pix2pix in application to fin-
gerprint reconstruction from minutiae is challenged in
(Makrushin et al. 2022) by conducting cross-sensor
and cross-dataset experiments. The major limitation
of the original pix2pix is that it is tuned to process
images of 256x256 pixels or lower. The pix2pixHD
extension (Wang et al. 2018) is a cumbersome solu-
tion to process larger images.

In (Bouzaglo and Keller 2022) a convolutional
minutiae-to-vector encoder is used in combination
with StyleGAN2 (Karras et al. 2019) for identity-
preserving, attributes-aware fingerprint reconstruc-
tion from minutiae. The study in (Wijewardena et al.
2022) extends fingerprint reconstruction from minu-
tiae to reconstruction from deep network embeddings.
The inversion attack performances of both reconstruc-
tion schemes are evaluated and compared qualita-
tively and quantitatively.

To the best of our knowledge, in none of studies on
data-driven fingerprint reconstruction the generative
models are trained based on synthetic samples.

3 OUR CONCEPT

Let I be a fingerprint image and L : Li = (xi,yi, ti,θi)
be a set of minutiae where (xi,yi) is a location of the
i-th minutiae, ti is a type (either bifurcation or ending)
and θi is a direction. Our task is to train a conditional
GAN that is capable of generating a fingerprint im-
age I∗ from L. The resulting synthetic fingerprint I∗

should appear realistic and be biometrically as similar
as possible to the original fingerprint I.

3.1 Minutiae Encoding

Construction of a minutiae map is visualized in Fig-
ure 1. It starts with minutiae extraction which can be
done with an arbitrary tool. We use Neurotechnology
VeriFinger SDK v12.0 (https://www.neurotechnology
.com/verifinger.html). Next, the resulting list of minu-
tiae is encoded into a minutiae map. We address three
encoding schemes: encoding by gray squares, by di-
rected lines and by pointing minutiae.
Gray Squares. Encoding minutiae by gray squares

is originally proposed in (Kim et al. 2019). For each
minutiae Li from the minutiae list L a gray square
of a fixed size is drawn with a center at (xi,yi). The
shade of gray encodes the minutiae angle θi. In order
to differentiate between endings and bifurcations, we
use colors from 0 to 127 to quantize the directions of
endings and colors from 129 to 255 to quantize the
directions of bifurcations. The background color of a
minutiae map is set to 128. For 500 ppi fingerprints
depicted on 512x512 pixel images, the square size is
set to 13x13.

Directed Lines. As proposed in (Makrushin et al.
2022) each minutiae Li from the minutiae list L is
encoded by a directed line which starts at (xi,yi) and
is drawn to the direction given by the angle θi. Bifur-
cations are encoded by white lines (color=255) and
endings by black lines (color=0). The background
color is set to 128. It is stated that such a color
selection emphasizes the dualism of bifurcations and
endings and the directed line encoding is superior to
a gray square encoding. It is also stated that shades
of gray used as direction encoding may dilute during
convolutions. For 500 ppi fingerprints, we set the line
length to 15 pixels and the line width to 4 pixels.

Pointing Minutiae. The idea of using pointing minu-
tiae is derived from (Bouzaglo and Keller 2022).
We define a pointing minutiae as a combination of
a square centered at (xi,yi) and a line pointing in
the minutiae direction θi. Similar to directed line
encoding, bifurcations are encoded by white lines
(color=255) and endings by black lines (color=0).
The background color is set to 128. Directed line and
pointing minutiae encoding schemes perfectly reflect
the complimentary nature of endings and bifurcations
and therefore are robust to color inversion. For 500
ppi fingerprints the line length is set to 15 pixels, the
line width to 4 pixels and the square size to 7x7 pixels.

3.2 Pix2pix Architecture

The pix2pix network (Isola et al. 2017) applied in our
experiments is a conditional GAN consisting of gen-
erator and discriminator networks which are trained in
an adversarial manner. The generator produces realis-
tic images while the discriminator tells synthetic and
real images apart. In our setup, the generator trans-
lates a minutiae map into a fingerprint image and the
discriminator makes a decision for a tensor made of a
fingerprint image and a minutiae map which is taken
as a condition. After training is finished, we make no
use of the discriminator and the generator is used for
fingerprint reconstruction.
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Figure 1: Minutiae map construction: minutiae extraction
followed by minutiae encoding (gray squares, directed lines
and pointing minutiae).

