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Abstract: Three performance metrics based on data envelopment models are proposed for evaluating MOLP solution 
methods. Every proposed metric is associated to a one category, being these categories the cardinality, 
accuracy, and diversity. In addition, the proposed metrics are classified as unary or binary. The cardinality 
and accuracy metrics are estimated using a DEA model based on the slack based measure model, while the 
diversity metric is calculated using the super-efficiency DEA model. The proposed metrics were applied to 
compare two sets of solutions for a MOLP tactical harvest planning model, that were obtained using two 
strategies of a MO-GRASP algorithm.  The results show that the metrics allow discriminating between the 
MOLP solution methods and, moreover, to select one. 

1 INTRODUCTION 

The multi-objective linear programming (MOLP) is 
an area of operations research where many practical 
problems have being addressed, as transport (Demir 
et al., 2014), agriculture (Varas et al., 2020), 
manufacturing (Mirzapour Al-E-Hashem et al., 
2011), location (Karatas & Yakıcı, 2018), among 
others. Usually, these MOLP models are difficult to 
solve (Deb, 2014). Therefore, exact and heuristic 
methods have been proposed for solving them. 
However, selecting a suitable solution method is not 
a simple task. In this way, different performance 
metrics have been proposed for analysing the 
solutions obtained by these methods. Regarding this 
issue, Riquelme et al. (2015) carried out a literature 
review about the performance metrics for evaluating 
MOLP solution methods, classifying them in three 
categories: cardinality, accuracy, and diversity. 
Cardinality represents the number of non-dominated 
solutions found by a MOLP solution method. 
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Accuracy refers to the convergence of the non-
dominated solution to the Pareto frontier. Thus, it 
represents the distance between every non-dominated 
solution with the theoretical Pareto frontier 
(Riquelme et al., 2015). Diversity considers the 
distribution and spread of the non-dominated 
solutions. The distribution considers the relative 
distance among the non-dominated solutions, and the 
spread corresponds to the range of the objective 
function values covered by the non-dominated 
solutions. It is important to mention that, in every 
category, different metrics have been proposed  
(Audet et al., 2021; Riquelme et al., 2015). 
Furthermore, Riquelme et al. (2015) also classified 
the performance metrics into unary and binary. A 
metric is unary if the non-dominated solutions are 
obtained by only one solution method. On the other 
hand, a metric is binary if the non-dominated 
solutions are obtained by two solution methods.  

In the literature, data envelopment analysis (DEA) 
models have been used for estimating MOLP 
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performance metrics. In Bal & Satoglu (2019), the 
BCC model (Banker et al., 1984) was used as a metric 
for evaluating the performance of Pareto optimal 
solutions obtained by the augmented epsilon 
constraint method 2. This solution method was 
applied to a MOLP model with four objective 
functions, aiming to improve the coordination of an 
appliance supply chain. Hong & Jeong (2019) used a 
CCR (Charnes et al., 1978) for evaluating the 
solutions obtained by the weighting method. This 
method was used for solving a MOLP model with five 
objective functions, which sought to determine 
strategic decisions for a facility location–allocation 
problem.  

In this study, three performance metrics based on 
DEA model are proposed for evaluating MOLP 
solution methods. Every metric is associated to a 
category of cardinality, accuracy, and diversity, 
respectively, and can be classified as unary or binary. 

This article is divided as follows: Section 2 
describes the applied DEA models and the procedure 
for calculating every metric. Section 3 presents the 
results of this study, while Section 4 summarizes the 
conclusions. 

2 MATERIAL AND METHODS 

The DEA models used for assessing different 
performance metrics of MOLP solution methods, as 
the associated procedure for applying them, are 
presented in this section. As mentioned previously, 
the categories considered in this analysis are: 
cardinality, accuracy, and diversity. The proposed 
cardinality and accuracy metrics are estimated using 
a DEA model based on the slacks-based measure 
proposed by Tone (2001). On the other hand, the 
proposed diversity metric is calculated using the 
super efficiency DEA model developed by Andersen 
& Petersen (1993). The characteristics for selecting 
these DEA models and the way that they can be used 
for estimating every metric are detailed in the 
following sub-sections.  

2.1 Applied DEA Models 

The common nomenclature of parameters and 
decision variables used in the applied DEA models 
are defined in Table 1 and Table 2, respectively. In 
this definition, the MOLP nature of the DEA 
assessment is considered. 

 

 

Table 1: Parameters of the DEA models. 

