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Abstract: Fourier single-pixel imaging (FSI) is able to reconstruct images by sampling the information in the Fourier
domain. The conventional sampling method of FSI acquires the low frequency Fourier coefficients to obtain
the image outlines but misses out on the image details in high frequency bands. The variable density sampling
method improves the image quality but follows a predefined mechanism where the power of image information
decreases when frequency increases. In this paper, an adaptive approach is proposed to sample the Fourier
coefficients based on probability estimation. While the low frequency Fourier coefficients are fully sampled
to secure the image outlines, the high frequency Fourier coefficients are sparsely sampled adaptively, and the
image is reconstructed through Compressed sensing (CS) algorithm. Results show that the proposed adaptive
FSI sampling method improves the image quality with sampling ratio ranging from 0.05 to 0.25, as compared
to the commonly used conventional low frequency sampling and variable density sampling methods.

1 INTRODUCTION

Single-pixel imaging (SPI) is a paradigm that is only
equipped with a spatially unresolved detector i.e.
single-pixel detector, as compared to a conventional
imaging system which employs a pixelated detector
i.e. charge-coupled device or complementary metal
oxide semiconductor (Gibson et al., 2020). SPI sys-
tem enables the possibility of building a compact and
fast imaging device at low cost, serving as an im-
portant alternative, especially in low light or unusual
wavelength conditions. Choices for a single-pixel de-
tector include a photon multiplier tube, a photodiode
or a single-pixel of an image sensor (Qiu et al., 2020).
Since the SPI technique was founded, it has been
used in various applications such as terahertz imag-
ing, 3D imaging (Sun et al., 2013), gas leaking detec-
tion (Gibson et al., 2017), underwater imaging (Wu
et al., 2020), etc (Yu et al., 2016).

SPI samples a scene using only a single-pixel
detector and a series of light modulation patterns.
The image is then reconstructed from the measure-
ments acquired by the detector with the help of recon-
struction algorithms. In general, image quality and
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computational complexity are the major concerns in
SPI (Shin et al., 2021a; Woo et al., 2022). By in-
troducing compressed sensing (CS) techniques, the
number of measurements needed is greatly reduced
to sub-Nyquist sampling rate. Pseudo-random pat-
terns are commonly used in SPI while determinis-
tic patterns have become popular more recently (Shin
et al., 2021b). Hadamard single-pixel Imaging (HSI)
and Fourier single-pixel Imaging (FSI) are the most
well-known deterministic models-based techniques,
using Hadamard and Fourier basis patterns respec-
tively (Zhang et al., 2017; Yu et al., 2020). FSI is
more advantageous in term of the image energy con-
centration as compared to HSI. Under low-sampling
condition, FSI is more efficient and performs better
than HSI (Zhang et al., 2017).

Zhang et al. introduced SPI through the means
of Fourier spectrum acquisition (Zhang et al., 2015)
and later presented different sampling strategies i.e.
orderings of the Fourier basis patterns used. Conven-
tionally, only the low frequency Fourier coefficients
are sampled (Zhang et al., 2017). A sparse Fourier
single-pixel imaging (S-FSI) sampling method was
proposed by Meng et al. (Wenwen et al., 2019), where
the sampling probability for a sampling point is in-
versely proportional to the distance from the center
of the Fourier spectrum, namely the variable density
sampling method. It improves the reconstructed im-
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age in terms of signal-to-noise ratio (SNR) and object
details compared to conventional FSI sampling (Hu
et al., 2021). The downside of the existing variable
density sampling method is that since the probability
of sampling is predetermined by the distance of the
sampling points from the center of Fourier spectrum,
the sampling pattern is always fixed regardless of the
nature and characteristics of the image. Clearly, this
sampling mechanism might not be a suitable solution
for all kinds of images.