The original pix2pix architecture is designed for
256x256 pixel images which would require down-
scaling of a fingerprint image to make a complete fin-
gerprint fit into it. In order to support a fingerprint-
native resolution of 500 ppi and enable training with
images of 512x512 pixels, we extend both generator
and discriminator by one convolutional layer.

Generator. The generator architecture is based on
the U-Net originally proposed in (Ronneberger et al.
2015). In contrast to other approaches based on
encoder-decoder architecture used for solving the
image-to-image translation problem, the U-Net pass
information via skip connections to subsequent paral-
lel layers as shown in the Figure 2. Indeed, the stan-
dard encoder-decoder networks first gradually down-
sample a given input at each layer into a compressed
representation called bottleneck and then gradually
up-sample from the bottleneck at each layer to the
original size. Hence, such networks fully rely on the
bottleneck layer implying that it preserves all the in-
formation about the input. If it is not the case, the
reconstructed image might miss important details.

Discriminator.The convolutional patch-based dis-
criminator utilized in pix2pix classifies the given in-
put as synthetic or real at a patch level. It means that
the the network simultaneously makes a decision for
each image patch and the final decision is a majority
voting over all patches. The discriminator is a series
of convolution layers with an input of shape LxL and
the output of shape RxR. Each neuron at RxR clas-
sifies a single portion in LxL. The value of L at the
network input layer is set to 512 and the value of R at
the network output layer is 30 as in the original Patch-
GAN. A discriminator with a focus on single patch
classification is shown in Figure 3. Even though the
code is not explicitly written in a way to work at patch

level it happens implicitly due to the nature of a con-
volution operation. In contrast to the original work
where the receptive field (patch) size is 70x70 pixels,
the addition of a convolutional layer has led to the en-
largement of the receptive field to 142x142 pixels. It
can be thought as 142x142 patch convolves over the
given input image 30 times in each direction so that
each 142x142 patch of an input image is classified
by the corresponding bit in a 30x30 output. Finally
the majority voting is done for 900 single patch votes.
Note that the input of the discriminator is a tensor
comprised of the minutiae map given to the genera-
tor and the real or synthetic fingerprint. It is justified
that low frequencies can be captured by L1 loss and
an improvement is needed for capturing variations at
high-frequencies.

3.3 Training Datasets

The focus of this work is on generation of realistic
plain biometric fingerprints. Hence, for training our
generative models we selected high fidelity plain fin-
gerprints captured by optical biometric sensors such
as Cross Match Verifier 300. Our training dataset is
comprised of:

• The Neurotechnology CrossMatch dataset
that includes 408 samples and is provided on
https://www.neurotechnology.com/download.html

• The DB1 A+B dataset used for the Second
International Fingerprint Verification Competi-
tion (FVC2002) that includes 880 samples,
http://bias.csr.unibo.it/fvc2002/databases.asp

• The DB1 A+B dataset used for the Third
International Fingerprint Verification Competi-
tion (FVC2004) that also includes 880 samples,
http://bias.csr.unibo.it/fvc2004/databases.asp

Note that images in the FVC2002 DB1 A+B have
been collected with the TouchView II scanner by
Identix. The total number of samples is 2168.

Since, the selection of training data is the only
factor that predetermines the appearance of recon-
structed fingerprints, our concept can be equally well
applied to reconstitution of forensic fingerprints by
using a dataset of exemplars or latents for training.

Data Augmentation is performed aiming at increas-
ing the amount of training data as well as its variabil-
ity. We horizontally flip and rotate images with eight
rotation angles: +/-5°, +/-10°, +/-15°and +/-20°. In
doing so we increase the number of training samples
by the factor of 18 resulting in 39024 samples. This
dataset is further referred to as ”aug39k”.
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Figure 2: Generator architecture.

Figure 3: Discriminator architecture - single patch classifi-
cation; for color encoding of layer transforms see Figure 2.

