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Abstract: We present a method to calibrate an eye-tracking system based on cockpit interactions of a pilot. Many studies 
show the feasibility of implicit calibration with specific interactions such as mouse clicks or smooth pursuit 
eye movements. In real-world applications, different types of interactions often co-exist in the “natural” 
operation of a system. Therefore, we developed a method that combines different types of interaction to enable 
implicit calibration in operational work environments. Based on a preselection of calibration candidates, we 
use an algorithm to select suitable samples and targets to perform implicit calibration. We evaluated our 
approach in an aircraft cockpit simulator with seven pilot candidates. Our approach reached a median accuracy 
between 2° to 4° on different cockpit displays dependent on the number of interactions. Differences between 
participants indicated that the correlation between gaze and interaction position is influenced by individual 
factors such as experience. 

1 INTRODUCTION 

Eye-tracking is an important tool to study human 
factors in aircraft cockpits. In many simulator studies, 
gaze measurement is used to analyse pilot attention 
(van de Merwe et al., 2012; Ziv, 2016) or conduct 
research about pilot cognition (Dahlstrom & 
Nahlinder, 2009; Schwerd & Schulte, 2020; van de 
Merwe et al., 2012). With ongoing development, it 
might be used in real cockpits to complement "black 
box" flight recorder information (Peysakhovich et al., 
2018) or to inform adaptive support systems (Brand 
& Schulte, 2021; Honecker & Schulte, 2017). Robust 
and accurate measurement of pilot gaze is 
fundamental to these undertakings. Therefore, proper 
calibration of the eye-tracking system plays an 
important role (Nyström et al., 2013). 

2 BACKGROUND 

Calibration of eye-tracking systems requires multiple 
pairs of calibration targets 𝑡௜(𝑥, 𝑦) and corresponding 
measured gaze samples 𝑠௜(𝑥, 𝑦) . For explicit 
calibration, a user is required to fixate predefined 

 
a  https://orcid.org/0000-0001-6950-2226 

calibration targets while gaze is measured. This time-
consuming process might decrease acceptance of eye-
tracking applications in aircraft cockpits. Further, 
measurement accuracy can deteriorate during 
operation due to head movements, blinking or a 
change in the user’s relative position to the screen (M. 
X. Huang et al., 2016; Sugano & Bulling, 2015), 
which could go unnoticed without re-calibration.  

With implicit calibration, no explicit user 
cooperation is required, and calibration targets are 
determined based on assumptions about probable or 
required fixation. This idea was originally proposed 
by Hornof and Halverson (2002), where participants 
in an experiment had to fixate a specific display 
position for task-relevant information which was used 
to monitor gaze accuracy. Following this idea, 
subsequent studies investigated implicit calibration 
based on the correlation of gaze and interaction such 
as mouse clicks (M. X. Huang et al., 2016; Sugano et 
al., 2008), scene properties like saliency (Kasprowski 
et al., 2019; Sugano & Bulling, 2015), moving objects 
(Blignaut, 2017; Drewes et al., 2019; Pfeuffer et al., 
2013) or saccade properties (M. X. Huang & Bulling, 
2019). Most of this research was conducted in the 
context of eye-tracking applications for untrained 
users, such as for webcams of internet users 
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(Papoutsaki et al., 2017) or for displays in public 
spaces (Khamis et al., 2016).  

One of the most studied implicit calibration 
methods is the correlation of gaze and mouse clicks. 
Sugano et al. (2008)  and Sugano et al. assumed, that 
gaze and mouse click position align when the click 
occurs and presented an algorithm that updated their 
gaze estimation with every click. According to J. 
Huang et al. (2012) the proximity of mouse cursor 
and gaze depends on the current mode of interaction 
(e.g. read or click) with a median distance of 70-80px 
for mouse clicks. In a subsequent study, the authors 
found, that the correlation of gaze and interaction is 
stronger before than exactly at the moment of 
interaction peaking at around 0.4s before interaction 
(M. X. Huang et al., 2016). In a more recent study, 
Zhang et al. (2018) implemented implicit calibration 
combining clicks, touches and keypresses over 
multiple devices. These studies showed the feasibility 
of interaction-based implicit calibration but pointed 
out two relevant problems: First, gaze data is usually 
noisy, which challenges the basic assumption, that 
gaze always aligns with an interaction. Second, task 
context and individual differences cause inconsistent 
alignment of gaze and interaction. Both these 
observations suggest that the interaction-based 
approach must be able to filter for correct gaze-
interaction alignments.  