Parameter Definition 
𝑚 Number of objective functions to be 

minimized in the MOLP model. 
𝑠 Number of objective functions to be 

maximized in the MOLP model. 
𝑛 Number of solutions obtained by a MOLP 

solution method. 
𝑥௜௝ Value of the minimized objective function 

i obtained by solution j, where 𝑖 ൌ
1, … , 𝑚, 𝑗 ൌ 1, … , 𝑛. 

𝑦௥௝ Value of the maximized objective function 
r obtained by solution j, where 𝑟 ൌ
1, … , 𝑠, 𝑗 ൌ 1, … , 𝑛. 

𝑗଴ Evaluated solution in every execution of 
the applied DEA models. 

The different decision variables used in the 
applied DEA models are described in Table 2. 

Table 2: Decision variables of the DEA models. 

Variable Definition 

𝑆௜
ି 

Slack of the minimized objective function i, 
where 𝑖 ൌ 1, … , 𝑚 

𝑆௥
ା 

Slack of the maximized objective function r, 
where 𝑟 ൌ 1, … , 𝑠 

𝜆௝ 
Intensity of the solution j for establishing the 
target in the Pareto frontier of  the evaluated 
solution. 

𝑡 
Auxiliary variable that represents a positive 
scalar used for the model linearization. 

𝐴௝ 

Auxiliary variable for the model 
linearization. It is a binary variable, where 
𝐴௝ ൌ 1  if 𝜆௝ ൌ 𝑡 ; 𝐴௝ ൌ 0  otherwise, , 𝑗 ൌ
1, … , 𝑛.

𝜃 
Proportional reduction of the minimized 
objective functions obtained by solution 𝑗଴. 

2.1.1 DEA Model Based on the Slacks-based 
Measure of Efficiency (INT-SBM) 

The proposed DEA model is based on the slacks-
based measure model (SBM) developed by Tone 
(2001). This author presented a non-linear model, 
which was linearized using the linear transformation 
proposed by Charnes & Cooper (1962). The SBM 
model was selected because it does not require inputs 
in an output-oriented model, or it does not require 
outputs in an input-oriented model. In this way, it can 
evaluate solution methods that solve MOLP problems 
that have only maximization objective functions or 
only minimization objective functions. Moreover, the 
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non-dominated solutions that belong to the Pareto 
frontier will obtain a score equals to one, while the 
dominated solutions will obtain a score greater than 
zero and lower than one. This score represents the 
closeness to the Pareto frontier. 

The DEA model formulated in this study differs 
from SBM linear model because it considers binary 
variables. For this reason, it is called Integer-SBM 
(INT-SBM), and it evaluates solutions located in the 
non-convex region of the Pareto frontier. These 
solutions will obtain a score equals to one. 

The proposed DEA model must be executed for 
every solution j, where j0 represents the evaluated 
solution in a specific model execution.  

The INT-SBM formulation is: 

Minimize  𝜉௝బ
ൌ 𝑡 െ

1
𝑚

෍ 𝑆௜
ି

𝑥௜௝బ
ൗ

௠

௜ୀଵ

 (1)

 

Subject to 

1 ൌ 𝑡 ൅
1
𝑠

෍ 𝑆௜
ା

𝑦௥௝బ
൘         

௦

௥ୀଵ

,       (2)
 

𝑡𝑥௜௝బ
ൌ ෍ 𝑥௜௝𝜆௝

௡

௝ୀଵ

൅ 𝑆௜
ି,   𝑖 ൌ 1, … , 𝑚, (3)

 

𝑡𝑦௥௝బ
ൌ ෍ 𝑦௥௝𝜆௝

௡

௝ୀଵ

െ 𝑆௥
ା,   𝑟 ൌ 1, … , 𝑠, (4)

 

෍ 𝜆௝

௡

௝ୀଵ

ൌ 𝑡,   (5)

 

෍ 𝐴௝

௡

௝ୀଵ

ൌ 1, (6)

 

𝜆௝ ൒ 𝑡 െ ൫1 െ 𝐴௝൯, 𝑗 ൌ 1, … , 𝑛, (7)
 

𝜆௝ ൑ 𝑡 ൅ ൫1 െ 𝐴௝൯, 𝑗 ൌ 1, … , 𝑛, (8)
 

𝐴௝ ∈ ሼ0,1ሽ, 𝑗 ൌ 1, … , 𝑛, (9)
 

𝜆௝ ൒ 0, 𝑗 ൌ 1, … , 𝑛, (10)
 

𝑆௜
ି ൒ 0, 𝑖 ൌ 1, … , 𝑚, (11)

 

