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Abstract: Sensor redundancy is often relied upon the method in various applications to ensure robust and secure opera-
tion. Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS) are no exceptions. camera
and LiDAR are the principle sensors that are used in both applications. LiDAR is primarily used for object
localization due to its active nature. A camera on the other hand is used for object classification owing to its
dense response. In this paper, we present a novel neural network and training methodology for camera-based
reinforcement of LiDAR object classification. The proposed method is also useful as a domain adaptation
framework in an unknown environment. A pre-trained LiDAR-based object classification network is itera-
tively trained based on camera classification output to achieve continual improvement while in operation. The
proposed system has been tested on benchmark datasets and performs well when compared with the state of
the art.

1 INTRODUCTION

AD application uses multiple sensors to detect on-
road objects such as pedestrians, cars, buses, etc as
part of the perception stack. The most widely used
sensors for this purpose are LiDAR, RADAR, and
camera. Each sensor has its advantages and disad-
vantages. Multi-sensor fusion is used for improving
the accuracy of detection and classification. Given the
dense sensor response, the camera has always been
preferred over LiDAR for object classification. How-
ever, LiDAR is preferred for object localization owing
to its three-dimensional and active response. More-
over, the usage of multiple sensors adds redundancy
to environment perception and guards against sensor
failures.

In recent years, huge progress has been made
in object detection and classification using deep
learning-based methods. Deep Learning-based object
detection on LiDAR point cloud has excellent local-
ization but modest classification performance. There
have also been several deep learning-based camera
and LiDAR fusion-based methods for the classifica-
tion and detection of objects in ADAS and AD sce-
narios.
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However, deep learning-based methods require
a huge amount of labelled data for training the
neural network-based models. Moreover, any pre-
trained standalone or fusion-based algorithm requires
domain-specific training for deploying in a particular
environment, which again is a time-consuming pro-
cess as it requires data recording and ground truth
generation in that particular domain. It is in this con-
text, we propose our method, a semi-supervised algo-
rithm for domain adaptation and speedy deployment
of camera and LiDAR-based perception algorithms
for AD and ADAS applications.

In our method, we take advantage of both sensors
and try to improve 3D object classification. Usage
of 3D object classification instead of 2D classifica-
tion helps in accurate localization of classified ob-
jects. Further special filtering of YOLO based labels
based on accuracy is undertaken to eliminate error
propagation to LIDAR based 3D classification. By
performing online training of the LiDAR-based ob-
ject classification model, the proposed method also
captures time-limited temporary features/markers of
the target object. Consequently increasing the overall
classification accuracy.

For this, we propose a new method called On-
TheGo weakly supervised Learning which im-
proves the classification of LiDAR detected objects
without manually labelled data. We take the state-
of-the-art algorithm in terms of speed and accuracy
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for 3D object detection called PointPillars(Lang et al.,
2019) and the best state-of-the-art 2D object recog-
nition algorithm in terms of speed and accuracy on
image called YOLO(Redmon et al., 2016). We use
a branch network based on PointNet(Qi et al., 2017)
which is trained iteratively to improve the classifica-
tion of LiDAR-based 3d detected objects while in op-
eration. Original PointNet network is used to classify
indoor 3D objects, however, in this context we use
it for outdoor object classification in AD/ADAS sce-
narios. Here PointPillars, YOLO, and PointNet are
optional networks that can be used as plug and play
with alternative best algorithms to improve the classi-
fication of 3D objects.

This research paper is organized as follows: A
detailed review of semi-supervised or weakly super-
vised algorithms involving LiDAR and camera for
AD and ADAS applications is presented in section 2.
Section 3 describes the contribution of current work.
In section 4, we have presented the methodology of
the proposed algorithm. In section 6 we have dis-
cussed network architecture and implementation de-
tails. Data preparation details are presented in sec-
tion 7. Experimentation and results on the nuScenes
dataset are discussed in section 8 and applications are
proposed in 9.1. This paper concludes with future
scope in section 10.

2 RELATED WORK

LiDAR camera fusion has been a preferred way of ob-
ject detection and classification for active ADAS and
AD systems. As mentioned in the earlier sections, Li-
DAR and camera have better localization and classi-
fication respectively when compared with each other.
Hence, fusion not only increases the accuracy of de-
tection and classification but also increases the redun-
dancy of the sensor setup. There have been several
deep learning-based methods for LiDAR and camera
fusion in recent years. They can be classified as early
and late fusion. Early fusion-based methods, combine
the sensor data at the initial stages (Qi et al., 2018;
Chen et al., 2017; Ku et al., 2018).