The adaptive sampling method has been studied
recently to address the aforementioned problem. In
2020, Liang et al. proposed an adaptive sampling
trajectory based on a rough estimation of spectrum
energy distribution. This method requires additional
sampling and interpolation processes for the estima-
tion (Liang et al., 2020). An adaptive sampling
method based on Gaussian random sampling was pro-
posed, where the density of the variable density sam-
pling is based on the importance of Fourier coeffi-
cients according to 1D Gaussian function (Qiu et al.,
2021). Another adaptive sampling method based
on radial correlations has been proposed to produce
decent image reconstruction without CS (He et al.,
2021). In addition, dynamic ordering of sampling
patterns based on an image dictionary was proposed
(Yuan et al., 2021). Although this method is able to
provide adaptive and dynamic ordering of sampling
patterns based on the feedback of the recorded mea-
surements, it requires a huge dataset to be trained be-
fore applying the image dictionary.

In this paper, an adaptive FSI sampling method
based on the estimation of probability sampling
is proposed without the need for training datasets.
Fourier coefficients are fully sampled in the low fre-
quency bands while the high frequency coefficients
are sparsely sampled adaptively. The probability of
sampling the next sampling point is decided based
on the Fourier coefficient of the point sampled. This
estimation is repeated in the sampling process until
the targeted sampling ratio is met. Finally, the im-
age is reconstructed using the CS algorithm. The re-
sult shows that the proposed adaptive FSI sampling
method is able to produce better image quality overall
compared to the conventional sampling and variable
density sampling methods that are commonly imple-
mented.

2 METHODOLOGY

In this section, the operating principle of conven-
tional FSI and variable density sampling method is
introduced to provide necessary background infor-

mation. Subsequently, the proposed adaptive sam-
pling method is presented. In addition, the evaluation
method is explained for the performance comparison.

2.1 Conventional FSI

FSI utilizes Fourier basis patterns to acquire the spec-
trum of the scene and then utilizes inverse fast Fourier
transform (IFFT) to reconstruct the scene. The inter-
nal products of the targeted scene and the projected
Fourier patterns are measured using a single-pixel
detector, and all Fourier coefficients are processed
through phase-shifts as shown in Eq. (1) (Qiu et al.,
2021).

Pφ(x,y; fx, fy) = a+b · cos(2π fxx+2π fyy+φ) (1)
where x and y are the 2D Cartesian coordinates from
the captured scene, while ( fx, fy) denotes the spatial
frequency, a represents the DC component, b is the
contrast, and φ indicates the initial phase. Eq. (2) can
be utilized to determine the reflected intensity from
the targeted scene.

Iφ( fx, fy) =
∫∫

Ω

r(x,y)Pφ(x,y; fx, fy)dxdy (2)

where Ω denotes the region of the targeted scene,
while r represents the reflectivity distribution of the
target object from the captured scene. As ambient
lights fluctuate, the overall response of the detector
is given in Eq. (3).

Tφ( fx, fy) = Tn + kIφ( fx, fy) (3)
where k is decided based on the size of the detector,
while Tn indicates the ambient light measured.

Both the 4-step FSI and the 3-step FSI are ac-
ceptable but 3-step FSI reduces the measurement time
by 25%. Therefore, despite the fact that 4-step FSI
is more robust, 3-step FSI is preferred in practice.
With a fixed phase of △φ(i.e.,0,2π/3,4π/3), 3-step
FSI enables the acquisition of each Fourier coefficient
based on every three corresponding illumination pat-
terns (Hu et al., 2021). Each complex Fourier coeffi-
cient F( fx, fy) can therefore be obtained as:

F( fx, fy)= (2T0−T2π/3−T4π/3)+
√

3 j(T2π/3−T4π/3)
(4)

The image can then be reconstructed by utilizing
IFFT, as shown in Eq. (5).

r∗ = IFFT (F +n) (5)
where r∗ is the under-sampled reconstructed image
with noise n.

The conventional sampling method concentrates
on the information in the low frequency bands of the
Fourier space. Hence, only low frequency Fourier
coefficients are acquired. Ringing artifacts and blur
can occur since r∗ lacks of high frequency coefficients
(Hu et al., 2021; Mdrafi and Gurbuz, 2020).
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2.2 Variable Density Sampling Method

Variable density FSI proposes a sampling probability
based on the distance from the centre of the Fourier
spectrum, as shown in Eq. (6) (Wenwen et al., 2019).
As such, the power of image information slowly de-
creases from low to high frequencies.

ρ =

{
1, r ≤ R
(1− r)ε,r > R (6)

r denotes the distance of the sampling point to the spa-
tial center of Fourier spectrum, R is the radius thresh-
old in terms of sampling ratio, and positive coefficient
ε is to adjust the sampling probability (Wenwen et al.,
2019).

