Multiclass Texture Synthesis Using Generative Adversarial Networks

Maro$ Kollar®?, Lukas Hudec®™® and Wanda Benesova®©

Faculty of Informatics and Information Technologies, Slovak University of Technology, llkovicova 2, Bratislava, Slovakia

Keywords:

Abstract:

Texture, Synthesis, Multiclass, GAN, Controllability.

Generative adversarial networks as a tool for generating content are currently one of the most popular methods

for content synthesis. Despite its popularity, multiple solutions suffer from the drawback of a shortage of
generality. It means that trained models can usually synthesize only one specific kind of output. The usual
synthesis approach for generating N different texture species requires training N models with changing training
data. However, few solutions explore the synthesis of multiple types of textures. In our work, we present
an alternative approach for multiclass texture synthesis. We focus on the synthesis of realistic natural non-
stationary textures. Our solution divides textures into classes based on the objects they represent and allows
users to control the class of synthesized textures and their appearance. Thanks to the controllable selections
from latent space, we also explore possibilities of creating transitions between classes of trained textures for
potential better usage in applications where texture synthesis is required.

1 INTRODUCTION

The texture definition highly depends on the appli-
cation area, in which we use this term (Haindl M.,
2013). Nevertheless, textures generally describe ob-
ject’s surface properties like appearance, structure,
consistency, or feeling from touch. Textures are an
essential component of computer vision because they
are used in tasks like classification, detection, or seg-
mentation in medicine or the technology industry.
Textures are also essential for the graphics and the
entertainment industry since almost every animated
movie, video game, or other product depends on its
visual appearance.

We can classify textures based on their primary
characteristic into groups like smooth, rough, glossy,
matte, et cetera. There are also more general char-
acteristics like stationarity and homogeneity (Zhou
et al., 2018; Portilla and Simoncelli, 2000) that pro-
file textures. It is possible to say that both of these
features describe an aspect of texture complexity. Sta-
tionarity represents the regularity of structure. Homo-
geneity represents how many elementary textures are
included in the evaluated texture. The more complex
the texture structure is, the more difficult it is to syn-
thesize.
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Texture synthesis is a process of creating artificial
textures that can be used to augment datasets needed
for computer vision tasks. It can also replace texture
photographing or painting with a more comfortable
and less time-consuming content creation method.
There are multiple texture synthesis approaches; how-
ever, current research orients on Generative adversar-
ial networks (GANs) and diffusion networks. GANs
proved their advantages in the quality of outputs and
speed of generating. On the other hand, their disad-
vantages are long and challenging training accompa-
nied by problems like vanishing gradients or mode
collapse. Another drawback is that usual solutions
are trained to synthesize one texture class, and mul-
tiple learned models are required to synthesize multi-
ple texture classes (Zhou et al., 2018; Jetchev et al.,
2016). That results in higher disk storage require-
ments for storing the network models and the inability
of creating transitions between individual textures.

Our paper introduces the following contributions:

* We propose two approaches focused on control-
lable multiclass texture synthesis that uses a latent
space as a control mechanism. Our solution is
tuned to synthesize non-stationary textures from
the natural environment.

* Latent space used for texture control is computed
by pre-trained feature extractor before training the
synthesis solution. This gives the advantage to
modify the feature extractor based on class adja-
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cency requirements to enhance the latent space in-
dependently from the generating process.

* We show that in the field of texture synthesis, the
latent space can be used to create transitions be-
tween different classes of textures and also control
the appearance of a specified texture class.

2 RELATED WORK

Texture synthesis has been an active field of research
for multiple decades. Many approaches were intro-
duced and categorized into groups during these years
based on their main feature.

Non-parametric sampling is considered a tradi-
tional approach and, for a long time, was one of the
most popular synthesis methods. This approach uses
copying parts of sample textures to create a new one.
Parts of sample textures are chosen based on their
neighbourhood similarity with an area of an already
synthesized part of the texture. There are two main
types of non-parametric sampling based on the size of
individual parts copied to synthesized texture. Pixel-
based synthesis (Efros and Leung, 1999; Wei and
Levoy, 2000; Shin et al., 2006; Ashikhmin, 2000) that
creates texture pixel by pixel and patch-based syn-
thesis (Praun et al., 2000; Liang et al., 2001; Kwa-
tra et al., 2003) that copies whole patches. These
approaches are intuitive and relatively easy to imple-
ment. On the other hand, their synthesis is quite slow,
and there is a possibility that synthesized textures will
contain visually duplicate parts.