Synthetic Dataset Generation. In order to check
whether training of a reliable pix2pix model can be
done solely based on synthetic fingerprints, we train
the StyleGAN2-ada network (Karras et al. 2020) from
scratch based on 408 samples from the Neurotech-
nology CrossMatch dataset padded to 512x512 pix-
els with the built-in augmentation. Then we apply
the StyleGAN2-ada generator to create 50000 random
fingerprints based on the seeds from 1 to 50000. The
truncation value has been set to 0.5. This dataset is
further referred to as ”syn50k”.

Due to the low number of unique identities in the
training dataset, the synthetic samples lack diversity
and it is not assured that no identity leakage happens
in regard to the training data. However, subjectively,
the visual quality of synthetic samples is very high
making them almost indistinguishable from real sam-
ples. Figure 4 shows several examples of real finger-
prints from the Neurotechnology CrossMatch dataset
together with synthetic fingerprints generated by our
StyleGAN2-ada model.

Figure 4: CrossMatch Verifier 300 fingerprints (top row) vs.
our StyleGAN2-ada generated fingerprints (bottom row).

4 IMPLEMENTATION

The pix2pix network used in our study is cloned from:
https://github.com/junyanz/pytorch-CycleGAN-and-
pix2pix/ The architectures of generator and discrim-
inator networks are modified to fit our concept as
presented in 3.2. Training is performed using the
desktop PC with the AMD Ryzen 9 3950X 16-Core
3.5 GHz CPU and 128 GB RAM with two Nvidia
Titan RTX GPUs with 24GB VRAM each.

Training Hyperparameters. Aiming at making our
generative models comparable to each other we use
the same learning rate of 0.002 and train the networks
for 60 epochs plus 60 epochs with a learning rate
decay. After training, we have realized that non of
the final models outperforms the earlier model snap-
shots. Hence, we have picked the model snapshots
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after 15, 30 and 55 training epochs for the evaluation
to check whether more epochs produce better visual
results or lead to a better reconstruction. We first
trained the models with batch normalization (batch
size of 64) which resulted in noisy fingerprint pat-
terns with a lot of noise especially on image margins
which should contain white pixels only. As suggested
in (Ulyanov et al. 2016) batch normalization is re-
placed by instance normalization. It helps to avoid
noise but sometimes has a negative effect on a real-
ism of ridge lines. All fingerprint images in which no
single minutiae has been detected were excluded from
the training.

Resulting Generative Models. After several rounds
of training we have ended up with four models all pro-
ducing visually convincing fingerprint images:

• aug39k DL, DL = Directed Line
• aug39k PM, PM = Pointing Minutiae
• syn50k DL
• syn50k PM

The first two models have been trained with the
augmented CrossMatch dataset (aug39k) with minu-
tiae encoded first by directed lines and then by point-
ing minutiae. The other two models have been
trained with the StyleGAN2-ada generated dataset
(syn50k) with minutiae also encoded by directed
lines and pointing minutiae. Here, we train no
models with minutiae encoded by gray squares be-
cause this encoding scheme has been demonstrated
to underperform directed line encoding (Makrushin
et al. 2022) and our preliminary training results
have also confirmed it. After paper publication all
our models together with generated synthetic fin-
gerprints will be made public at https://gitti.cs.uni-
magdeburg.de/Andrey/gensynth

Figure 5: Anguli (left) vs. URU (right) fingerprint.

5 EVALUATION

5.1 Test Datasets

The two test datasets used for evaluation are com-
pletely detached from the training datasets. Each test
dataset contains 880 samples.

The first dataset has been created using the open
source tool Anguli (Ansari 2011). With this dataset,
we expect that a minutiae extraction tool make no
errors. Hence, the fingerprint reconstruction perfor-
mance should be seen as idealistic.

The second dataset is the DB2 A+B dataset from
the Third International Fingerprint Verification Com-
petition (FVC2004) which contains real fingerprints
collected using a URU 4500 scanner. In contrast to
Anguli fingerprints, URU fingerprints are very chal-
lenging for any minutiae extractor. Moreover, the fin-
gerprints from URU scanners are dramatically differ
from those of CrossMatch scanners used for training
of reconstruction models. Figure 5 shows an Anguli
vs a URU sample.