𝑆௥
ା ൒ 0, 𝑟 ൌ 1, … , 𝑠, (12)

 

𝑡 ൒ 0. (13)

The objective function (1) estimates the efficiency 
score based on the minimization of slacks associated 
to the minimized objective functions obtained by 

solution 𝑗଴ . Constraint (2) allows linearizing the 
objective function, making the expression related to 
the maximized objective function slacks equals to a 
constant value. Constraints (3) and (4) calculate the 
slacks of minimized and maximized objective 
functions, respectively. Constraint (5) establishes the 
convexity of the efficient frontier associated to the 
variable returns to scale Tone (2001). Constraints (6) 
to (8) allow linearizing 𝜆௝ ൈ 𝐴௝ , which are decision 
variables. Finally, constraints (9) to (13) establish the 
nature of the decision variables. 

In the INT-SBM model, 𝜉௝బ
 corresponds to the 

efficiency score of the evaluated solution 𝑗଴, which 
varies between zero and one. In this case, 𝜉௝బ

= 1 
represents a non-dominated solution. 

2.1.2 Super-Efficiency DEA Model  

Andersen & Petersen (1993) proposed the super-
efficiency DEA model for ranking all the evaluated 
units according to their efficiency score. This 
efficiency score could be greater than one, for an 
input-oriented model, or lower than one, for an 
output-oriented model. These values are possible 
because the data of every evaluated solution 𝑗଴ are not 
considered in the observed data of the DEA model for 
determining the DEA efficient frontier. 

In this study, an input-oriented super-efficiency 
DEA model (SE-DEA) was used, aiming to improve 
the discrimination among the non-dominated 
solutions. It is important to mention that the model 
orientation does not vary the identification of the 
super-efficient solutions’ set. In addition, the SE-
DEA model must be executed for every solution j, 
where j0 corresponds to the evaluated solution in a 
specific model execution.  

The SE-DEA formulation is: 

Minimize 𝛿௝బ ൌ 𝜃 (14)

Subject to 
 

෍ 𝜆௝𝑥௜௝

௡

௝ୀଵ
௝ஷ௝బ

൑ 𝜃𝑥௜௝బ
, 𝑖 ൌ 1, … , 𝑚, (15)

 

෍ 𝜆௝𝑦௥௝

௡

௝ୀଵ
௝ஷ௝బ

൒ 𝑦௥௝బ
, 𝑟 ൌ 1, … , 𝑠, 

(16)

 

෍ 𝜆௝

௡

௝ୀଵ
௝ஷ௝బ

ൌ 1, 
(17)

 

𝜆௝ ൒ 0, 𝑗 ൌ 1, … , 𝑛, (18)
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𝜃 free (19)

The objective function (14) minimizes the 
proportional reduction of the minimized objective 
functions obtained by solution 𝑗଴ . Constraint (15) 
establishes that the proportional reduction of the 
minimized objective functions obtained by solution 
𝑗଴ must be greater or equal than the composed target 
in the efficient frontier (left hand of the constraint). 
Constraints (16) estimates that the maximized 
objective functions obtained by solution 𝑗଴  must be 
lower or equal than the composed target in the 
efficient frontier (left hand of the constraint). 
Constraint (17) imposes the convexity of the efficient 
frontier, which is associated to the variable returns to 
scale (Banker et al., 1984). Constraints (18) and (19) 
establish the nature of the decision variables. 

In the SE-DEA model, 𝛿௝బ
 corresponds to the 

efficiency score of the evaluated solution 𝑗଴ . This 
efficiency score, differently from a traditional BCC 
input-oriented model (Banker et al., 1984), could 
achieve values greater than one or even the model 
could be infeasible. The necessary and sufficient 
conditions for infeasibility of SE-DEA models when 
variable returns to scale are considered (constraint 
17), are presented in the study of Seiford & Zhu 
(1999). Consequently, a solution 𝑗଴ that is an extreme 
point of the Pareto efficient frontier will have a 𝛿௝బ

 
value greater than one or the associated model could 
be infeasible. 

In the following sub-section, the performance 
metrics for evaluating MOLP solution methods and 
the steps for implementing them using the formulated 
DEA models are described. 

2.2 Performance Metrics for 
Evaluating MOLP Solution 
Methods 

As mentioned previously, the considered categories 
for evaluating MOLP solution methods are 
cardinality, accuracy, and diversity. The proposed 
metrics in every category and the steps for calculating 
them are presented as follows. 