In contrast to the non-parametric sampling, a para-
metric synthesis (Portilla and Simoncelli, 2000) uses
parameters to describe texture statistics. The synthe-
sized image is created by gradually changing random
noise (Gatys et al., 2015b). Two textures should have
identical statistics to be considered similar (Martin
and Pomerantz, 1978).

In recent years textures have been synthesized
mainly by using neural networks. Gatys et al. (Gatys
et al., 2015b) created a parametric approach that used
convolutional neural network VGG-19 (Simonyan
and Zisserman, 2014) to extract Gram matrices at
multiple layers as texture statistics. The new texture
is synthesized from random noise. Noise is passed
through the network and edited by gradient descent to
minimalize the difference between Gram matrices of
example texture and new texture.

Variational autoencoders (Kingma and Welling,
2014; Chandra et al., 2017; Pesteie et al., 2019) are
another approach that uses neural networks to synthe-
size textures. Variational autoencoders are similar to
autoencoders, but their function is to create similar
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output, not identical. They consist of an encoder part
that maps input data to a low-dimensional representa-
tion and a decoder part that reconstructs this represen-
tation to output. A drawback of this synthesis solution
is the quality of output that could be blurry.

Diffusion networks (Ho et al., 2020; Croitoru
et al., 2022; Dhariwal and Nichol, 2021) are gener-
ative models inspired by nonequilibrium thermody-
namics. They are based on two stages. A forward
stage defined as a Markovian chain slowly destroys
data by adding random noise to transform data into
pure noise. A backward stage learns to recover the
data by reversing the addition of noise. The new
data is created by passing random noise to the learned
model that synthesizes the final image by gradually
predicting and removing noise. Diffusion networks
produce high-quality images and are currently consid-
ered a state-of-the-art approach. Even though there is
a disadvantage in long inference time due to the iter-
ative approach.

Although the quality of diffusion network, gener-
ative adversarial networks introduced by Goodfellow
et al. (Goodfellow et al., 2014) are still popular ap-
proaches for image synthesis. Generative adversarial
networks contain two neural networks, a discrimina-
tor and a generator. These networks train themselves
by min-max two-player game. That results in im-
proved output quality of generated output. The gener-
ator’s goal is to use random noise to create output that
the discriminator would not reveal as fake. The goal
of the discriminator is to determine which inputs are
real and which are fake correctly. Since the original
GAN solution introduction by Goodfellow et al., mul-
tiple GAN modifications have been created. Proposed
modifications changed the architecture of generator
or discriminator (Radford et al., 2016), used different
adversarial loss functions (Arjovsky et al., 2017; Gul-
rajani et al., 2017), stabilized training (Karras et al.,
2017), improve variation of outputs (Salimans et al.,
2016) or create a new approach of training (Zhu et al.,
2017).

Several GAN solutions have also focused on mul-
ticlass texture synthesis. Li et al. (Li et al., 2017)
introduced solution DTS that uses one hot encoding
vector as a control mechanism for the synthesis of
multiple types of textures. The architecture of their
proposed generator consists of two streams: one for
synthesizing the final output and the second for pro-
cessing input information that controls the class of
synthesized texture. Their solution also showed that
it is possible to create interpolations between learned
textures that lead to new types of textures.

Another multiclass synthesis solution is PSGAN
introduced by Bergmann et al. (Bergmann et al.,



2017). Their solution can learn multiple types of peri-
odic and non-periodic textures from a dataset or high-
definition images. A disadvantage of this solution
is that the texture control mechanism (global dimen-
sions of the input) is sampled as a random vector, so
it does not allow control of which texture will be syn-
thesized. The solution also does not provide complete
coverage of the dataset.