Similarly, late fusion-based methods(Song and
Xiao, 2016; Hoffman et al., 2016) process the sen-
sor data separately to arrive at individual predictions.
These predictions are further combined using various
models to arrive at detection and classification.

Of particular interest for us in the context of
current work is the late fusion category of meth-
ods. Since LiDAR and camera data are pro-
cessed separately, there exists two separate detec-
tion/classification models which are completely inde-

pendent of each other. In general, both models are
trained separately with a separate set of ground truth
which has been marked separately. However, in this
work, we would like to explore the possibility of ex-
ploiting predictions of one of the sensor modalities to
generate classification labels eliminating pre-training
of one of the sensor models. Further such a method
also helps in domain adaptation for unknown environ-
ments.

There have been very few works in this direction,
which exploit the redundancy across sensor domains
to train the sensor models for detection and classifica-
tion.

In (Kuznietsov et al., 2017), the authors predicted
depth from a single image using sparse LiDAR depth
as ground truth and unsupervised depth measure-
ments from a stereo pair. Here, LiDAR depth acts as
ground truth for image-based depth estimation. Simi-
larly, in (Caltagirone et al., 2019), the authors propose
two classifiers acting on different views of the data co-
operatively and iteratively improve each other’s per-
formance by using unlabelled examples. This method
is among the top performers while using only a small
amount of labelled data.

In (Buhler et al., 2020), The authors proposed two
architectures to learn common representations of Li-
DAR and camera data, in the form of a 2D image. It is
useful in feature matching algorithms. In (Yan et al.,
2018), the human classifier can be learnt directly from
the deployment environment, removing the depen-
dence on labelled data. This method tracks people
by detection of legs extracted from a 2D LiDAR and
fusing this with the faces or the upper bodies detected
with a camera using a sequential implementation of
the Unscented Kalman Filter (UKF). Depth estima-
tion from a single mono camera is proposed in (Ku-
mar et al., 2018). This method trains using sparse
LiDAR data as ground truth for depth estimation for
fisheye camera. In (Teichman and Thrun, 2012) using
limited training data, a classifier is trained, and the
predicted label is propagated across frames, which are
again used for training.

As can be seen from the discussion, weakly su-
pervised online training of detection and classification
models have been used for dense depth estimation and
object detection to a certain extent.

3 CONTRIBUTION

As can be seen from the previous section, there exist a
series of methods that exploit redundancy across sen-
sor domains for proposing a weakly supervised detec-
tion/classification algorithm for various applications.
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However, there is a lack of methods that can perform
continual improvement of detection/classification ac-
curacy in unknown environments. In this work, we try
to address this by proposing a unique network archi-
tecture and weakly supervised training methodology
for 3D object classification.

Contribution of the paper can be summarized as
follows:

• State of the Neural network-based architecture for
accurate object detection and classification using
LiDAR point cloud as an input.

• Training methodology for domain adaptation
of LiDAR classification model with output of
camera-based object classification being used as
a labeling mechanism .

• Overall methodology for adaptation of LiDAR-
based object classification network in an unknown
environment.

4 METHODOLOGY

As discussed in the previous sections aim of the cur-
rent proposal is to use camera-based classification
output as a label to improve the accuracy of LiDAR-
based classification iteratively during inference/run
time. The proposed framework consists of two in-
dependent standalone pre-trained networks for both
camera and LiDAR-based detection and classifica-
tion. While PointPillars(Lang et al., 2019) is used for
LiDAR, YOLO is used as a pre-trained network for
the camera. Bounding box output of Pointpillars net-
work is further given as an input to PointNet(Qi et al.,
2017) for 3D object classification. PointNet network
used for classification is iteratively trained during the
inference/run time using YOLO output as a ground
truth.

In our approach, synchronization between LiDAR
and camera sensor data is a prerequisite, along with
correct calibration for each sensor with respect to ve-
hicle coordinates. PointPillars network is pre-trained
with existing data to detect the objects in a 3D en-
vironment with a 3D point cloud as input, while the
YOLO network is pre-trained to detect and classify
the objects in a 2D image.

PointPillar network is implemented in Keras
and trained on KITTI(Geiger et al., 2013) and
nuScenes(Caesar et al., 2019) datasets independently,
YOLO pre-trained network is taken which is trained
on autonomous driving scenarios. We take these two
pre-trained models and Objects detected by the Point-
Pillar network are given as input to the branch net-
work based on PointNet for 3D object classification.