5.2 Metrics

The realistic appearance of reconstructed finger-
prints is evaluated using NFIQ2 scores (https://
www.nist.gov/services-resources/software/nfiq-2).
Although NFIQ2 is designed to predict the utility
of a fingerprint meaning its effectiveness for a user
authentication process, NFIQ2 is known to correlate
well with the visual quality and therefore can be seen
as an indicator of realistic appearance. The scores
span from 0 to 100 with higher values for higher
utility. The scores higher than 35 indicate good
fingerprints just as higher than 45 perfect ones. The
scores lower than 6 indicate useless patterns.

The fingerprint reconstruction success is mea-
sured by the ratio of fingerprint pairs (target vs. re-
constructed) whose matching scores exceed a certain
threshold in all tested fingerprint pairs. This mea-
sure is identical to the True Acceptance Rate (TAR)
of a fingerprint matcher. Following the state-of-the-
art studies, we calculate Type1 TAR - matching the
reconstructed fingerprint against the finger impres-
sion from which the minutiae are extracted. Calcu-
lation of Type2 TAR (matching the reconstructed fin-
gerprint against a different finger impression to that
from which the minutiae are extracted) will be ad-
dressed in future work. Fingerprint matching scores
are similarity scores from 0 to infinity produced by the
VeriFinger SDK v12.0. The matching algorithm be-
hind VeriFinger is proprietary, but is known to mostly
rely on minutiae. The decision threshold is an inher-
ent parameter of a biometric matcher. It is defined
based on the required security level of a biometric sys-
tem which in turn is defined by expected False Accept
Rate (FAR) of a matcher. The common levels for FAR
are 0.1%, 0.01% and 0.001%, the lower the more se-
cure. The decision thresholds of VeriFinger for those
FAR are 36, 48 and 60 correspondingly.
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5.3 Results

Realistic Appearance. Figure 6 shows the distribu-
tions of NFIQ2 scores. In the first row, the minu-
tiae maps are derived from the Anguli dataset and in
the second row from the FVC2004 DB2 A+B dataset.
The left column represents models trained with the
aug39k dataset and the right column models trained
with the syn50k dataset. The NFIQ2 scores of origi-
nal images are taken as reference. We compare model
snapshots after 15, 30 and 55 training epochs.

Figure 6: Distributions of NFIQ2 scores for Anguli (top
row) and URU fingerprints (bottom row). The left column -
aug39k models, right column - syn50k models.

Our main observation is that the visual quality of
reconstructed fingerprints rather depends on training
samples than on samples from which minutiae have
been extracted. Indeed, NFIQ2 scores of original An-
guli samples are on average higher than that of re-
constructed samples no matter which model has been
used. In contrast, NFIQ2 scores of URU samples are
significantly lower than that of reconstructed samples
for all models.

In bottom diagrams the URU distributions have
tails towards lower NFIQ2 scores indicating the pres-
ence of several low quality samples in the dataset. For
such samples minutiae cannot be reliably extracted
leading to incomplete or messed up patterns in recon-
structed samples which explains the second peak in
reconstructed fingerprint distributions in the area of
low NFIQ2 values.

Models with PM encoding in comparison to mod-
els with DL encoding seem to produce on average fin-
gerprints with slightly higher NFIQ2 scores except for
the aug39k models tested on the Anguli dataset.

From diagrams, no clear conclusion can be drawn
which number of training epochs lead to the best vi-
sual quality. For instance, with URU test samples and
PM encoding, models trained with 30 epochs show

the best results. With URU test samples and DL en-
coding, the best aug39k model is obtained after 55
training epochs.

Table 1: Fingerprint reconstruction success (in %).