2.2.1 Cardinality Metric - CM 

The cardinality metric (CM) represents the 
domination degree of the solutions obtained by a 
MOLP method. For this reason, it is a unary metric, 
using the information of a unique solution set. In this 
study, it is calculated using the INT-SBM model, 
where data of all the solutions ሺ𝑆ሻ  obtained by a 
solution method are evaluated. It is important to 

highlight that the dominated and non-dominated 
solutions obtained by a solution method are 
considered as observed data of the model. The 
following steps must be carried out for obtaining the 
cardinality metric CM. 

Step 1: Execute the INT-SBM model for every 
solution of set 𝑆. In this step, a vector Ξ is obtained, 
which corresponds to the vector of  𝜉௜ , the efficient 
measure of the INT-SBM model for every solution i 
of the set 𝑆. 

Step 2: Calculate the efficiency average of vector Ξ. 
This value will correspond to the cardinality metric 
CM. 

The cardinality metric CM is greater than zero, 
and lower than or equal to one. A value equal to one 
means that it does not exist any solution dominated 
by other in the set 𝑆. On the other hand, a value close 
to zero means that few non-dominated solutions exist 
in the set 𝑆. 

2.2.2 Accuracy Metric - AC 

The accuracy metric (AC) represents the domination 
degree of one MOLP solution method over other 
MOLP solution method. Furthermore, it is a binary 
metric because it needs two sets of non-dominated 
solutions for making the comparison. In this study, 
for estimating the accuracy metric AC, the INT-SBM 
model and the metafrontier approach, proposed by 
O’Donnell et al. (2008), are used together. The 
metafrontier approach allows classifying the non-
dominated solutions into different groups. In this 
way, two sets of non-dominated solutions, 𝑆ଵ and 𝑆ଶ, 
obtained by two different solution methods, are 
compared. The following steps must be carried out for 
estimating the proposed accuracy metric AC. 

Step 1: Execute the INT-SBM model for every non-
dominated solution of set 𝑆ଵ. In this step, a vector Ξଵ 
is obtained, which corresponds to the vector of  𝜉௜ , 
the efficient measure of the INT-SBM model for 
every non-dominated solution i of the set 𝑆ଵ. 

Step 2: Execute the INT-SBM model for every non-
dominated solution of set 𝑆ଶ. In this step, a vector Ξଶ 
is obtained, which corresponds to the vector of  𝜉௜ , 
the efficient measure of the INT-SBM model for 
every non-dominated solution i of the set 𝑆ଶ. 

Step 3: Execute the INT-SBM model for every 
solution belonging to the union of sets 𝑆ଵ and 𝑆ଶ. In 
this step, a vector Ξଷ is obtained, which corresponds 
to the vector of  𝜉௜ , the efficient measure of the INT-
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SBM model for solution i belonging to the union of 
sets 𝑆ଵ and 𝑆ଶ. 

Step 4: Separate the efficiency vector Ξଷ in two sets, 
efficiencies scores of solutions from set 𝑆ଵ (Ξଵ

ଷ), and 
efficiencies scores of solutions from set 𝑆ଶ (Ξଶ

ଷ). 

Step 5: Calculate the efficiency averages of vectors 
Ξଵ, Ξଶ, Ξଵ

ଷ, and Ξଶ
ଷ, individually. 

Step 6: Make the difference between the efficiency 
averages of vectors Ξଵ and Ξଵ

ଷ, which corresponds to 
AC1, and between Ξଶ and Ξଶ

ଷ, which corresponds to 
AC2. 

Step 7: Calculate the minimum value between AC1 
and AC2. This value will correspond to the accuracy 
metric AC. 

It is important to notice that AC is greater than or 
equal to zero, and lower than one. Moreover, the 
solution method with the minimum value AC will be 
the best method, meaning that this method obtains a 
lower number of dominated solutions than the other 
solution method.  

2.2.3 Diversity Metric - DM 

The diversity metric DM evaluates a change in the 
Pareto frontier when a new solution is added.  This is 
a unary metric because it uses the information of a 
unique solution set. In this study, the diversity metric 
DM is calculated using the SE-DEA model. In this 
model, the non-dominated solutions ሺ𝑁𝑆ሻ  obtained 
by a MOLP method are evaluated. The following 
steps must be carried out for obtaining DM. 

Step 1: Execute the SE-DEA model for every 
solution of the set 𝑁𝑆. A vector Δ is obtained, which 
corresponds to the vector of 𝛿௜, that is, a vector of the 
efficiency score obtained by the SE-DEA model for 
every solution i of the set 𝑁𝑆. 