3D object classification model which corresponds
to a branch network is trained recursively in an un-
known environment that is completely non-identical
with the training data. During inference, we modify
only the weights of the PointNet network, while pre-
trained weights of PointPillars and YOLO are fixed.

PointNet(Qi et al., 2017) is based on the principle
of continuous functional approximation. The Skele-
ton of the object is roughly estimated using a sparse
set of key points sampled from the input point cloud.
PointNet is highly robust to small perturbation of in-
put points, as well as to corruption through point in-
sertion (outliers) or deletion (missing data). PointNet
is used as a classification network owing to its unique
function approximation approach and low complex-
ity.

PointPillars(Lang et al., 2019) is a fast encoding
network for point cloud which uses PointNet to learn
the representation of point cloud arranged in vertical
columns. This network gives the best results for 3D
object detection using a point cloud. Hence the de-
cision to use it as a base detection network for the
LiDAR point cloud.

5 PROBLEM FORMULATION

Let the camera image be denoted by It where t rep-
resents the time instance. Similarly, the point cloud
of LiDAR output is represented by Pt . It is given as
an input to a pre-trained model of YOLO to generate
a 2D bounding box prediction called Y (It). Let the
Object localization output of the PointPillars network
be denoted by O(Pt). O(Pt) is then projected onto the
2D image space of the camera plane using calibra-
tion parameters and compared with It . 2D bounding
boxes are matched based on greater than 50 percent
IOU(Intersection over Union) criteria. Consequently,
classification labels of matched boxes are identified
as classification labels Gt . Generated Gt is used for
training and updating the LiDAR classification model
Ct(Pi) where Pi is a cropped 3D bounding box from
PointPillar Network detection. This process is re-
peated iteratively to continually update the classifi-
cation model Ct(Pi). While the Object localization
model O(Pt) and Y (It) are pre-trained, the classifi-
cation model is trained from the scratch. Given the
efficiency of the camera in object classification, the
usage of camera predictions as labels is a valid as-
sumption. By following this approach, we eliminate
the need for generating LiDAR object classification
ground truth. Moreover, the proposed setup adapts
very well to a dynamic environment, given the con-
tinual up-gradation of the classification model.
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In Figure 2 sample case of matching 2D box and
projected 3D box is presented. A projected 3D box
is represented by a blue box, the green box represents
the converted 2D box from the 3D projected box for
IOU calculation, and the red box represents YOLO
output. We only consider the bounding boxes which
are having more than 50% IOU.

6 NETWORK ARCHITECTURE

The Block diagram of the proposed network archi-
tecture is visualized in Figure 1. as the 1 shows,
the PointPillar network and YOLO a base networks.
PointPillars accepts point clouds as input and gives
oriented 3D boxes of cars, trucks, and cyclists. It
consists of three main stages, as mentioned in (Lang
et al., 2019). These are (1) Feature encoding net-
work which converts a point cloud to a sparse pseudo-
image; (2) 2D convolutional backbone which pro-
cesses the pseudo-image into a high-level represen-
tation; (3) detection head which detects and regresses
boxes. YOLO network has 24 convolutional layers
followed by 2 fully connected layers as mentioned
in (Redmon et al., 2016). The first convolutional
layers of the network extract features from the im-
age, and the fully connected layers predict the out-
put coordinates and probabilities. As mentioned in
(Qi et al., 2017), PointNet has three main modules:
a max-pooling layer, a local and global information
combination structure, and two joint alignment net-
works which aligns both input points and point fea-
tures. The main advantage of PointNet is that it di-
rectly consumes unordered point sets as inputs.

As we can see from the block diagram in Figure
1, pre-trained YOLO acts as a camera-based detection
and classification network. Similarly, a pre-trained
PointPillars network is used as an object localization
network. Finally, PointNet is used as a 3D classifica-
tion network. The classification network is iteratively
updated via training, using the labels generated from
camera-based classification.

6.1 Implementation Details

In this section, we describe our network implemen-
tation details. We consider the base PointPillars
architecture which has been trained on KITTI and
nuScenes independently and YOLO model which has
been trained using pascal VOC dataset (Everingham
et al., 2010). In the iterative training process, we
project the output of PointPillars onto the image to
find the best match (we considered 50% IOU) with
the output of YOLO. The detailed explanation of pro-

jection onto the image is described in section 6.2. Af-
ter finding the best IOU, boxes that have less than 100
points in the point cloud are rejected to eliminate pre-
dictions that are based on sparse data. This is espe-
cially important in outdoor scenarios. Classification
labels of matched objects are used for iterative train-
ing of the classification network. To reduce volatility,
a training batch size of 12 was used with categorical
cross-entropy as a loss function(Rusiecki, 2019).