Following these disadvantages, Alanov et al.
(Alanov et al., 2020) proposed a solution that updates
the creation of global input dimensions by using an
encoder. The encoder is trained alongside the gener-
ator to learn textures’ latent representation. Learned
representation is then used as a control mechanism.
They also ensure full dataset coverage by penalization
for incorrect reproductions of a given texture.

3 METHOD

The main goal of our work is to create a robust con-
trollable method for multiclass texture synthesis with
a focus on non-stationary textures and maintaining
the quality of generated textures. The controllability
should ensure a change of texture type and its look.
Proposed versions of the architecture of our solution
are shown in figure 1.

3.1 Generator

The core of our approach, the generator, uses the idea
of a two-stream network from the work of Li et al.
(Li et al., 2017). This architecture helps to force the
network to synthesize a required texture class. The
primary stream handles the synthesis process, and
the secondary stream processes information on which
texture class should be generated. Activations of sec-
ondary streams are merged as a 32-channel feature
map to activations of the primary stream after ev-
ery processed spatial upsample. This ensures that
the primary stream has additional information about
a class of synthesized textures at every resolution. An
upsample function upsamples the resolution in both
primary and secondary streams with scale factor 2.
The exception is the first upsample of vector done by
transposed convolution. After upsample, activations
are processed by convolutional layers with instance
normalization and leaky relu activation functions.
Because of the exertion of multiclass non-
stationary texture synthesis, the solution suffered
from visual artifacts and had difficulty learning all
types of presented textures, even though there were
only six. To deal with this problem, we implemented
the generator as a progressively growing GAN (Kar-
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ras et al., 2017). This approach helped to stabilize
learning thanks to the ability of the network first to
learn the color palette of synthesized textures and then
increase resolution and learn details of textures. The
current implementation of our solution generates out-
puts of 128 x 128 pixels. However, thanks to the pro-
gressive, growing GAN implementation, more layers
can be easily added to increase the resolution of the
final output. We also changed batch normalization to
instance normalization and added hyperbolic tangent
as the final layer to improve the quality of outputs.
Hyperbolic tangent limits values of output pixels be-
tween -1 and 1 to prevent very high or low values. The
generated output is then used to train the discrimina-
tor without clipping to [0, 1] to force the generator to
learn the correct interval of pixel values.

3.2 Generator Inputs

The difference between alternatives of our solution is
based on changes in inputs for the generator and the
process of obtaining them. As a consequence of two
generator streams, the generator requires two inputs.

In our first solution alternative, input for the sec-
ondary stream is realized as a one-hot encoding vec-
tor. This vector is inspired by the solution of Li et
al. (Li et al., 2017) and encoded as a position of a
single high bit, which clearly describes which texture
should be synthesized. The primary input is inspired
by the solution of Bergmann et al. (Bergmann et al.,
2017). In contrast with their solution, our input is not
constructed as a matrix of vectors but only as one vec-
tor. The input vector is concatenated from three parts:
random, texture, and selection, whose lengths were
set experimentally based on the quality and diversity
of outputs.

¢ The random part is sampled from the uniform dis-
tribution on the interval [0,1]. This part provides
variability between generated outputs.

* The selection part is a copy of the input for the
secondary stream. One-hot encoding vector is in-
cluded in primary input to contribute information
about the selected texture even at the first layers
of the generator.

* The texture part is created from an example im-
age of the required texture class. An example
image transformed to a grey scale is used as in-
put for our pre-trained classification network. We
selected the classification network and principal
components analysis approach for initial experi-
ments because of relatively straightforward net-
work training and the possibility of identifying a
well-trained classification network based on clas-
sification metrics. We took input activations of
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Figure 1: Visualization of the architecture of our solution. The left side of the figure shows variants of input for a generator.
Variant A uses classification network as feature extractor with PCA for texture part of input. Variant B uses siamese network
for texture part of input. The generator consists of two streams for image synthesis and keeping the information about the
selected texture class. The discriminator is enriched with information from Minibatch discrimination. We use a combination
of Wasserstein loss with Style loss computed by a pre-trained VGG19 network as a loss function.

the last fully connected layer as a feature vector
and applied principal component analysis on this
vector to obtain a representation vector of length
five numbers. This part of the input assists the
selection part with information about the selected
texture and also brings variability to the input. To
confirm that this vector carries information about
the selected texture type, we visualized part of the
vector in 3D space. As we can see in figure 2, ev-
ery cluster of texture type could be approximately
separated.
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Figure 2: A visualization of the clusters of 3 out of 5 values
from the texture part created by the classification network
and PCA. The visualisation shows that individual clusters
in the latent space are approximately separable.

