
Investigating How Introductory Programming Students Apply
Regulation Strategies

Deller James Ferreira a and Dirson Santos Campos b
Institute of Informatics, Federal University of Goiás, Alameda Palmeiras, Goiânia, Brazil

Keywords: Self-regulation, Co-regulation, Shared Regulation, Introductory Programming.

Abstract: Self-regulated learning is an important topic in introductory computer programming. Self-regulated learning
is defined as the degree to which students are active participants in their own academic learning with respect
to motivational, behavioral, metacognitive, and cognitive aspects. Another important aspect in programming
learning is the social regulation of learning, in which students co-regulate or share regulation of their
cognition, behavior, motivation and emotions, in situations of temporary coordination of regulation with
colleagues or teachers. Therefore, teaching and learning approaches in programming do not prioritize skills
aligned with self-regulation, co-regulation and shared regulation. Thus, the objective of this research is to
unveil the extent to which introductory programming students apply regulation strategies during
programming. An exploratory study involving 198 students, found evidence that a significant number of
students do not engage themselves in regulatory strategies during learning introductory programming.

1 INTRODUCTION

Undergraduate courses in computing often face high
levels of dropout and failure, especially in
introductory programming courses. Programming is
considered a difficult activity, due to the fact that
programming is a complex problem-solving task that
requires multiple cognitive demands on students
(Loksa and Ko, 2021).

Introductory programming courses present many
challenges for students, as they need to master a wide
range of skills both in terms of developing
programming skills and in terms of awareness and
mastery of the program code development process
(Falkner et al., 2014). The inefficient use of learning
strategies, such as self-regulation and shared
regulation, is one of the possible causes for a bad
programming learning performance (Soares, 2021).

Self-regulated learning is an important topic in
education, which involves the regulation of student
motivation, engagement, cognition and
metacognition. Self-regulated learning is defined as
the degree to which students are active participants in
their own academic learning with respect to

a https://orcid.org/0000-0002-4314-494X
b https://orcid.org/0000-0002-0878-8336

motivational, behavioral, metacognitive, and
cognitive aspects (Pintrich, 2000).

Bergin (2005) investigated the relationship
between self-regulated learning and introductory
programming performance and showed that self-
regulated learning is a useful predictor of
programming performance. Self-regulation includes
skills such as monitoring one's processes, reflecting
on whether the process is successful, monitoring
understanding of important concepts, and identifying
alternative strategies to solve problems (Loksa,
2020).

Another relevant aspect in programming learning
is the regulation in the collaborative learning. Group
regulation involves two aspects which are co-
regulation and shared regulation. Shared regulation is
understood as the social regulation of learning, in
which students temporarily regulate their cognition,
behavior, motivation and emotions in situations of
temporary coordination of regulation with peers or
teachers (Järvelä and Järvenoja, 2011). Co-regulation
refers to the dynamic metacognitive processes
through which one student helps regulate another
student's cognition, behavior, motivation and

Ferreira, D. and Campos, D.
Investigating How Introductory Programming Students Apply Regulation Strategies.
DOI: 10.5220/0011659000003470
In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU 2023) - Volume 2, pages 463-473
ISBN: 978-989-758-641-5; ISSN: 2184-5026
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

463

emotions, providing support in a transitional and
flexible way (Hadwin et al., 2018).

In computer programming, shared regulated
learning helps students improve their programming
skills as it provides students with a set of external
resources and skills, such as seeking social help,
evaluating others' ideas, and monitoring tasks (Tsai,
2015).

Furthermore, in computer science teaching, it is
important to prepare students for the challenges of
later professional practice, as well as providing
students with opportunities to develop self-
regulation, shared regulation and co-regulation skills,
through activities that enhance collaborative learning
and active (Wang et al., 2013).

Some research suggests that regulated learning is
a topic of great interest in computer education
research, but there are few theories, models, or tools
specific to the programming context (Prather et al,
2020; Szabo et al, 2020; Malmi et al, 2019).

Thus, self-regulation, co-regulation and shared
regulation strategies for programming are still not
well understood by computer science researchers or
educators, making it difficult to successfully develop
methods to promote self-regulation and shared
regulation learning. Regarding programming
teaching and learning, regulation is a recent topic,
demanding further research (Soares, 2021).

2 RESEARCH QUESTION

Given the above mentioned, the objective of this
research is to investigate in what extent introductory
programming students apply regulation strategies
during introductory programming. So, the research
question that leads this work is:
Research Question: How introductory programming
students apply regulation strategies during
programming?

3 LITERATURE REVIEW

The regulation strategies in programming involve
self-regulation, co-regulation and shared regulation.
This section approaches some research regarding
investigations on how students’ self-regulation, co-
regulation and shared regulation skills influence
programming learning.

3.1 The Importance of Self-regulation
for Programming Students

Two factors commonly associated with student
success or retention are student engagement and
motivation, which are linked to emotional and
behavioral self-regulation skills. According to
Abdullah and Yih (2014), motivation is one of the
characteristics that influence the way students
approach their learning, while engagement involves
students spending time and effort on learning
activities (Crisp et al., 2015). Programming students
have inadequate time management skills, which leads
them to complain about lack of time for their studies
or problem solving (Pereira et al., 2021).