Step 2: Identify the subset of 𝑁𝑆 that corresponds to 
extreme solutions. These solutions are those that in 
the step 1 obtained a 𝛿௜ value greater than one or the 
respective SE-DEA model is infeasible. This subset, 
denominated 𝐸𝑆, defines the Pareto frontier. 

Step 3: Calculate DM using equation (20). 

𝐷𝑀 ൌ
|𝐸𝑆|
|𝑁𝑆|

 (20)

The diversity metric DM is greater than zero, and 
lower than or equal to one. A value close to zero 
means that most of the solutions are a linear 
combination of extreme solutions in 𝐸𝑆 . A value 
equals to one means that all the solutions are not a 

linear combination of other extreme solutions in 𝐸𝑆. 
In this way, the best value for DM is one. 

3 RESULTS 

In this section, for calculating the proposed metrics, 
the solutions obtained by two MOLP methods are 
used. The solutions were obtained for a MOLP model 
based on the tactical harvest planning model proposed 
by Gómez-Lagos et al. (2021), where the same case 
study used in this article was analysed. In this MOLP 
model, the first objective corresponds to the harvest 
costs’ minimization (Z1); the second objective 
corresponds to the harvest days’ minimization (Z2); 
and the third objective corresponds to the harvest fruit 
in the optimal conditions’ maximization (Z3). The 
two applied MOLP methods are two solution 
strategies of the MO-GRASP algorithm (algorithms a 
and b) (Martí et al., 2015). 

Executing 1000 times every MO-GRASP 
algorithm for solving the MOLP model, two sets of 
solutions were obtained, 𝑆௔ and 𝑆௕; one set of 1000 
solutions for every algorithm. In Figure 1, the trade-
off between the objective function values obtained by 
the set 𝑆௔  are represented. The first trade-off 
corresponds to Z1 and Z2; the second, Z1 and Z3; and 
the third, Z2 and Z3. 

 

Figure 1: Objective function values of set 𝑆௔. 

A conflict between the objective functions can be 
observed in Figure 1 because when an objective 
function improves, the other deteriorates. 
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Figure 2: Objective function values of set 𝑆௕. 

Figure 2 represents the trade-off between the 
objective function values obtained by the set 𝑆௕. 

The conflict between the objective functions is 
also observed in Figure 2.  

Table 3 summarizes metrics calculated for both 
sets of solutions, 𝑆௔  and 𝑆௕ . In this way, it can be 
observed that the set 𝑆௔ obtains the best value for the 
cardinality metric CM (0.980). Regarding the 
accuracy metric AC, the set 𝑆௔ again achieve the best 
value (0.999), meaning that main of solutions of 𝑆௔ 
are not dominated by the solutions of 𝑆௕. Finally, for 
the diversity metric DM, both sets obtain low values. 
However, the set 𝑆௕  obtains the best value (0.131), 
meaning that around 13% are extreme-efficient 
solutions, that is, define the Pareto frontier.  

Table 3: Values of the performance metrics for 𝑆௔ and 𝑆௕. 

Set of 
Solutions 

CM AC DM 

𝑆௔ 0.980 0.999 0.101 

𝑆௕ 0.977 0.962 0.131 

From the values presented in Table 3, it could be 
suggested to select the algorithm a for solving the 
MOLP model because it has a best performance in the 
binary metric AC, and in the unary metric CM. 
Furthermore, for the unary metric DM, around 10% 
the solutions obtained by the algorithm a are extreme-
efficient, close to DM obtained by the algorithm b. 

4 CONCLUSIONS 

In this study, three performance metrics based on 
DEA models for evaluating MOLP solution methods 
were proposed. The considered metrics are associated 
to cardinality, accuracy, and diversity categories. A 
procedure for calculating every metric is presented 
and applied to a real case study, where two MO-
GRASP algorithms were compared. Therefore, the 
two sets of solutions obtained by every algorithm 
were used for estimating the metrics. For the 
cardinality and accuracy metrics based on the INT-
SBM efficiency score, it was possible to discriminate 
among the non-dominated solutions, independently 
of the frontier region where they were located. For the 
diversity metric based on the SE-DEA efficiency 
score, it was possible to identify the non-dominated 
solutions that determine the Pareto frontier. In this 
way, these metrics allow discriminating between the 
MOLP solution methods and even to select one. 

For future research, it could be interesting to 
explore DEA models where zero or negative values 
can be incorporated in the set of solutions. In addition, 
new DEA models could be explored in order to 
identify the non-dominated solutions located in non-
convex regions of the Pareto frontier. 
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