In our second solution alternative, we replaced the
classification network and PCA with a Siamese net-
work and left out the selector part of the input. That
leads to using the texture part as the only control-
ling mechanism in a primary and secondary input.
Siamese network as the texture part extractor was se-
lected for its ability to learn similarities that leads to a
better embedding of textures in the latent space. Fig-
ure 3 shows clusters that refer to trained texture types
in latent space created by our trained Siamese net-
work. The selection part was left out based on testing

90

the first alternative. Tests showed that manual control
of generator inputs for changing texture type or cre-
ating transitions between different textures is hard to
use. That also leads to minimizing the length of the
texture part from 5 to 3 values.
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Figure 3: A visualization of the clusters from the texture
part created by the Siamese network. The individual clus-
ters are better separable than in the version that uses classi-
fication network and PCA.

The decision to use the pre-trained feature extrac-
tors was made because of the advantage of review-
ing if the feature extractor is well-trained or needs
to be trained more. In the case of the siamese net-
work, we can affect the distribution to decrease dis-
tances between clusters of different texture classes or
rearrange the cluster neighbors. For this purpose, dur-
ing the training of the siamese network, we can define
shorter distances between feature vectors for concrete
pairs of textures that we want to be closer to in the
latent space. This will allow us to create transitions
between pairs of textures that we want. We can define
the higher distance between feature vectors for other
pairs of textures we don’t want to be closer to.



3.3 Discriminator

The initial discriminator used in our solution was in-
spired by the DCGAN solution (Radford et al., 2016).
We changed it by adding a sequence of batch nor-
malization, leaky relu activation function, and convo-
Iutional layer with kernel size 5, stride 1, and zero
padding behind the last convolutional layer. Be-
cause of the implementation of the progressive, grow-
ing generator, the discriminator also had to be im-
plemented as progressively growing. That caused a
change of the parameters of the first convolutional
layer to kernel size 3, padding, and stride set to 1.
A number of the following sequences of convolu-
tional, normalization, and activation layers from the
DCGAN solution are based on the current step of
progressive growth. We also added a fade-in mech-
anism to handle adding new layers during progressive
growth. Feature maps from the last convolutional se-
quence are flattened to a 1D feature vector. To deal
with the mode collapse problem, we concatenated the
final 1D vector of the discriminator with the 1D vec-
tor from minibatch discrimination (Salimans et al.,
2016). This helps the network to identify a batch
of generated images. Minibatch discrimination com-
pares all images in a batch and creates a vector that
references how similar images are. In case of high
similarity, we can assume that images are synthesized
and suffer from mode collapse. Based on executed
tests, we noticed that minibatch discrimination helps
mainly in the first two steps of progressive growth,
which correspond to images of size 8 x 8 and 16 x 16.
The final change was to switch the sigmoid layer to a
linear layer.

3.4 Loss Functions

Instead of the original loss function used in Good-
fellow’s proposed GAN solution, we used Wasser-
stein loss (Arjovsky et al., 2017) with weight clip-
ping to increase output quality and stability of train-
ing. That changed our discriminator to critic, which
does not determine real or fake textures but tells the
distance between the distribution of generated outputs
and training data. We combined Wasserstein loss with
style loss (Gatys et al., 2015a) during the training
process to speed up the training process and bring a
closer visual appearance of synthesized and real tex-
tures. The texture loss is calculated from feature vec-
tors of the first five convolutional layers of the pre-
trained classification network VGG19. Feature vec-
tors of synthesized and real textures were compared
using Gram matrices. Style loss Ly, is added to
Wasserstein loss W for generator loss L, and could
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be controlled by the weight factor . Based on exper-
imenting with the value of B, we found that the ideal
value in our setup is 1. In the case of a higher style
weight factor, the network learns style relatively fast,
but outputs suffer from strong mode collapse and low
quality. Formulas to calculate loss functions for the
generator and the discriminator are shown in equa-
tions 1 and 2 with L, as discriminator loss.