The image reconstructed using variable density
FSI tends to have more noise compared to the con-
ventional sampling method but the conventional sam-
pling method observes significant oscillation. By us-
ing the CS technique, the excessive noise can be sup-
pressed with the cost of computation time and re-
sources.

2.3 Proposed Adaptive Sampling
Method

The proposed adaptive sampling method determines
the probability density, ρ as shown in Eq. (7).

ρ =

{
1, r ≤ R
coe f f

X ,r > R
(7)

The proposed method suggests to fully sample the low
frequency bands, represented by R. r denotes the dis-
tance of the sampling point to the spatial center of the
Fourier spectrum. The probability of sampling the
next sampling point is decided based on the Fourier
coefficient of the point sampled coe f f and thresh-
old X which can be determined based on the low fre-
quency coefficients sampled, as shown in Eq. (8). The
threshold X is calculated based on the processed in-
tensity matrix I which is unique per image.

X = I(:, :,1)− I(:, :,2)+ I(:, :,3)i− I(:, :,4) (8)

As such, the probability density, ρ can be determined.
Basically, Fourier coefficients in the low frequency
bands are fully sampled meanwhile the coefficients in
the high frequency bands are sparsely sampled adap-
tively. This estimation is repeated in the sampling
process until the targeted sampling ratio is met.

2.4 Evaluation Method

Peak Signal to Noise Ratio (PSNR) represents the ra-
tio between the maximum power possible of a signal

and noise corruption that affects the fidelity of the im-
age’s representation and are used to measure the qual-
ity of the reconstructed image. PSNR is defined base
on Mean Square Error(MSE):

MSE =
1

M ∗N

M−1,N−1

∑
i=0, j=0

[I(i, j)−K(i, j)]2 (9)

PSNR is calculated as follow:

PSNR = 10log10

[
MAX2

i
MSE

]
(10)

where MAX2
i represents the maximum possible value

of the pixels in the image and MSE is the mean square
error. The higher the PSNR, the better the quality of
the reconstructed image.

Root Mean Square Error (RMSE) represents the
differences between the reconstructed image and the
captured scene. It is calculated as:

RMSE =
√

MSE (11)

where lower values of RMSE indicates a better fit be-
tween two images with the value of 0 implying that
ground truth and reconstructed image are identical.

Structural Similarity Index (SSIM) is a well-
known perceptual metric that is commonly used to
quantify image quality degradation. Unlike PSNR,
SSIM indicates the image’s visible structure. SSIM
is calculated as:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(12)

where µx and µy denote the pixel sample means of x
and y respectively, σ2

x and σ2
y indicates the variance of

both x and y. SSIM value ranges from 0 to 1, with the
value of 1 implying an identical match between the
ground truth and the reconstructed image.

3 RESULTS AND DISCUSSION

The study was performed using a computer equipped
with an Intel(R) Core (TM) i7-11700F CPU, 32 GB
RAM, and MATLAB 2021a. L1-Magic library was
employed for the post-IFFT reconstruction with CS.
All images were processed in a resolution of 256x256.

The performance of the proposed method is ana-
lyzed for different sampling ratios SR ranging from
0.05 to 0.25 and compared with three existing meth-
ods i.e. conventional sampling method based on cir-
cular path, variable density method (polynomial) and
line mask sampling method (Qiu et al., 2021; Candes
et al., 2006). Figure 1 illustrates the sampling pattern
for the (a) conventional sampling method, (b) variable
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Figure 1: Sampling pattern illustration for (a) conventional
sampling based on circular path, (b) variable density sam-
pling (polynomial), (c) line mask sampling, and (d) the pro-
posed adaptive sampling method.

density method, (c) line mask sampling method, and
(d) the proposed adaptive method.

The radius threshold R is set to the same value
for both the variable density sampling method and the
proposed method. For SR= 0.05, R is set to 0.03 sam-
pling ratio while for the other SR > 0.05, R is set to
0.05 sampling ratio. Besides, the value of ε for the
variable density sampling method is set as 2. With
the radius R of the fully sampled low frequency bands
being set to 0.05 sampling ratio, a unique threshold
value, X for a particular image can be determined as
shown in Figure 2.