According to Schoeffel (2019), motivation is the
stimulus for the desire to learn something or to
participate and succeed in the learning process.
Regarding motivational self-regulation strategies,
Keller (2017) proposed four categories that are
directly linked to it: attention, relevance, trust and
satisfaction. The lack of regulation of motivation can
cause a strong discrepancy between learning potential
and performance. This explains why highly qualified
students can perform poorly, while students with less
potential can be among the best.

Regarding motivation in programming students,
few studies have been conducted (Coto et al., 2022).
However, there is research evidence suggesting that
inappropriate teaching methods undermines learners’
motivation during learning programming and
pointing that there is a need for teaching methods
involving self-regulation strategies to improve
motivation (Darabi et al., 2022).

The literature also shows cognitive and
metacognitive reasons for failure in programming
courses. Among them, the need to face the challenge
of mastering multiple concepts, skills and computing
models to design, implement and test programs
(Robins et al., 2003). Another cognitive reason why
programming is difficult to learn, and one of recent
interest in the computer science education research
community, is the need to develop knowledge about
the problem-solving process (Loksa, 2020).

Knowledge of the problem-solving process is the
understanding of how to solve programming
problems, and using a problem-solving strategy is a
self-regulation skill of cognition. The problem-
solving process includes skills such as knowing how
to interpret and understand a programming problem
(Wrenn and Krishnamurthi, 2019), designing and
adapting algorithms, translating these algorithms into
a programming language notation (Xie et al., 2019),
verifying whether the implementation actually solves

CSEDU 2023 - 15th International Conference on Computer Supported Education

464

the problem through testing (Kaner and
Padmanabhan, 2007) and how to debug a program
when it does not do what was intended (Ko et al.,
2019).

For example, even if someone is already
mastering the basics of a programming language,
strong self-regulation skills can help them recognize
that they don't have a good understanding of how a
for loop runs in Python. This can cause them to
increase their understanding before continuing to
write or review their code. Or, when someone is
struggling to diagnose a flaw in their program, self-
regulation skills can help them recognize they are
struggling and seek expert guidance on how to more
productively diagnose the problem. Programming
research consistently shows that self-regulation skills
are strongly associated with success in solving
computational problems (Falkner et al., 2015).

Recent work shows, however, that most novices
have poor self-regulation skills, which are associated
with poor programming results (Hauswirth and
Adamoli, 2017). An example of a cognitive self-
regulation strategy for problem solving is problem
interpretation. When students interpret the problem
inaccurately, they are likely to use ineffective
strategies or fail to solve the problem. It is reported in
studies that students are often unable to
identify and articulate the problem objective,
requirements/constraints, and expected outcome. In
other words, students lack self-regulation skills,
especially related to task comprehension.

Among behavioral self-regulation strategies,
effort management, time management, and help-
seeking proved to be positively correlated with
academic outcomes (Daradoumis, 2021). Effort
management strategies help students focus their
attention on the task at hand and use their effort to
achieve it effectively. During this process, students
acquire skills that enable them to deal with failure,
persist and overcome difficulties. To this end, these
strategies foster motivation and commitment to
accomplishing your goals, even when there are
problems or distractions.

Time management strategies allow students to
acquire skills related to setting goals and priorities,
planning, self-monitoring, conflict resolution,
negotiation, task assignment, negotiation and
problem solving. Students succeed in time
management if they can maximize their use of time to
facilitate academic performance, balance, and
satisfaction (Daradoumis, 2021).

Help-seeking strategies involve processes of
seeking help from other people, such as the teacher or
peers, or other sources that facilitate the achievement

of desired goals in a learning environment. These
strategies are associated with student engagement and
can help students not only to meet their immediate
learning needs but also to improve their performance
by acquiring knowledge and skills and alleviating
difficulties, which ultimately improves
understanding, performance and subsequent
independence (Daradoumis, 2021).

Regarding metacognitive strategies, reflective
learning helps students to become more aware of the
learning process and its difficulties (Chang, 2019).
When students do effective self-reflection, they
analyze how they learned, how they understood the
goals of the learning process, and what it takes to
create the conditions for success.

Reflection also encourages students to think
critically about their abilities and reflect on strategies
to improve the learning process, making them aware
of the advantages of learning in the future and helping
them to develop transversal skills (Chang, 2019). The
interaction between students' commitment, self-
control, autonomy and self-discipline allows them to
regulate their own actions to achieve their learning
goals.

On the other hand, reflective learning provides
feedback to teachers, allowing them to readjust their
pedagogical experiences and tools. The use of the
reflective diary is a technique that reinforces and
stimulates reflection on the theoretical and practical
component of the work. In this context, to be
successful, students need the required disciplinary
knowledge, as well as develop self-regulation
strategies (Falkner et al., 2014). Developing self-
regulatory strategies is vital to helping students
achieve success. A self-regulated learner will define
their goals, organize their resources, and then manage
their time effectively. Without this fundamental level
of metacognition, they cannot direct their knowledge
in a useful and constructive way.

3.2 The Importance of Co-regulation
and Shared Regulation for
Programming Students

According to Cheng et al (2021), in addition to having
computer skills, students must also have collaborative
problem solving and teamwork skills. Most computer
science students arrive in the job market without the
necessary skills to meet employer expectations, such
as teamwork and the ability to cooperate (Pedrosa,
2019).

Although students acquire remarkable theoretical
knowledge throughout the course, they lack
transferable skills, such as soft skills, which are rarely

Investigating How Introductory Programming Students Apply Regulation Strategies

465

addressed in project management teaching
(Groeneveld, 2019). The ever-changing landscape of
software development requires computer scientists to
be equipped with skills beyond technical skills, such
as self-reflection, conflict resolution, communication,
teamwork, and creativity.