Ly = —Wiynn + B Lyyre M
Ld = Wrgal - Wsynth (2)

3.5 Dataset

The dataset used for training our solution consists of
eleven different classes of textures. Examples of all
texture types are shown in figure 4.

S

Figure 4: Example of a patch from every 11 texture classes
used in the training dataset. Top: slab, slab wall, a stack of
wood, a pile of rocks, bark, leaves on grass.

Bottom: stone, tiles, straw, gravel, and grass.

We gathered our data by capturing close-up pho-
tos with textures of natural environment objects and
adding two publicly available textures from the In-
ternet to balance the number of photos in individual
classes. Every texture class contains 67 main images.
In our solution, textures are perceived by the objects
they represent. It means that, for example, barks from
different types of trees (like a cherry tree, a linden
tree, etc.) might be visually different, but we still see
them as one class of texture. Our intention behind this
is to increase the internal variation of classes. It also
brings an opportunity to create a solution that could
benefit from the simpler controllability of the texture
class and the possibility of changing the appearance
of texture by different subtypes.

Images in the dataset are used to create smaller
cutouts of various sizes to augment the dataset. Be-
cause of differences in the scale of base texture struc-
tures in the images, we scaled various sizes of cutouts
to generalize the model to the variability of input im-
ages. Cutouts positions are selected randomly to get
numerous different cutouts of training data. Cutouts
for training are then down-scaled to the size of data in
mini-batch, which is always smaller than the size of
created cutouts.

91



GRAPP 2023 - 18th International Conference on Computer Graphics Theory and Applications

While creating the dataset, our primary goal was
to select non-stationary homogeneous textures. Be-
cause of this condition, we mainly selected natural
textures that are separable from their surroundings
and do not have any regular pattern. However, in a
few cases, we violated our intention to gain informa-
tion about the behavior of our solution in exceptional
cases. These cases are represented by adding the tex-
ture of tiles that is stationary and the texture of leaves
on grass that is heterogeneous. We also added two
similar textures, slab and slab wall, to determine how
well our solution would generate multiple similar tex-
tures.

3.6 Training

Various techniques that affect the alternation of
classes could be used during the training in multiclass
synthesis. We decided to use a simple cyclic alterna-
tion that ensures the change of texture class after ev-
ery batch. We implemented this alternation as a mod-
ulo operation of a count of batches and a total number
of texture classes where the result corresponds to the
currently synthesized/learned texture.

It is usual practice to violate the symmetry of
learning and train the discriminator more often than
the generator. The typical learning ratio between the
discriminator and the generator is 5:1 (the generator is
updated every fifth update of the discriminator). This
helps the discriminator to be trained more than the
generator and to provide better feedback for the train-
ing of the generator. We also implemented this tech-
nique as the modulo of the count of batches and learn-
ing ratio. Because of that, it is necessary to ensure that
the generator is trained on every texture class. That
could be achieved by setting the learning ratio and the
total number of textures to be co-prime. Because of
the typical learning ratio (5:1), the easiest way to pre-
serve all conditions is to choose the number of texture
classes indivisible by five.

Whereas our solution is progressively growing,
we also needed to ensure a mechanism to control
when to add new network layers to be trained. This
issue is resolved using predetermined values assigned
to each step of progressive growth, indicating how
many epochs each step will be trained. This method,
despite its simplicity, allows control over the length
of training steps because later steps of the progres-
sive growth need more extended training than the first
steps with low output resolution.

Yet final training was trained for 2250 epochs un-
evenly divided into 5 steps from 8 x 8 to 128 x 128
pixels (100, 300, 450, 600, 800 epochs). The reso-
lution of every step is double the previous resolution.
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Every epoch consisted of 275 batches of 64 images.
The training takes about six and a half days on a sin-
gle NVIDIA GeForce RTX 3090 GPU. As optimizers,
we used RMSprop with a learning rate set to 5 x 107>
for the generator and 9 x 107 for the discriminator.