The results comparison for two test images, ‘Pi-
rate’ and ‘USAF chart’ are shown in Figure 3 and
Figure 4. The reconstructed images using four dif-
ferent methods with sampling ratio SR ranging from
0.05 to 0.25 are shown respectively. The image qual-
ity is indicated by the PSNR, SSIM, and RMSE value,
which serves as the quantitative comparison between
the methods. It can be seen that when the sampling ra-
tio SR increases, all four methods reconstruct images
with better quality. For test image ‘Pirate’, the con-
ventional sampling method which only samples the
low frequency bands performs relatively better than
the variable density sampling. This could be due to
the characteristics of the test image which has more
significant information in the low frequency bands.
The proposed adaptive sampling method shows the
best image quality among all four methods. For test

Figure 2: Threshold value, X estimated in the proposed
adaptive FSI method for different test images.

image ‘USAF chart’, the variable density and the pro-
posed adaptive sampling method outperform the con-
ventional FSI and line mask sampling method in low
sampling ratio, while line mask sampling method is
comparable in high sampling ratio. This is because
these methods are able to obtain high frequency de-
tails at the same time securing most image outline in-
formation in the low frequency bands.

Additional images, ‘Boat’, ‘Cameraman’, ‘Moon’
and ‘Fruits’ were tested and the results comparison
using different sampling methods is summarized in
Table 1. Note that the conventional sampling method
outperforms the variable density sampling method on
images with a more center focused spectrum such as
‘Boat’ and ‘Fruits’, while the variable density sam-
pling method performs better on a sparser spectrum
such as ‘Cameraman’ and ‘Moon’. It is worth noting
that the proposed adaptive sampling approach gives
the best image quality for all cases as compared to the
variable density sampling method.
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Figure 3: Results comparison of different sampling methods for test image ‘Pirate’. Note that the conventional sampling
method which focuses on sampling the low frequency Fourier coefficients performs relatively better than the variable density
sampling. The proposed adaptive sampling method shows the best image quality among all four methods.
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Figure 4: Results comparison of different sampling methods for test image ‘USAF chart’. Note that the variable density
sampling outperforms the conventional sampling method while the proposed adaptive sampling method still shows the best
image quality among all four methods overall although line mask sampling method yield higher PSNR and lower RMSE when
sampling ratio increases.
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Table 1: Results comparison of different sampling methods for test image ‘Boat’, ‘Cameraman’, ‘Moon’ and ‘Fruits’. Note
that the conventional sampling method outperforms the variable density sampling method on images with a more center-
focused spectrum such as ‘Boat’ and ‘Fruits’, while the variable density sampling method performs better on a sparser spec-
trum such as ‘Cameraman’ and ‘Moon’. The proposed adaptive sampling method still shows the best image quality among
all four methods.

4 CONCLUSIONS

This paper proposes an adaptive approach to sample
an image in the Fourier domain, which is proven to re-
construct high quality images with sub-Nyquist sam-
pling rate. The proposed method suggests to fully
sample the low frequency Fourier coefficients to se-
cure the image outlines and adaptively sample the
high frequency coefficients in a sparse manner based
on the estimation of probability sampling. Accord-
ingly, the image is reconstructed using the CS algo-
rithm. Based on the results obtained, the proposed
adaptive sampling method gives better image quality
with sampling ratio ranging from 0.05 to 0.25 as com-
pared to the existing methods i.e. conventional sam-
pling strategy based on circular path, variable density
strategy (polynomial) and line mask sampling. With
the adaptive characteristic of the proposed sampling
approach, it is able to perform well for various im-
ages while both the conventional sampling and vari-
able density sampling methods do not work well in
some images with peculiar Fourier spectrum patterns.

However, there are some possible improvements
to be considered for the proposed method in the fu-
ture. First of all, the mechanism to decide the sam-
pling probability for spectrum points can be enhanced

by considering other conditions such as the difference
in Fourier spectrum patterns. Furthermore, the CS al-
gorithm to reconstruct the images is computationally
expensive. By optimizing the algorithms to reduce the
computational time and complexity, it is hoped to im-
prove the overall efficiency of the proposed adaptive
sampling method.
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