Collaborative learning is an approach that benefits
everyone involved, both in developing the ability to
work in groups and in sharing ideas and experiences.
Collaborative learning brings some advantages over
individual learning, mainly the possibility of
exchanging ideas and clarifying doubts due to the
interaction between students in a collective and social
scenario (Cukierman and Palmieri, 2014).

Peer learning is an active learning approach where
students simultaneously learn and share knowledge
together, for example, engaging students by asking
questions and promoting debate, providing
appropriate and constructive feedback, promoting
reflection and adapting practices. students'
pedagogical practices to enrich their learning.

In higher education, collaborative learning is a
useful and valuable strategy, as it trains students in
professional activities in which they work in groups,
providing students with several possibilities for
interaction, for example, questioning, exchange of
opinions and discussions. In addition, the synergy
between the group allows students to improve their
programming problem-solving skills (Chorfi, 2020).

Some authors have emphasized the usefulness of
collaboration in programming learning activity
(Hwang et al. 2012), especially with respect to
motivating students and improving participation in
activities. During collaborative learning sessions,
students achieve their learning objectives through, for
example, assignments, working together, and sharing
skills.

When comparing collaborative learning with
traditional learning, it is important to note that in the
context of programming learning, collaboration
encourages the exchange of ideas among students and
allows them to develop better learning processes,
skills, and outcomes (Hwang et al. 2008).

Regarding problem solving time, many authors
(McDowell et al. 2002) indicate that students who
learn in groups will consume less time to answer a
programming problem and make better solutions than
if they learned alone. Therefore, to succeed in
collaborative learning, students must acquire skills in
co-regulation and shared regulation.

4 RESEARCH METHOD

4.1 Procedures

In this work, we applied a 5-factor Likert scale
(Likert, 1932) questionnaire for data collection. A
questionnaire was designed to collect data on
students' perceptions of the use of regulatory
strategies, in order to assess the familiarity and
frequency of use of self-regulation, co-regulation and
regulation shared by introductory programming
students.

The questionnaire is divided into two main parts.
The first part was designed to assess whether self-
regulation strategies are used by students, according
to their perceptions. The questions in the first part
were based on the Motivated Strategies for Learning
Questionnaire (MSLQ) (Pintrich et al., 1983), being
adapted to the context of programming learning. The
second part was developed to measure group
regulation in programming, again according to the
students' own perceptions. The questions in the
second part were based on the Adaptive instrument
for Regulation of Emotions (AIRE) (Järvenoja et al.,
2013).

Two essential aspects when designing a
questionnaire are its validity and reliability. The
validity of an instrument refers to its ability to
measure what it was designed for, while reliability
refers to the extent to which items on the test or
instrument are measuring the same thing (Prous et al.,
2009). In order to attest to the validity and reliability
of the questionnaire qualitative and quantitative
methods were used.

First, there was the participation of six experts in
the computer science area to analyze whether the
selected questions were simple, clear, easy to
understand, cover relevant aspects of self-regulation,
co-regulation and shared regulation in programming
and are comprehensive enough. The experts'
evaluation is a validation of the questionnaire by
observation.

Second, we applied the questionnaire to students
in introductory programming courses for data
collections and analysis. Third, in order to verify the
reliability of the questionnaire, we applied the
Cronbach’s alpha statistical test (Cronbach, 1951) to
check if the questions on self-regulation were
consistent with each other, and also to check if the
questions on co-regulation and shared regulation
were consistent with each other.

CSEDU 2023 - 15th International Conference on Computer Supported Education

466

4.2 Participants

Respondents to the questionnaire were 198
undergraduate students of computer science,
computer engineering, medical physics, physical
engineering, statistics and electrical engineering
courses. The age range of the responding students was
between 17 and 36 years old, predominantly between
18 and 19 years old. 86.6% of the students self-
declared as being male, 12.5% of the students self-
declared as being female and 0.9 of the students self-
declared as being of the other sex, that is, neither male
nor feminine.

Regarding professional and academic experience
involving programming skills outside the classroom,
15.9% said they had no experience, 21.4% took
extracurricular courses, 7.1 worked as internship,
3.6% participated in a scientific research, 0.9%
participated in an extension project, 3.6% have 1 year
of experience, 1.8% have 1 to 3 years of experience,
0.9% have more than 3 years of experience, 0.9 % are
computer technicians, 0.9% took an online course and
0.9% had programming experience in high school.

4.3 Instruments

The questions of the questionnaire are described in
sections 4.3.1 and 4.3.2.

4.3.1 Self-regulation Questions

1. During the programming course, did I monitor my
performance and try to overcome any obstacles?
2. Did I motivate myself to participate in all
individual and group programming activities, even
when there was not much interest on my part? 3. Did
I use as motivation the fact that programming is
important for my course and my future profession? 4.
Did I seek help from classmates or the teacher when
I couldn't solve a programming problem? 5. Have I
found ways to focus on programming even when
there are sources of distraction? 6. Have I used time
management strategies and managed to finish my
programs? 7. Did I use the “divide and conquer”
strategy by thinking about each part of the program in
different modules? 8. Did I try to remain confident
during programming, telling myself that I could do it?
9. When studying introduction to computing, did I
look for different sources of information? 10. What
study sources did you use? 11. Have I used sketches,
diagrams or other types of drawings or sketches to
organize my ideas about the logic of programming
before coding? 12. Have I thought of different code
alternatives for the same computational problem? 13.