4 EVALUATION

To compare alternatives of our solution, we per-
formed a quantitative comparison based on Frechet
Inception Distance (FID) (Heusel et al., 2017) that
captures the similarity of real and synthesized image
collections. FID uses an Inception network to get dis-
tributions of activations of real and synthesized data.
Statistics (mean u and variance X) of distributions are
used for calculating the distance between them. A
lower FID indicates more similar distributions, thus
better quality of synthesized images than those with
higher FID. FID could be calculated by equation 3.

FID(r,8) = Iy — gl [3+ Tr(E, + 5 — 2(5,5)?)
3)

The quantitative comparison results (table 1) show
that for similar training steps, the alternative that uses
the classification network for obtaining the texture
part of the input and uses the selection part achieves
better results than the alternative with the siamese net-
work. The table also shows that the quality of outputs
could still be improved by more extended training of
individual steps of progressive growth.

Considering the problem of non-stationary texture
synthesis, empirical evaluation by the human eye is
one of the most quality and accurate ways of eval-
uation that works even on a low number of gener-
ated outputs. This type of evaluation is a qualitative
technique based on human observation and feelings of
how accurate the texture is or how easily it could be
identified as fake. Thanks to this evaluation, we could
estimate the quality of our solution from the begin-
ning of implementation and lead the architecture to
better results.

Examples of synthesized textures by our solution
that use the classification network are shown in figure
5. The figure also shows textures from our dataset
synthesized by the solution of Li et al. (Li et al.,
2017). Since their solution uses one image as a sin-
gle texture class, for every class of our dataset, we
selected 5 images preprocessed the same way as tex-
tures for our solution (random crop and resize). For
training of the solution, we used implementation and
parameters predefined on the GitHub project ! with a

L github.com/Yijunmaverick/MultiTextureSynthesis
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Table 1: Quantitative comparison (FID) of alternatives of our solution.

Epochs for steps of progressive growth
1 2 3 4 5 | Total | FID
Siamese 100 | 200 | 250 | 375 | 450 | 1375 | 77.53
Classification + PCA | 100 | 200 | 250 | 375 | 450 | 1375 | 62.71
Classification + PCA | 100 | 300 | 450 | 600 | 800 | 2250 | 39.58

Our
SolutionA

Our
Solution Lietal

Our
_ Solution Lietal.

Our

Solution Lietal.

Lietal

et al. (Li et al., 2017). Left section from top: slab, slab wall, stack of wood, pile of rocks. Middle section from top: bark,
leaves on grass, stone, tiles. Right section from top: straw, gravel, grass.

change of the number of iterations to 455 000. As
we can see, both solutions synthesize simple non-
stationary textures like bark, stone or gravel well. On
the results of Li et al., we can see artefacts on textures
with stalks like grass or straw. However, these arte-
facts can possibly be removed by longer training. In
results of their solution, there is also a decreased qual-
ity of textures that require specific features like gaps
between individual slabs in slab walls or logs in pile
of wood. It is challenging to compare these two so-
lutions because both solutions have strong and weak
aspects of texture quality. In that case we can com-
pare these approaches by usability and controllability
of generated texture.

For our model that uses the classification network,
we created a survey focusing on the possibility of par-
ticipants distinguishing if a texture is created by syn-

thesis or the camera. This model was selected based
on better performance calculated by FID value. For
testing purposes, we used ninety cherry-picked im-
ages from every synthesized texture class and ninety
images per class from real data. Cherry-picking was
done because in the artistic or prototyping process,
the user can also decide if the texture looks as he
wants and use it or synthesize a new texture and de-
cide again. Cherry-picked textures were about 10%
of all synthesized textures. However, this number
does not represent the number of usable textures be-
cause we wanted the user survey to contain balanced
classes. Because of this matter, 10% represents just
a ratio of relatively usable textures from the weak-
est class, which were the classes of piles of rocks
and tiles. The textures were shown to participants for
three seconds without the name label of showed tex-