The mentioned research showed the feasibility of 
implicit calibration. In most studies, the calibration is 
usually based on one specific type of interaction or 
scene property. From our review, we identified two 
open questions: First, how different interactions can 
be used in the same method for calibration. Second, 
if the implicit calibration assumptions hold in the use 
of human-machine-interfaces not specifically 
designed for this use case. We are convinced that 
implicit calibration will prove to be useful in 
operational workplaces to avoid explicit calibration 
and continuously verify eye-tracking quality. This 
paper makes the following contributions: First, we 
propose a method to select calibration target 
candidates that integrates different types of 
interactions. Second, we describe an algorithm, which 
can process these different types in a unified manner. 
Third, we evaluate the implementation of this system 
in our aircraft cockpit simulator. 

3 METHOD 

We propose a method with three stages displayed in 
Figure 1. The first step “Calibration Candidate 
Selection” is a classification to identify different 

types of interaction in natural human-system-
interaction that are suitable for implicit calibration. 
After a calibration target and associated samples has 
been identified, the second module “Sample 
Selection” identifies a subset of samples that are 
likely to be a fixation upon the assumed target. After 
that, a suitable calibration procedure uses the new and 
past selected samples to calibrate the system. 

 
Figure 1: Calibration pipeline. Two stages of selection 
result in a selection of samples and calibration targets for 
calibration. 

3.1 Selection of Calibration Candidates 

To identify suitable calibration targets in a natural 
human-machine interaction, we propose the 
following approach: We think about interaction and 
gaze measurements in terms of two parallel data 
streams (see Figure 2): First, a gaze data stream, which 
arrives at high frequency but possibly interrupted 
(e.g., when the eye-tracker loses the track) and 
second, interactions, which either happen at distinct 
moments (e.g., click) or are continuous over a time 
period (e.g., hold gesture on a touch screen).  

Given this perspective, we propose three 
categories to compute calibration targets and gaze 
sample candidates: an interaction is either a 
successor, companion, or precursor of a probable 
fixation  target.   We  define  an  interaction  to  be  a  
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Figure 2: Gaze samples and interactions as parallel data 
streams with three types of calibration target candidates. 

successor when the interaction follows a probable 
fixation target, for example mouse clicks, which 
succeed a fixation on the click position. After 
occurrence of a successor, the preceding gaze 
samples are selected as calibration candidates. Next, 
we define an interaction to be a companion when it 
likely occurs together with its associated fixation 
target. As an example, consider a slider widget in a 
desktop application that controls a numerical value 
displayed next to it. A user needs to fixate the 
changing number when he uses his mouse to slide, 
thus, it can be considered a fixation target. In this 
case, all gaze samples measured during an active 
companion interaction are calibration candidates. 
Finally, we define an interaction to be a precursor 
when the interaction occurs before a probable 
calibration target. Many interactions with the 
interface cause changes that are verified by the user 
just after interaction. To give a flight deck example, 
when a pilot moves the gear of their plane by control 
input, he confirms the position of the gear a few 
seconds after his input. The action and confirmation 
of the expected result could be used for implicit 
calibration, which is especially useful when the 
interaction is spatially or temporarily dislocated from 
the location where the change is displayed (e.g., 
control input and delayed indication of gear).  

3.2 Sample Selection 

The calibration candidate selection returns an 
assumed fixation position and associated gaze sample 
candidates for calibration that were measured either 
before, during or after the interaction. Since this data 
set is often noisy, we need to identify the most 
probable subset of samples representing the fixation 
on the assumed target. For this, we propose a simple 
algorithm inspired by RANSAC (Fischler & Bolles, 
1981), which selects samples that are in both spatial 
and temporal proximity to the interaction. 
Pseudocode is depicted in Algorithm 1. 
 