Did I review the lectures or look for supplementary
material when I could not make a program of the
practical class? 14. When studying Introduction to
Computing, did I set goals for myself to direct my
activities in each study period? 15. Did I adapt and
match programming patterns when coding my
programs? 16. Did I make an effort to participate in
the practical classes?

4.3.2 Co-regulation and Shared Regulation
Questions

1. With respect to computational solutions, have I tried
to question the teacher and colleagues looking for
evidence? 2. Did you use social media and other forms
of technology to communicate with classmates? 3.
What communication and collaboration technologies
did you use during the course? 4. In group projects,
did I try to motivate colleagues so that everyone
contributed to the construction of the programs? 5. Did
I contribute to a good working atmosphere during the
joint programming, facing difficulties with good
humor? 6. Have I valued colleagues' code parts and
contributed to improvements? 7. Have I treated my
colleagues with respect and used positive phrases such
as "Very good! Keep it up! Thank you! You've helped
us a lot now!"? 8. Have I tried to reconcile your goals,
priorities and learning style with those of my
colleagues? 9. Was the group work organized
together, trying to reconcile the preferences of the
members? 10. Was any time management strategy
used for group projects, such as Kanban or Scrum? 11.
Was any tool used to manage collaborative
programming, such as Trello or GitHub? 12. Did the
group use the “divide and conquer” strategy by
thinking about each part of the program in different
modules? 13. In group projects, was the commitment
of everyone in the group to compliance with the rules
and participation in programming activities monitored
and action taken if necessary? 14. In group projects,
were roles assigned to be played by students during
the writing of the program, such as writer, consultant,
editor and reviewer? 15. Was any joint programming
strategy used, such as the Coding Dojo? 16. In group
programming projects, was there reflection on the
quality of interactions and group performance, and
action taken when necessary? 17. Have group
interactions positively influenced my personal
performance?

4.3.3 Instrument for Questionnaire Analysis
by Experts

The experts answered the following Yes/No
questions: Are the questions simple, clear, easy to

Investigating How Introductory Programming Students Apply Regulation Strategies

467

understand? Do the questions cover relevant aspects
of self-regulation, co-regulation and shared
regulation in programming? Are the questions
parsimonious enough to ignore irrelevant aspects, but
do they sufficiently cover self-regulation, co-
regulation and shared regulation strategies?

4.3.4 Instruments for Data Analysis

For data analysis we utilized descriptive statistics. In
addition, we used a technique proposed by Tastle and
Wierman (2007), that makes it possible to identify for
each proposed statement, by means of a score, the
direction of the responses of all respondents for
agreement or disagreement. Therefore, firstly, for
each of the answer alternatives (options), a different
weight (P) is determined, being, respectively, for
totally disagree (TD), disagree (D), neutral (N), agree
(A) and totally agree (TA), the values 1, 2, 3, 4 and
5. Then, in order to identify the score for each
statement, the following formula applies: Score =
((nTD / ntotal) x 1)) + ((nD / ntotal) x 2)) + ((nN /
ntotal) x 3)) + ((nA / ntotal) x 4)) + ((nTA / ntotal) x
5)). Therefore, the final score of each statement is
obtained from the sum of the score of each of the five
answer options (TD; D; N; A; TA), which is achieved
by the percentage of responses (number of responses
of the alternative divided by the total number of
responses), multiplied by the corresponding P. For
the interpretation of the results found in the score, it
is considered that an affirmative has a “high” score
when the value is greater than or equal to four, as it
indicates evidence of partial or total agreement, while
a “low” score, with a value less than four, represents
disagreement with the proposed statement. The closer
the score value to five, the greater the tendency of
participants to fully agree with the statement, and,
consequently, the closer the value is to one, the more
likely it is that participants will totally disagree with
the statement.

5 RESULTS

5.1 Validity and Reliability of the
Questionnaire Applied to the
Students

The first result encompasses the analysis of the
questionnaire by specialists. The validation by
observation of the questionnaire, carried out by the
six experts, obtained a very favorable result. All six
experts answered "Yes" to all three questions of the

evaluative instrument posed to them, that was
described in subsection 4.3.3.

The second result concerns the internal
consistency of the questionnaire. The internal
consistency appraises the reliability of summated
scores derived from a Likert scale. Internal
consistency refers to the extent to which there is
compatibility and correlation among the responses to
multiple items comprising the Likert scale.

The Cronbach’s alpha statistical test was applied
to the first part of the questionnaire, involving the
self-regulation of students, to verify if the questions
are interrelated. Also, the Cronbach’s alpha statistical
test was applied to the second part of the
questionnaire, that covers the co-regulation and
shared regulation of students, to find out if the
questions are cohesive. The Cronbach’s alpha
coefficient interpretation is described in Table 1.

Table 1: Cronbach’s alpha coefficient interpretation
(Cronbach, 1951).

0.9 <= Alpha Excellent
0.8<= Alpha < 0.9 Good
 0.7<= Alpha < 0.8 Acceptable
 0.6<= Alpha < 0.7 Questionable

The values for the Cronbach’s Alpha coefficient
for the first and second part of the questionnaire are
in Table 2.