93



GRAPP 2023 - 18th International Conference on Computer Graphics Theory and Applications

ture. These restrictions were used to rule out their
overthinking about texture quality based on possible
long-time analysis or their expectation of known class
appearances. 104 persons participated in the survey;
however, only answers from 93 participants were used
for final statistics. We filtered out all participants who
answered less than half of the survey. We also filtered
out participants that identified correctly less than 45%
of real textures because if they could not identify real
textures correctly, their answers could have undesir-
ably influenced the outcome of the evaluation. The
histogram of correctly identified sources of textures
is shown in figure 6. Distributions of correctly iden-
tified sources of textures are shown in figure 7. By
Kolmogorov—Smirnov test, distributions were identi-
fied as normal. Based on Student T-test, we found
out that the difference between distributions is statis-
tically significant; thus, our solution could synthesize
textures that can fool a person. Per texture percent-
age accuracy of determining the origin of the texture
is shown in table 2.

5

Number of occurrences
o N & o ®

50 60 70 80 2 100
The correctness of determining the origin of real textures (%)

|.ﬁlll

30 40 50 60 70 80
The correctness of determining the origin of generated textures (%)

Number of occurrences

Figure 6: Histograms of correctly identified real and syn-
thesized textures by participants of evaluation.

30 40 50 60 70 80 920 100
The correctness of determining the origin of textures (%)

Figure 7: Distributions of correctly identified real and syn-
thesized textures by participants of evaluation.

S CONTROLLABILITY

In the first solution alternative (classification network,
PCA, and selector part), the intention behind two dif-
ferent pieces of information on selected texture was
to:

 Specify precisely what texture type should be syn-
thesized (selection part).

94

Table 2: Percentage accuracy of determining the origin of
the texture based on texture class.

Class Real | Synthesized
Slab 69.90 | 43.27
Slab wall 66.99 | 46.39

Stack of wood 80.49 | 65.79
Pile of rocks 8791 | 70.48

Bark 62.92 | 35.51
Leaves on grass | 76.47 | 58.70
Stone 59.00 | 61.70
Tiles 80.00 | 76.29
Straw 90.48 | 58.82
Gravel 71.08 | 49.53
Grass 79.17 | 51.06

» Change the appearance of generated texture (tex-
ture part), like the colour or pattern of the concrete
texture type.

Experiments of control mechanisms refuted the abil-
ity of the selection part to define texture class in every
case. The texture part must also be located in the la-
tent space area corresponding to the selected class for
the expected output class. In some cases of mismatch
between the selector and texture parts of the input,
the selected texture class could be created with lower
quality. In general, output could resemble the differ-
ent texture types or be unidentified as concrete tex-
ture class. On the other hand, experiments confirmed
the expected behaviour of changing texture parts to
achieve different appearances. Examples of smooth
changes of texture appearance created by changing
the texture part of input are shown in figure 8. Be-
cause of multiple values that need to be set up during
the synthesis and the necessity of compatibility be-
tween the texture and selector part of the input, man-
ual control of all values is quite complex and hard to
use. Thus also, the creation of transitions between
different texture classes is complex. We also exper-
imented with omitting one of the texture-controlling
parts of the input. That led to a significant problem
with overall quality or the inability to generate some
texture types.

To eliminate the disadvantages of the first alter-
native, we simplified the controlling mechanism of
the solution by removing the selection part and mini-
mizing the dimensions of latent space. Thanks to the
usage of the Siamese network as a feature extractor
and its ability to learn similarities between textures
(Hudec and Benesova, 2018), the solution synthe-
sized all trained texture classes even though we used
only the texture part of the input without the selector
part. The controllability of this alternative is based
only on changing values of the texture part. By that,
we can control the change of texture class and appear-
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Figure 8: Visualization of transitions between different subtypes of texture. From top: stone, grass, gravel, bark.

ance of texture and create transitions between neigh-
bouring texture classes in the feature space. However,
as shown by the comparison of FID, the alternative
that uses the siamese network has lower quality. This
problem can be solved by more extended training. Ex-
amples of transitions are shown in figure 9.

Experiments also showed that the appearance (not
just variability) of the synthesized texture class could
also be changed unintentionally by changing the ran-
dom part of the input. This happens if the interval of
the random part is set to [0,1]. By reduction of the
interval, the texture will keep its appearance even if
the random part is changed.