 
 
 

INTERACTION -TIME -CONSENSUSInput: gaze-samples, calibration-target, interaction-time, threshold-dist, threshold-time, minimum-samples Result: Best samples for calibration all-consensus-groups  ← empty list for sample-candidate in gaze-samples do:    consensus-group  ←  gaze-samples as selected by candidate selection    for consensus-candidate in consensus-group do:           spatial-dist ← SPATIAL_DISTANCE (consensus-candidate, sample-candidate)           time-dist ←TIME_DISTANCE_ABSOLUTE(consensus-candidate, interaction-time)          if spatial-dist > threshold-dist or time-dist > threshold-time do:             REMOVE consensus-candidate from consensus-group       if SIZE(consensus-group) < minimum-samples do:           continue   ADD consensus-group to all-consensus-groups           return consensus-group with lowest time to interaction 
Algorithm 1: Algorithm to select most probable subset of 
fixation samples for calibration target. 

3.3 Calibration 

Optimally, the sample selection algorithm returns a 
set of suitable pairs of calibration targets 𝑡௜(𝑥, 𝑦) and 
measured gaze samples 𝑠௜(𝑥, 𝑦)  while omitting 
targets with noisy measurements or insufficient 
sample size. Then, gaze can be calibrated when 
enough of these pairs have been identified. The 
method of calibration is flexible and depends on the 
use-case and desired fitting attributes. In the 
following, we present an experiment where we 
collected data in an experiment and applied a linear 
calibration function. 

4 EXPERIMENT 

To evaluate our approach, we conducted an 
experiment in a research cockpit simulator 
resembling a generic fast jet cockpit (see Figure 3), 
which is normally used to evaluate human-autonomy 
teaming applications (e.g., (Lindner & Schulte, 
2020)). The cockpit contains three touchscreens and 
a Head-Up-Display (HUD) projected into the visuals 
of the outside world. The participant’s gaze was 
measured with a commercially available four-camera 
system connected to the simulation software 
(SmartEye Pro 0.3MP) and gaze was tracked over the 
three touchscreen displays and the HUD.  

In the experiment, we processed the uncalibrated 
screen positions provided by the eye-tracking system 
consisting of x- and y-coordinate and the associated 
screen. The basic idea of the experiment was to 
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collect natural interaction data and uncalibrated gaze 
measurements in a flight mission, which was then 
used to perform implicit calibration. Results of this 
process were compared to the results of a baseline 
calibration based on a conventional 9-point 
calibration procedure.  

4.1 Calibration Targets 

There are a great number of different controls and 
displays in the cockpit simulator. The participants 
controlled their aircraft via throttle, stick, and touch 
interactions. Possible touch interactions were tap, 
hold, drag, and pinch dependent on the control 
element. From these different touch interactions, we 
used all taps as successors, and all holds as 
companions. Drag and pinch were not used.  In the 
following, we want to give a brief overview of the 
most important elements on the touchscreen, which 
are also displayed in Figure 3. 

The tactical map in the central touchscreen can 
be used for navigation and creation of mission tasks. 
It displays the aircraft, all unmanned systems as well 
as tactical objects and mission information. The map 
can be dragged and zoomed. It is possible to interact 
with tactical elements (e.g., building or waypoint) 
by tapping on the respective element, which is 

followed by a pop-up context menu used to plan 
mission tasks  

(e.g., reconnaissance). Taps were used as 
predecessors.  

On the left side display, the main interaction 
element is the mission plan timeline. After the 
creation of a task in the map, it can be inserted into 
the timeline by tapping a position within the timeline 
after which a task box moves to its position from the 
bottom of the screen. Taps were used as successors. 

The autopilot control can be opened by tapping 
on the associated button in the side bar of the central 
display. The control contains buttons to increase and 
decrease autopilot speed, altitude and heading as well 
as buttons to engage autopilot modes. The numeric 
values can be adjusted by either tap or hold 
interactions on the increase and decrease buttons. The 
calibration target of each interaction lies on the 
position of the value display. Taps and holds were 
used as successor and companions, respectively. 