Table 2: Cronbach’s alpha coefficient for the first and
second part of the questionnaire.

Coefficient Self-regulation Co-regulation and
Shared regulation

Cronbach
alpha 0.795 0.881

According to Table 2, the Cronbach alpha
coefficient value obtained for the questions about
student self-regulation is 0.795. Therefore, following
the interpretation in Table 1, it can be said that the
questions involving self-regulation are correlated,
attesting to their internal consistency.

Similarly, according to Table 2, the Cronbach
alpha coefficient value obtained for the questions
about co-regulation and shared regulation among
students is 0.881. Thus, according to the
interpretation in Table 1, it can be said that the
questions concerning co-regulation and shared
regulation are correlated, indicating that they are
internally consistent.

CSEDU 2023 - 15th International Conference on Computer Supported Education

468

5.2 Students Perceptions of Their Use
of Regulatory Strategies

The descriptive Table 3 shows the percentage of
responses to self-regulation questions, while the
descriptive Table 4 shows the percentages of
responses to co-regulation and shared regulation
questions. In Tables 3 and 4, “QN” means “question
number”.

Given the distribution of the percentage of
answers in Table 3 and Table 4, we can observe that,
on most questions, the students' answers to the items
“Neutral”, “Disagree” and “Strongly Disagree” of the
Likert scale are more than 30% of the answers. This
result indicates that, according to the students'
perception, a considerable part of the students does
not use it frequently and, in some cases, do not master
regulatory strategies when learning initial computer
programming.

The scenario is worse for co-regulation and shared
regulation than for self-regulation. When comparing
the answers to the self-regulation questions (Table 3)
with the co-regulation and shared regulation
questions (Table4), we found that the students
perceive that they use even less strategies of co-
regulation and shared regulation.

Table 3: Percentage of responses for self-regulation
questions.

QN

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

1 19% 53% 23% 4% 1%
2 20% 53% 16% 8% 3%
3 33% 39% 18% 7% 3%
4 24% 36% 23% 11% 6%
5 13% 47% 27% 10% 3%
6 30% 30% 26% 12% 2%
7 14% 39% 26% 12% 9%
8 17% 34% 27% 15% 7%
9 30% 44% 16% 6% 4%
11 9% 27% 24% 20% 20%
12 17% 37% 26% 17% 4%
13 23% 42% 19% 9% 7%
14 10% 49% 27% 4% 10%
15 19% 35% 29% 13% 4%
16 27% 36% 20% 11% 6%

Concerning cognitive strategies of self-regulation,
only 53% of the students strongly agree and agree that
they use the “divide and conquer” strategy by
thinking about each part of the program in different
modules. The significant 26% of the students are
neutral, disagree, or strongly disagree that they look
for different sources of information when studying
introduction to computing. Students scarcely, just
36% of the students, strongly agree and agree that
they use sketches, diagrams or other types of

drawings or sketches to organize my ideas about the
logic of programming before coding. 47% of the
students are neutral, disagree, or strongly disagree
that think of different code alternatives for the same
computational problem. 35% of the students are
neutral, disagree, or strongly disagree that they
review the lectures or look for supplementary
material when they could not make a program. The
symbolic amount of 46% of the students are neutral,
disagree, or strongly disagree that they adapt and
match programming patterns when coding. These
results are worthy of attention, due to the fact they
provide evidence that a not inconsequential number
of students do not apply cognitive strategies of self-
regulation.

With regard to emotional strategies of self-
regulation, the considerable amount of 27% of the
students are neutral, disagree, or strongly disagree
that they motivate themselves to participate in all
individual and group programming activities, even
when there was not much interest on their part. 28%
of the students are neutral, disagree, or strongly
disagree that they use as motivation the fact that
programming is important for their course and their
future profession. 49% of the students are neutral,
disagree, or strongly disagree that they try to remain
confident during programming, telling themselves
that they could do it. These results indicate that a
significant number of students do not utilize
emotional strategies of self-regulation.

About behavioral strategies of self-regulation,
28% of the students are neutral, disagree, or strongly
disagree that they monitor their performance and try
to overcome any obstacles during the programming
course. 40% of the students are neutral, disagree, or
strongly disagree that they seek help from classmates
or the teacher when they couldn't solve a
programming problem. 40% of the students are
neutral, disagree, or strongly disagree that they use
time management strategies and manage to finish
their programs. 41% of the students are neutral,
disagree, or strongly disagree that they set goals for
themselves to direct their activities in each study
period, when studying introduction to computing.
37% of the students are neutral, disagree, or strongly
disagree that they make an effort to participate in the
practical programming classes. These results show
that a not negligible number of students do not utilize
a not negligible number of students do not utilize
behavioral strategies of self-regulation.

In the matter of contextual strategies of self-
regulation, 40% of the students are neutral, disagree,
or strongly disagree that they find ways to focus on
programming even when there are sources of

Investigating How Introductory Programming Students Apply Regulation Strategies

469

distraction. This result indicates that a relevant
number of students do not utilize contextual strategies
of self-regulation. These results point out that an
expressive number of students do not use contextual
strategies of self-regulation.

Table 4: Percentage of responses for co-regulation and
shared regulation questions.