6.2 Projection onto Image

Since we are using KITTI dataset as a reference for
our method, we follow KITTI format for representing
equations. The projection of a 3D point x = (x, y, z)T

in camera coordinates to point y = (u, v, 1)T in the i’th
camera image is given as

y = P x (1)

We need to consider the rectifying rotation matrix
of reference camera Rrect. So,

y = Prect Rrect x (2)

The rigid body transformation from Velodyne co-
ordinates to camera coordinates

Rcam
velo ε R 3x3 . . . rotation matrix

tcam
velo ε R1x3 . . . translation vector

Using

Tcam
velo =

(
Rcam

velo tcam
velo

0 1

)
(3)

a 3D point x in velodyne coordinates gets pro-
jected to a point y in i’th camera image as

y = Prect Rrect Tcam
velo x (4)

7 DATASET PREPARATION

To perform rigorous evaluation, iterative training of
the classification network is carried out from the
scratch. Two different datasets representing differ-
ent environments, namely KITTI(Geiger et al., 2013)
and nuScenes(Caesar et al., 2019) are used for evalua-
tion of the proposed setup. Labels for the pre-trained
version of the classification network is generated by
cropping all the 3D bounding boxes from point cloud
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Figure 1: Block Diagram.

(a) (b)
Figure 2: KITTI dataset: Projected onto the image and generated labels(a) Point cloud view ; (b) Image view.

data and storing labels for each of the cropped ob-
jects. While pre-training localization network, we di-
vide this data into training, validation, and testing in
the ratio of 70, 10, and 20 percent. Before cropping
the dataset, we first converted the nuScenes dataset
into KITTI format. KITTI and nuScenes test data is
used as an unknown environment for evaluating the
performance of the classification network. The sta-
tistical distribution of points in the context of various
classes is shown in Figure 3

(a) (b)
Figure 3: Average number of points in one 3D bounding
boxes vs Classes (a) nuScenes Dataset ; (b) KITTI Dataset.

Since a high-definition LiDAR point cloud is com-
posed of ∼100k points, cropped 3D boxes will also
have highly variable point density which is shown in
Figure 3, which causes bias for classification. For
this purpose, we randomly sampled a fixed number
of T points from those boxes containing more than
T points. This sampling is done to decrease the im-
balance of points between the boxes, which reduces
the sampling bias and adds more variation to training.
While feeding to the branch network also, we sample
to a fixed number of T points and train the PointNet.

8 EXPERIMENTATION SETUP

In order to rigorously test the proposed framework,
we have used KITTI and nuScenes datasets. Both
datasets are widely used for evaluating LiDAR and
camera fusion-based perception methods since these
datasets consist of highly time synchronized LiDAR
point clouds and images. Furthermore, the nuScenes
dataset consists of 11000 successive data frames
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which could be used for testing the OnTheGo upda-
tion of the LiDAR classification model. In order to
overcome class imbalance we have merged the classes
of pedestrian and cyclist into one human class along
with merger of truck and car into vehicle class.

KITTI sensor setup contains 2-point greyscale and
color cameras and 1 Velodyne HDL-64E rotating Li-
DAR sensor. So, it has 7481 training and 7518 test-
ing samples of both images and point clouds. Sim-
ilarly, nuScenes has six 1600 x 900 resolution cam-
eras, one 32 beams LiDAR, and five RADAR sensors.
It contains 33000 frames of highly synchronized cam-
era and LiDAR data with ground truth. Out of 33000
frames in the nuScenes dataset 15000 frames are used
for training, 2150 frames for validation, and 4290 for
testing respectively. 11550 consecutive sets of frames
are reserved exclusively for testing iterative OnTheGo
classification model update. In the case of the KITTI
dataset split are 6359 frames for training, 1122 frames
for validation, and 7891 frames for testing.

In order to avoid loss of generality two sets of ex-
periments have been performed namely

Experiment 1. In this iteration the camera detec-
tion and classification model Y (Ii) is based on a pre-
trained YOLO model on the PASCAL VOC dataset,
while PointPillars-based LiDAR object detection is
pre-trained on nuScenes dataset. To demonstrate
camera-reinforced domain adaptation of the frame-
work, 3D classification model Ct(O(Pt)) is updated it-
eratively using consecutive frames from the nuScenes
dataset. Comparison is made between classification
accuracy on both nuScenes and KITTI test sets, be-
fore and after the OnTheGo training. Results have
been summarized in Tables 1 and 2.