The HUD shows several different flight 
parameters of the aircraft. For implicit calibration, we 
used the air brake indicator in the centre of the 
display. The participants controlled the air brake via 
a throttle button and the indicator in the shows its 
current position as illustrated by Figure 3. The 
interaction to control the air brake is considered a 
predecessor. 

 
Figure 3: Simulator (top center) with relevant interaction elements: Mission timeline (top left), HUD air brake indicator (top 
right), autopilot control (bottom left), tactical map (bottom center) and context menu (bottom right) 
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4.2 Experimental Task 

The experiment contained different tasks for the 
participants to trigger interactions on all displays. 
Before take-off, participants were asked to plan a 
mission, which required the creation of several tasks 
for their aircraft and a UAV. This included an 
interaction with the mission timeline. With their own 
aircraft, they had to take-off and fly over several way 
points or tactical objects, while their UAV 
investigated four different locations on the map. After 
the take-off, participants received messages with 
instructions to program the autopilot with given 
values. During the flight, the UAV sent pictures 
which had to be classified in two categories. The 
participant landed again at the airport after 
completion of all waypoints. 

4.3 Participants & Procedure 

We conducted the experiment with seven participants 
(all male, 𝜇௔௚௘ = 24.9𝑦 ). Four participants were 
students of aeronautical engineering and three were 
research assistants. All participants had prior 
experience in handling the simulator. In the beginning 
the participants received an introduction to the 
simulator and the specific tasks necessary to complete 
the experimental requirements. Then, each 
participant had to complete three training missions to 
get familiar with the mission tasks. Before each 
mission there was a briefing in which the tasks and 
circumstances were demonstrated. Prior to the 
experimental mission, we collected validation data 
based on a 9-point validation on every screen. After 
this data collection, the participant received a briefing 
for the experimental mission, which followed on the 
briefing.  

4.4 Data Processing 

During the 9-point validation procedure, we collected 
100 samples for 9 points on each display. The error 
was computed by average Euclidian distance of each 
sample to the calibration target. In the experiment, we 
logged the following data: (1) position and timestamp 
of uncalibrated gaze measurements and (2) position, 
timestamp, type, and associated display element (e.g., 
autopilot value, map) of interaction. For calibration, 
we computed the constants that optimized error given 
the application of the following function to the 
samples for both x- and y-coordinates: 𝑓(𝑥) =  𝑎଴  + 𝑎ଵ𝑥  (1)
 

For the HUD, we used the following function 
since there was only one possible calibration point in 
the centre of the display: 𝑓(𝑥) = 𝑎଴ +  𝑥  (2)

Note, that we computed the calibration 
parameters for each display independently.  

5 RESULTS 

First, we aimed to identify the optimal set of 
parameters for the sample selection algorithm. After 
selecting a set of parameters, we evaluated how many 
calibration targets and samples were selected for 
calibration. Finally, we compared calibration 
performance of implicit calibration with 9-point 
calibration. 

5.1 Optimal Parametrization of the 
Selection Algorithm 

The algorithm presented in section 3.2 expects three 
parameters: distance threshold, time threshold and 
minimum number of samples. We performed a grid 
search to identify optimal parameters. We  
tested the combinations of the following  
parameters: distance threshold [1.0, 1.5, 2.0]° ,  
time threshold [0.5, 1.0, 1.5, 2.0] 𝑠  and minimum 
samples  [10, 15, 20, 25] . We found varying 
parameters for the participants suggesting individual 
differences in the gaze-interaction correlation. Also, 
an individual random component in gaze 
measurement could influence optimal distance 
threshold because a low threshold filters fixations 
with high variance. For the following analysis, we 
selected a set of parameters returning the best median 
calibration performance: distance threshold of 2.0°, 
time threshold of 2.0𝑠 and minimum samples of 15. 
These parameters were used for all participants to 
generate the following results. 

5.2 Interactions 

Interaction with each display differed in frequency as 
shown by Table 1. Participants mainly interacted by 
taps because this was the primary way to operate the 
system. In addition, some participants did not use a 
hold interaction to control the autopilot but preferred 
to tap the buttons multiple times, which is one reason 
for the high variations of successors and companions 
in the centre display.  
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Table 1: Number of occurrences of the different forms of interactions, formatted as “Mean (Standard Deviation)”.  