QN Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

1 10% 30% 37% 16% 7%
2 44% 35% 10% 4% 7%
4 13% 27% 35% 11% 14%
5 13% 53% 26% 1% 7%
6 13% 50% 22% 2% 13%
7 25% 44% 19% 4% 8%
8 13% 38% 29% 12% 8%
9 19% 35% 26% 8% 12%
10 4% 9% 1% 19% 57%
11 4% 14% 15% 16% 51%
12 12% 33% 30% 12% 13%
13 13% 33% 32% 11% 11%
14 5% 16% 20% 16% 43%
15 3% 7% 19% 17% 54%
16 12% 26% 30% 11% 21%
17 17% 50% 24% 1% 8%

With respect to socio-cognitive strategies for co-
regulation and shared regulation, only 40% of the
students strongly agree and agree that they try to
question the teacher and colleagues looking for
evidence regarding computational solutions. 37% of
the students are neutral, disagree, or strongly disagree
that they value colleagues' code parts and contribute
to improvements. Only 51% of the students strongly
agree and agree that they try to reconcile your goals,
priorities and learning style with those of their
colleagues. Just 45% of the students strongly agree
and agree that they use the “divide and conquer”
strategy by thinking about each part of the program in
different modules. These results indicate that a
suggestive number of students do not utilize socio-
cognitive strategies for co-regulation and shared
regulation.

Concerning emotional strategies for co-regulation
and shared regulation, 34% of the students are
neutral, disagree, or strongly disagree that they
contribute to a good working atmosphere during the
joint programming, facing difficulties with good
humor. 33% of the students are neutral, disagree, or
strongly disagree that group interactions positively
influence their personal performance. 21% of the
students are neutral, disagree, or strongly disagree
that they use social media and other forms of
technology to communicate with classmates. Only
40% of the students strongly agree and agree that they
try to motivate colleagues so that everyone
contributes to the construction of the programs in

group projects. 21% of the students are neutral,
disagree, or strongly disagree that they treated my
colleagues with respect and used positive phrases.
These results reveal that an indicative number of
students do not use emotional strategies for co-
regulation and shared regulation.

Respecting behavioral strategies for co-regulation
and shared regulation, only 10% of the students
strongly agree and agree that they use joint
programming strategies. Just 38% of the students
strongly agree and agree that they reflect on the
quality of interactions and group performance and
take action when necessary during group projects.
Hardly 13% of the students strongly agree and agree
that they apply time management strategy in group
projects. Merely 18% of the students strongly agree
and agree that they use tools to manage collaborative
programming. These results reveal that an evidential
number of students do not apply behavioral strategies
for co-regulation and shared regulation during
introductory programming.

Regarding contextual strategies for co-regulation
and shared regulation, 54% of the students are
neutral, disagree, or strongly disagree that the group
commitment agrees to the group rules and they
monitor participation in programming activities and
take action if necessary. 20% of the students are
neutral, disagree, or strongly disagree that the group
works together, trying to reconcile the preferences of
the members. Only 10% of the students strongly agree
and agree that, in group projects, the roles are
assigned to be played by students during the writing
of the program, such as writer, consultant, editor and
reviewer. These results show that a significative
number of students do not use contextual strategies
for co-regulation and shared regulation when learning
introductory programming.

Table 5: Scores of self-regulation questions.

Question
Number

Self-regulation
Score

1 3.84
2 3.81
3 3.95
4 3.63
5 3.59
6 3.76
7 3.38
8 3.42
9 3.95
11 2.85
12 3.49
13 3.68
14 3.45
15 3.55
16 3.7

CSEDU 2023 - 15th International Conference on Computer Supported Education

470

Table 6: Scores of co-regulation and shared regulation
questions.

Question
Number

Co-regulation and
Shared Regulation
Score

1 3.2
2 4.08
4 3.13
5 3.65
6 3.49
7 3.75
8 3.37
9 3.41
10 1.87
11 2.08
12 3.18
13 3.26
14 2.23
15 1.88
16 3.01
17 3.69

Table 5 exhibits the score of responses to self-
regulation questions and Table 6 presents the scores
of responses to co-regulation and shared regulation
questions. The scores were calculated according to
the formula described in the section 4.3.

With reference to self-regulation strategies, no
score in Table 5 is greater than 4 nor equal to 4,
indicating that students judged that they do not use
self-regulation strategies during introductory
programming. A similar result was found when we
analyzed the scores of the responses on the strategies
of co-regulation and shared regulation. No score in
Table 6 is greater than 4 nor equal to 4, revealing that
students perceived that they do not apply co-
regulation and self-regulation strategies when
learning introductory programming.

Table 7: Global scores.

Score of All Self-Regulation
Questions 3.6

Score of All Co-regulation and
Shared Regulation Questions 3.08

Table 7 shows the global score for self-regulation
questions and the global score for co-regulation and
shared regulation questions. The global score was
calculated as the mean of the scores. Table 7 displays
a smaller global score for co-regulation and shared
regulation questions, unveiling that the students
perceive that they are even worse in utilizing co-
regulation and self-regulation strategies during
introductory programming.

6 CONCLUSIONS

The present study highlights the importance that
regulation strategies are effective ways to improve the
students’ learning experience. Self-regulated
learning is a relevant topic in introductory computer
programming, which involves the regulation of
student motivation, engagement, cognition and
metacognition. The same way as shared regulated
learning, which is understood as the social regulation
of learning and an important topic when students
learn programming in groups.

Therefore, programming teaching and learning
approaches do not prioritize skills aligned with self-
regulation, co-regulation and shared regulation.
Students trying to learn to program do not always
receive explicit training or support to develop the
regulatory skills necessary for programming.