Experiment 2. In the second iteration, while cam-
era based pre-trained model on the PASCAL VOC
data set is retained, LiDAR object detection is pre-
trained on the KITTI dataset. OnTheGo training is
again performed on consecutive frames reserved in
the nuScenes dataset. Comparison of classification
accuracy Ct(O(Pt)) before and after OnTheGo is tab-
ulated in Tables 3 and 4.

9 RESULTS AND DISCUSSION

As can be seen from the Table 1 mean average pre-
cision has improved for both KITTI and nuScenes
test sets by about 6 and 8 percent respectively. This
is after iterative training of classification model on
consecutive frames of nuScenes dataset with camera-
based classification as labels as discussed in sec-

tion 4. Such an observation reinforces that camera-
based classification can be used as reinforcement for
LiDAR-based classification. We can also infer that
the proposed classification network after the iterative
training on nuScenes data also improves its perfor-
mance even on KITTI test data. This shows that fea-
tures learnt during the iterative learning are generic
and not domain specific. Table 2 further elaborates on
class specifics of mean average precision.

Experiment 2 demonstrates the domain adaptabil-
ity of the network. As we can see from the results of
Table 3, even though the network is pre-trained on the
KITTI data set, it can adapt very well to a new en-
vironment represented by the nuScenes dataset. Per-
formance of classification is bettered for nuScenes by
about 18 percent while also improving by 7 percent
on the KITTI test set. Such an observation proved the
domain adaptability of the proposed framework while
also retaining robust performance in the previous do-
main. Table 4 details the class-specific mean average
precision.

To gauge the iterative performance of the algo-
rithm, we have also plotted the instantaneous accu-
racy of the algorithm for batches of 12 objects span-
ning Frame 1 to Frame 2443 in one particular scene
of the nuScenes dataset in Figure 4. A batch of 12
objects is selected in order to maintain uniformity of
training iterations. Since each frame may or may not
contain a required number of objects for calculation
of loss. We can infer from the figure 4 that classifica-
tion accuracy starts from zero and steadily increases
to a saturation value. Instantaneous dips in accuracy
corresponding to the entering of new objects and large
variance in the scene. We also infer that our method
is learning local temporal features. Irrespective of the
dips, we can see the continual rise in classification
accuracy over a period. Such an observation reiter-
ates our claim of continuous adaptation of the net-
work with respect to a given environment under the
guidance of a camera-based object classification net-
work.

Table 1: PointPillars pretrained on nuScenes dataset and
tested on KITTI & nuScenes testsets(before and after On-
TheGo training).

Dataset PointPillars (mAP) Proposed network
(Before OnTheGo) (After OnTheGo)
O(Pt) Ct(O(Pt))

nuScenes 64.82 70.12
KITTI 61.32 69.25
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Table 2: Class wise results for before and after OnTheGo
training on both nuScenes and KITTI test datasets (Point-
Pillars Pretrained on nuScenes).

Classes nuScenes KITTI
Before — After Before — After

Vehicle Class 76.44 — 79.64 72.63 — 80.4
Human Class 53.2 — 60.6 50.01 — 58.24

Table 3: PointPillars pretrained on KITTI dataset and tested
on KITTI & nuScenes testsets(before and after OnTheGo
training).

Dataset PointPillars (mAP) Proposed network
(Before OnTheGo) (After OnTheGo)
O(Pt) Ct(O(Pt))

KITTI 69.31 76.14
nuScenes 43.875 61.84

Table 4: Class wise results for before and after OnTheGo
training on both nuScenes and KITTI datasets (PointPillars
Pretrained on KITTI).

Classes nuScenes KITTI
Before — After Before — After

Vehicle Class 50.21 — 65.48 75.66 — 81.65
Human Class 37.54 — 58.2 62.96 — 70.63

Figure 4: Object classification accuracy variation over iter-
ative training steps.

9.1 Observations

As an outcome of these results we can deduce the fol-
lowing observations:

1. The proposed framework is very conducive for
domain adaptation.

2. Has a capability to learn the localized temporal
features (distinct features like shapes, distribution
of objects, etc).

3. Can also handle the occlusions better.

10 SUMMARY AND
FUTUREWORK

In this paper, we proposed a method to improve
3D object classification iteratively in an unknown
environment without any ground truth. We have
described a method to use existing state-of-the-art
methods for 3D object detection and 2D object recog-
nition on images to generate custom ground truth for
iterative training. The proposed method is evaluated
using publicly available datasets and performs very
well regarding intended objectives. In the future, we
would like to extend the proposed method to dynamic
camera calibration using LiDAR-based localization
as ground truth for iterative domain adaptation
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