6 DISCUSSION

Compared to the solution of Li et al. (Li et al., 2017),
whose approach takes every image as an individual
texture, our approach perceives textures based on the
objects they represent. This increases the inner vari-
ability of used classes and allows the user to select the
exact texture type by class and adjust its appearance
by changing the input from latent space.

Latent space as a controllable mechanism was also
used in the work of Alanov et al. (Alanov et al.,
2020). However, latent space in our approach is ob-
tained from the pre-trained network rather than a net-
work that is trained during the training of the genera-
tive model. Thanks to that, we can see how the texture
classes will be distributed in latent space and consider
whether this layout is suitable for our synthesis inten-
tions or needs to be trained more or affected somehow.

Based on our survey results, we identified that the
most unrealistic-looking textures are: Tiles and Pile
of rocks. We assume that characteristics of these tex-
ture types or features of images used in the training

e O ':ﬂ;;

set could explain the low quality compared to other
synthesized texture types.

In the case of tiles, the texture does not belong to
a specific group of non-stationary homogeneous tex-
tures like most of the dataset. As human-created non-
natural objects, tiles are strictly stationary because of
their standard layout on roofs. Because of training
mainly on non-stationary textures, our solution cannot
periodically reconstruct repeating textures. The solu-
tion’s full potential must be confirmed on a dataset
with more stationary textures.

The problem with the texture of the pile of rocks
could be caused by internal variation of images in the
training set for this class. It means that the dataset
contains a mix of images with different sizes and
colours of rocks. During training with a subset of
the dataset, where the class of rocks contained only
one subtype, the model synthesized satisfying results
that can be seen in figure 10. However, the texture of
bark or stone also contains high internal variability,
and we do not observe any problem with output qual-
ity. Another explanation behind the low quality of this
texture could be that texture that represents multiple
objects, like rocks, are more challenging than single-
object textures. This could also be a case of low qual-
ity behind the Stack of wood that represents the layout
of individual logs.

On the other hand, except for all other non-
stationary homogeneous textures, the texture of leaves
on grass, which is a heterogeneous texture, also
achieved a satisfactory look. However, we can notice
that leaves lack details like veins or midrib.

Possible improvements in our approach could be
based on experiments using the siamese neural net-
work. Because of the different subtypes of texture
classes used during training, it can be beneficial to
train the siamese network based on the strong sim-
ilarity (between different classes) and weak similar-
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Figure 9: Visualization of transitions between different types of textures. From top: gravel-slab, grass-stone, bark-slab wall,

leaves on grass-grass, tiles-pile of rocks.

model trained on a dataset where the class of piles of rocks
contained only one type of rock.

ity (between different subclasses of the same texture
class). This can help create sub-areas in latent space
based on the appearance of textures (for example,
sub-area for individual barks, grass, etc.).

An interesting idea is also to increase the dimen-
sional space of the texture part and force the siamese
network to distribute the output so that it is possible
to transit between every pair of textures. However,
this can again lead to complex manual control of the
solution. Another improvement could be focused on
the tiling of textures or improvement based on adding
bump or normal maps to synthesis. That would lead to
synthesizing usable high-resolution textures for possi-
ble use in rendering or artistic prototyping.

7 CONCLUSION

This paper presents an alternative multiclass tex-
ture synthesis model based on generative adversar-
ial networks. Our approach is tuned to synthesize
non-stationary textures problematically synthesized
by traditional approaches. Parts of existing solutions
inspire our solution and GAN mechanics to obtain
user controllability, preservation of information about
selected texture along the entire length of the genera-
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tor, training stability, and reduction of mode collapse.
In our work, we perceive texture class based on the
object it represents, which creates possible subtypes
of individual classes. As a generator’s input, we use
information about the selected class from the latent
space obtained by the pre-trained network. This helps
us control the synthesized class and its subtype ap-
pearance.

We evaluated the results of our approach through
the qualitative survey. This evaluation proved that
textures synthesized by our solution could fool hu-
mans in determining the texture’s origin. We also an-
alyzed possible reasons for the low quality of individ-
ual classes that can lead to future improvements.
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