The main goal of the present study was to explore
the students’ perspective of their use of regulation
strategies during programming. An exploratory study
involving 198 students, found evidence for the fact
that programming novices use regulation strategies to
a limited extent, calling attention to a demand for the
development and application of teaching approaches
to promote self-regulation, co-regulation and shared
programming in introductory programming courses.

Understanding students' perspectives on their
utilization of regulation strategies during
programming is an important addition to studies in
the computer science education field, because results
can broaden our understanding of regulation learning
approach. The results of this work will help when it
comes to designing future teaching and learning
approaches.

ACKNOWLEDGEMENTS

This work was partially funded by the Federal
University of Goiás.

REFERENCES

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the
role of self-regulated learning on introductory
programming performance. In Proceedings of the first
international workshop on Computing education
research, 81–86. ACM.

Burridge, J., & Fekete, A. (2022). Teaching programming
for first-year data science. In ITiCSE’22, 27th ACM
Conference on Innovation and Technology in Computer
Science Education Vol. 1.

Investigating How Introductory Programming Students Apply Regulation Strategies

471

Chang, B. (2019). Reflection in learning. Online Learning,
23(1), 95–110. http://doi.org/10.24059/olj.v23i1.1447

Cheng, Y., Shen, P., Hung, M, Tsai, C., Lin, C., & · Hsu,
L. C. (2021) Applying online content‐based knowledge
awareness and team learning to develop students’
programming skills, reduce their anxiety, and regulate
cognitive load in a cloud classroom. Universal Access
in the Information Society, 21, 557–572.
https://doi.org/10.1007/s10209-020-00789-6

Chorfi, A., Hedjazi, D., Aouag, S. & Boubiche, D. (2020).
Problem-based collaborative learning groupware to
improve computer programming skills. Behaviour &
Information Technology, 139-158. https://doi.org/10.
1080/0144929X.2020.1795263

Coto, M., Mora, S., Grass, B., & Murillo-Morera, J. (2022).
Emotions and programming learning: systematic
mapping. Computer Science Education, 32(1), 30–65.
http://doi.org/10.1080/08993408.2021.1920816

Crisp, G., Taggart, A., & Nora, A. (2015). Undergraduate
Latina/o Students: A Systematic Review of Research
Identifying Factors Contributing to Academic Success
Outcomes. Review of Educational Research, 85(2),
249–274.

Cronbach, L.J. (1951). Coefficient alpha and the internal
structure of tests. Psychometrika, 16 (3), 297–334.
http://doi.org/10.1007/BF02310555

Cukierman, U. R., & Palmieri, J. M. (2014). Soft skills in
engineering education: A practical experience in an
undergraduate course, in Interactive collaborative
learning. In 2014 International Conference on
Interactive Collaborative Learning. 237–242.

Darabi, K., Gholamzadeh Jofreh, M., & Shahbazi, M.
(2022). The role of self-regulation training in self-
efficacy and academic motivation of male tenth graders
in Ahvaz, Iran. International Journal of School Health,
9(2), 106-112. http://doi.org/10.30476/intjsh.2022.945
43.1210

Daradoumis, T., Marquès Puig, J.M., & Arguedas, M.
(2021). A distributed systems laboratory that helps
students accomplish their assignments through self-
regulation of behavior. Educational technology
research and development, 69, 1077–1099.
https://doi.org/10.1007/s11423-021-09975-6

Falkner, K., Vivian, R., & a Falkner, N. (2014). Identifying
computer science self-regulated learning strategies. In
2014 Conference on Innovation & technology in
computer science education (ITiCSE '14). Association
for Computing Machinery, New York, NY, USA, 291–
296.

Falkner, K., Szabo, C., Vivian, R., & Falkner. N. (2015).
Evolution of software development strategies. In 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, 2, 243–252. IEEE, 2015.

Groeneveld, W., Vennekens, J., & Aerts, K. (2019).
Software Engineering Education Beyond the Technical:
A Systematic Literature Review. In Proceedings of the
47th SEFI Conference 2019.

Habib, A., Abdullatif, M., & Alzayani, N. J. (2021). Use of
Rubric and Assessment to Encourage Self-Regulated

Learning. In IEEE Integrated STEM Education
Conference (ISEC), 195-200.

Hadwin, A., Järvelä, S., & Miller, M. (2018). Self-
regulation, co-regulation, and shared regulation in
collaborative learning environments. In D. Schunk, &
J. Greene, (Eds.). Handbook of self-regulation of
learning and performance (2nd ed.). New York, NY:
Routledge.

Hauswirth, M., & Adamoli, A. (2017). Metacognitive
calibration when learning to program. In 17th Koli
Calling International Conference on Computing
Education Research, Koli Calling ’17, 50–59, New
York, NY, USA. ACM.

Hwang, G., Wang, S., & Lai, C. (2021). Effects of a social
regulation-based online learning framework on
students' learning achievements and behaviors in
mathematics. Computers and Education, 160, 1–19.

Järvenoja, H., Volet, S., & Järvelä, S. (2013). Regulation of
emotions in socially challenging learning situations: An
instrument to measure the adaptive and social nature of
the regulation process. Educational Psychology, 33(1),
31–58.

Kaner, C., & S. Padmanabhan, S. (2007). Practice and
Transfer of Learning in the Teaching of Software
Testing. In CSEET'07, 20th Conference on Software
Engineering Education & Training, Dublin, Ireland,
157-166. http://doi.org/10.1109/CSEET.2007.38.