Anguli fingerprints URU fingerprints
Type1 TAR @ FAR of

Enc DB Ep 0.1% 0.01% 0.001% 0.1% 0.01% 0.001%

DL

aug39k
15 100.00 100.00 99.77 87.84 82.61 76.47
30 100.00 99.77 99.20 83.29 75.11 65.90
55 99.43 98.52 97.50 79.09 71.81 59.31

syn50k
15 97.38 97.63 86.47 78.86 71.36 59.20
30 92.50 84.88 70.56 68.52 55.79 42.84
55 93.18 86.25 74.31 72.38 62.15 48.18

PM

aug39k
15 100.00 100.00 100.00 95.45 95.00 93.52
30 100.00 100.00 100.00 95.11 94.31 93.29
55 99.88 99.43 98.86 93.52 91.36 88.86

syn50k
15 99.88 99.88 99.77 94.88 94.43 92.95
30 99.88 99.88 99.65 94.77 93.18 91.59
55 99.65 98.97 98.52 93.29 90.56 87.38

Fingerprint Reconstruction Success. Table 1 shows
the results of fingerprint reconstruction with the ide-
alistic Anguli images (upper bound of reconstruc-
tion rates) as well as with URU fingerprints from the
FVC2004 DB2 A+B dataset (realistic reconstruction
performance). The URU fingerprints for which the
VeriFinger minutiae extractor fails to find even a sin-
gle minutiae are excluded from the experiment as use-
less. Our observations regarding the reconstruction
rates can be summarized as follows:

• All models trained with aug39k are better than
their counterparts trained with syn50k.

• PM encoding outperforms DL.
• Model snapshots after 15 training epochs have the

best reconstruction performance.
• For PM encoding, the difference between 15

epochs and 30 epochs is almost negligible, while
with 55 epochs there is a considerable perfor-
mance loss.

• For DL encoding, the aug39k snapshot after 15
training epochs is better than that after 30 epochs
which is in turn better than that after 55 epochs,
but unexpectedly the syn50k snapshot after 15
epochs is better than that after 55 epochs which
is in turn better than that after 30 epochs. This ap-
plies for both test datasets Anguli and FVC2004
DB2 A+B.

Our most important finding is that with PM encoding
the performance drop between aug39k and syn50k is
in most cases lower than 1% and in no cases higher
than 1,7%. It indicates that StyleGAN2-ada finger-
prints can be perfectly used for training pix2pix mod-
els aiming at translating minutiae maps to fingerprint
images. Figure 7 shows a reconstruction example
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with both models aug39k and syn50k. The 15 epoch
snapshots are utilized. Examples with 30 and 55
epoch snapshots can be found on our website. The
images show that our models perform a style transfer
i.e. the appearance of resulting fingerprints is similar
to those captured with a CrossMatch sensor.

Figure 7: Reconstruction example of a URU fingerprint.

Although the ridge patterns in reconstructed sam-
ples are not exactly the same as in target fingerprints,
the minutiae co-allocation is reproduced accurately
enough to enable matching with the source of minu-
tiae. Hence, we state that pix2pix in conjunction with
PM or DL encoding is a valid approach for fingerprint
reconstruction from minutiae. We have also shown
that the pix2pix architecture is scalable to larger im-
ages and training with 512x512 pixel images can be
done within a reasonable time frame.

6 CONCLUSION

Reconstruction of realistic fingerprints from minu-
tiae is an important step towards controlled genera-
tion of high-quality datasets of synthetic fingerprints.
Since, the minutiae co-allocation defines the finger-
print’s identity, reconstruction from pseudo-random
minutiae maps ensures anonymity and diversity of re-
sulting patterns and enables synthesis of mated fin-
gerprints. This paper introduces and compares four
pix2pix models trained with fingerprint images of
512x512 pixels at fingerprint-native resolution from
real and synthetic datasets with two types of minu-
tiae encoding. Our experiments show that a pix2pix
network is a valid solution to the reconstruction prob-
lem with a scalable architecture enabling training
with 512x512 pixel images, that reconstructed ridge
patterns appear realistic, that pointing minutiae en-
coding is superior to directed line encoding, that an
augmented dataset of 39k real fingerprints used for
training is superior to a dataset of 50k synthetic fin-
gerprints, but if pointing minutiae encoding is ap-
plied, the difference in reconstruction performances
between real and synthetic training data is lower than
1.7%. Future work will be devoted to compilation of
a large-scale synthetic fingerprint dataset appropriate
for evaluation of fingerprint matching algorithms.
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