 
 

There were very few samples for predecessor 
interaction on the HUD because was only controlled 
to land the aircraft. One participant did not use the air 
brake at all. In average, the sample selection removed 
15.8% of successors and 81.5% of companions 
because no valid sample group was found. 
Surprisingly, not many successor interactions on the 
left and right display were removed. 

5.3 Calibration Performance 

We computed calibration constants with the selected 
calibration targets and samples from the experiment. 
Using these constants, we calibrated the data 
collected in the 9-point validation data of each 
display. Then, we compared the error of this 
implicitly calibrated data with uncalibrated and point-
calibrated data. Results are displayed in Figure 4.  

There are improvements against no calibration for 
most participants on most displays but there are also 
instances where our method deteriorated the gaze 
measurement. Table 2 reports absolute and relative 
values for implicit calibration. Median accuracy is 
between 2.1° on the left display to 3.8° on the HUD. 
For very few cases, improvement by implicit 
calibration was comparable to point calibration (e.g., 
see Center, P7 or Side Left P6). Standard deviation is 
high on the HUD, because of a great implicit 
calibration error for participant 2 and 4. 

Table 2: Median accuracy and relative improvement of 
implicit calibration. 

Display Median Accuracy 
(Std) 

Median relative 
improvement (Std)

Center 2.2° (0.96°) 44% (65%)
Side Left 2.1° (1.03°) 22% (41%)

Side Right 2.8° (0.96°) 36% (36%)
HUD 3.8° (3.67°) 0% (136%)

5.4 Discussion  

The results showed that the implicit calibration 
method can improve average accuracy on the 9-point 

validation but did not reach point calibration quality. 
Therefore, we conclude that the basic assumptions of 
implicit calibration do hold for interactions in work 
environments like an aircraft cockpit, but there are 
limitations to the presented approach. First, the 
parameter search revealed that the algorithm had 
different optimal parameters for different participants 
which indicates an individual component in implicit 
calibration. We assume, that two factors are 
responsible for these individual components. First, 
participants had different levels of training on the 
system e.g., the research assistants developed parts of 
this prototype and students had only experience from 
prior experiments. When a user is very experienced, 
he anticipates system reactions and might be very 
quick in his interaction. Second, individual factors 
such as computer game experience might also be a 
confounding factor influencing the correlation 
between gaze and interaction. Apart from individual 
difference, another problem is the varying frequency 
of different interaction types. In our use-case, 
successor interactions (taps on the central 
touchscreen) occurred far more often than other forms 
and therefore had the largest influence on the results. 
Contrary, the HUD had very few interactions on one 
possible calibration target, which was problematic in 
two ways: First, when our method falsely selects 
samples where the implicit calibration assumption 
does not apply, there is a great accuracy degradation 
due to false calibration. The risk of false calibration 
is especially high when sample size is low. Second, 
when there are very few targets on the screen (e.g., on 
the HUD), calibration procedure might overfit areas 
where most interactions happen.  

Our experiment had two main limitations. First, 
although all participants had prior experience on the 
simulator, the degree of proficiency differed, which 
could also explain individual calibration differences. 
Second, the experimental design did not allow to 
analyse the problem of continuous deterioration 
during measurement. We collected validation data 
before the experiment, so gaze tracking quality 
change during the experiment could influence 
implicit calibration performance. 
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Figure 4: Comparison of no, implicit and point calibration on each display with 9-point validation data (bar, blue/gray). 
Relative improvement is displayed only for implicit calibration (point, orange). Note: There were no samples for Participant 
7 on the HUD. 

6 CONCLUSION 

Our approach demonstrated the feasibility and the 
challenges of implicit calibration in work 
environments, specifically on flight deck. We are 
planning to improve the current approach by 
integrating smooth-pursuit calibration, which in our 
case, could be implemented for moving objects on the 
map or in the external view. Another possible 
improvement is to extent the predecessor interactions 
based on informed use cases of a professional pilot. 
Since pilot interaction is standardized to a high 
degree, there are many tasks in the cockpit that could 
be leveraged for implicit calibration like for example 
take-off procedures or checklists. 
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