Keller M. (2017). Motivation, learning, and technology:
applying the ARCS-V motivation model. Participatory
Educational Research, 3(2), 1–13.
http://dx.doi.org/10.17275/per.16.06.3

Ko, A. J., LaToza, T. D., Hull, S., Ko, E. A., Kwok, W.,
Quicho-cho, J., Akkaraju, H., & Pandit, R. (2019).
Teaching explicit programming strategies to
adolescents. In P 50th ACM Technical Symposium on
Computer Science Education, 469–475. ACM.

Loksa, D. (2020). Explicitly training metacognition and
self-regulation for computer programming. A
dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy
University of Washington.

Loksa, D., & Ko, A. J. (2016). The role of self-regulation
in programming problem solving process and success.
In ICER’16, 12th ACM Conference on International
Computing Education Research.

Likert, R. A. (1932). Technique for the measurement of
attitudes. Archives in Psychology, 140, 1–55.

McDowell, C., Werner, L., Bullock, H., & Fernald., J.
(2002). The effects of pair programming on
performance in an introductory programming course. In
33rd SIGCSE Technical Symposium on Computer
Science Education. ACM SIGCSE Bulletin 34(1), 38–
42.

Malmi, L., Sheard, J, Kinnunen, P., Simon, & Sinclair, J.
(2019). Computing education theories: what are they
and how are they used?. In 2019 ACM Conference on
International Computing Education Research,
(Toronto ON, Canada) (ICER ’19). ACM, New York,
NY, USA, 187–197.

CSEDU 2023 - 15th International Conference on Computer Supported Education

472

Pedrosa, D., Cravino, J. Morgado,L., & Barreira, C. (2019).
Co-regulated learning in computer programming:
students co-reflection about learning strategies adopted
during an assignment. Avalable at https://
www.scielo.br/j/prod/a/fZqTXHD3BVhchGH9553GS
VP/?lang=en

Pereira, F. T. S. S., Rosa, N. S., Silva, D. C., Pereira, C. P.,
& Bittencourt, R. A. A. (2021). Remote CS0 workshop
based on peer learning: motivation, engagement and
self-regulation of novice programmers. In 12th IEEE
Global Engineering Education Conference, Viena,
Áustria.

Pintrich P. R. (1993). Reliability and predictive validity of
the motivated strategies for learning questionnaire
(MSLQ). Educational and Ppsychological
Measurement, 53(3), 801–813.

Pintrich P. R. (2000). The Role of Goal Orientation in Self-
Regulated Learning. The University of Michigan, Ann
Arbor, Michigan.

Prather, J., Becker, B. A., Craig, M., Denny, P., Loksa, D.,
& Margulieux. L. (2020). What Do We Think We
Think We Are Doing? Metacognition and Self-
Regulation in Programming. In Proceedings of the
2020 ACM Conference on International Computing
Education Research (ICER '20). Association for
Computing Machinery, New York, NY, USA, 2–13.

Prous, G., Salvanés, R., & Ortells, C. (2009). Validation of
questionnaires. Reumatología Clínica, 5(4), 171–177.
https://doi:10.1016/j.reuma.2008.09.007

Schoeffel, P. (2019) A method to predict at-risk students in
introductory computing courses based on motivation.
Thesis submitted to the Graduate Program in Computer
Science at the Federal University of Santa Catarina to
obtain the title of Doctor in Computer Science.

Szabo, C., Falkner, N., Petersen, A., Bort, H., Cunningham,
K., Donaldson, P., Hellas, A., Robinson, J., & Sheard,
J. (2019). Review and Use of Learning Theories within
Computer Science Education Re- search: Primer for
Researchers and Practitioners. In Proc. of the WG
Reports on Innovation and Technology in Comp Sci
Education, (Aberdeen, Scotland Uk) (ITiCSE- WGR
’19). ACM, NY, USA, 89–109.

Soares, L. (2021). Fostering programming student’s
regulation of learning using a computer-based learning
environment. In SIIE’21, 23rd International Symposium
on Computers in Education.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning
and teaching programming: A review and discussion.
Computer science education, 13(2), 137–172.

Tastle, W. J., & Wierman, M. J. (2007). Consensus and
dissention: a measure of ordinal dispersion.
International Journal of Approximate Reasoning, 45,
531–545. https://doi.org/10.1016/j.ijar.2006.06.024

Tsai, C.W. (2015). Applying web-based co-regulated
learning to develop students’ learning and involvement
in a blended computing course. Interactive Learning
Environments, 23(3), 344–355.

Wang, C.H., Shannon, D., Ross, M. (2013). Students’
characteristics, self-regulated learning, technology self-

efficacy, and course outcomes in online learning.
Distance Education, 34(3), 302– 323.

Wrenn, J., & Krishnamurthi, S. (2019). Executable
examples for programming problem comprehension. In
2019 ACM Conference on International Computing
Education Research, 131–139. ACM.

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J.,
Dong, D. Kwik, H., Tan, A. H., Hwa, L., Li, M. &
Ko, A. J. (2019). A theory of instruction for
introductory programming skills. Computer Science
Education, 29(2), 205-253. http:// doi.org/10.1080/
08993408.2019.1565235.

Investigating How Introductory Programming Students Apply Regulation Strategies

473

