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Abstract: Holistic scene understanding is a long-standing objective of core tenets of Artificial Intelligence (AI). Multi-
modal tasks that aim to synergize capabilities spanning multiple domains, such as visual-linguistic capabilities,
into intelligent systems are thus a desideratum for the next step in AI. Visual Question Answering (VQA) sys-
tems that integrate Computer Vision and Natural Language Processing tasks into the task of answering natural
language questions about an image represent one such domain. There is a need to explore Deep Learning tech-
niques that can help to improve such systems beyond the language biases of real-world priors that presently
hinder them from serving as a veritable touchstone for holistic scene understanding. Furthermore, the effec-
tiveness of Transformer architecture for the image featurization pipeline of VQA systems remains untested.
Hence, an exhaustive study on the performance of various model architectures with varied training conditions
on VQA datasets like VizWiz and VQA v2 is imperative to further this area of research. This study explores
architectures that utilize image and question co-attention for the task of VQA and several CNN architectures,
including ResNet, VGG, EfficientNet, and DenseNet. Vision Transformer architecture is also explored for
image featurization, and a myriad of loss functions such as cross-entropy, focal loss, and UniLoss are em-
ployed for training the models. Finally, the trained model is deployed using Flask, and a GUI for the same has
been implemented that lets users input an image and accompanying questions about the image to generate an
answer in response.

1 INTRODUCTION

There has been an astronomical surge in Computer
Vision and Deep Learning research for tasks pertain-
ing the Visual capabilities. Provided with adequate
data, Deep Convolutional Neural Networks (CNNs)
have come to be at par with human levels in classi-
fication tasks (He et al., 2016a). However, a holis-
tic understanding of images, a desideratum for the
next step in AI, requires multimodal learning capa-
bilities. Recent research has paved the way to explor-
ing tasks that broaden the spectrum of Artificial Intel-
ligence towards more holistic capabilities, including
multimodal learning, which is an essential sub-field
for truly AI-complete tasks.

1.1 Background

Visual Question Answering (VQA) is the multimodal
task of answering natural language questions about
an image. The task of open-ended VQA entails sev-

eral capabilities across the domain of AI like Activity
recognition, Object detection, Spatial awareness, At-
tribute classification, etc.

A robust VQA system is expected to have the fa-
cilities for reasoning about images and answer a wide
range of Computer Vision tasks. Recent work has
welcomed self-attention-based architectures, specifi-
cally Transformers, as the de-facto standard for Nat-
ural Language Processing tasks. Due to their com-
putationally efficient architecture, models of extraor-
dinary size can now be trained on an enormous cor-
pus of data. Computer Vision tasks, however, are
predominantly based on Convolutional architectures
until some recent study in utilizing the Transformer
architectures in hopes of transferring their scalability
and efficiency over (Dosovitskiy et al., 2020). To that
end, Vision Transformers (Dosovitskiy et al., 2020)
have been incorporated into the pipeline of a VQA
system as image feature extractors in this study.
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1.2 Motivation

Apart from immediate applications in assisting the vi-
sually impaired, VQA systems serve as an essential
component of the Visual Turing Test for image under-
standing. Multimodal research in the form of image
and video captioning is an extensively studied and ar-
guably the most closely related sibling task to VQA
that often entails an understanding of complex object
relationships and attributes to describe the contents
of visual media in natural language. However, vi-
sual captioning is often shown to lack the fine-grained
scene understanding required of a Visual Turing test;
and the lack of a fast, cheap, and reliable automatic
evaluation for generated captions further casts doubt
upon its capacity as an ”AI-complete” task.

1.3 Objectives/Contributions

1. This work explores attention and co-attention
mechanisms pertaining to visual and linguistic
modalities.

2. Explored Vision Transformers for leveraging the
advantages of Transformer architecture for image
featurization over Convolutional Neural Networks

3. We formulated a comparative study of different
techniques (Transformers, Loss Functions, Multi-
modal fusion) in the field of VQA over datasets
VQA, VizWiz.

2 VQA DATASETS, EVALUATION
METRICS AND METHOLOGY

Some of the earliest works in the domain of Visual
Question Answering were motivated by the devel-
opment of a Visual Turing Test for a Computer Vi-
sion system and combined visual-linguistic parsing
for natural language query answering. These works
were, however, limited in their scope to constrained
settings due to the unavailability of adequate datasets.
The years 2014 and 2015 saw some of the earliest
VQA datasets being publicly released, marking VQA
research’s rise. Some of them are presented below.

2.1 Early VQA Datasets

DAQUAR

One of the smallest yet earliest significant VQA
datasets to arrive, the Dataset for Question Answer-
ing on Real-world images (DAQUAR) (Malinowski
and Fritz, 2014) consisted of 6794 training and 5674

test question-answer pairs. Adding to its small
size, DAQUAR was exclusively comprised of indoor
scenes, with significant clutter and adverse lighting
conditions, which made questions difficult to answer.

VQAv1

The first version of the VQA dataset (Antol et al.,
2015) consisted of both ’real’ and ’abstract’ images.
The Real Images portion of the dataset comprises
over 80k,40k, and 80k images from the Microsoft
Common Objects in Context (MS COCO) (Lin et al.,
2014) for training, validation, and test sets, respec-
tively. These images are complex and diverse, hence
suitable for the VQA task. The abstract scenes sub-
set containing 50k cartoon scenes were introduced to
attract researchers looking to explore the high-level
reasoning required for the task of VQA. The dataset
comes with innate language biases in that a large pro-
portion of the dataset’s questions can be answered
without looking at the corresponding images. Ad-
ditionally, some questions are highly subjective and
would not strictly reflect an algorithm’s true capabil-
ity of solving the VQA problem.

COCO-QA

In response to the need to construct a more compre-
hensive, diverse, and complex dataset, aimed to create
a much larger body of question-answer pairs, which
were automatically synthesized by converting image
descriptions into QA forms. These QA pairs were
generated on the MS-COCO dataset (Lin et al., 2014).
COCO-QA contains 78,736 training and 38,948 tests
QA pairs. The largest potential for limitation in this
dataset is the question generation itself, in that it is
limited to the objects described in the COCO dataset
descriptions. Moreover, some of the questions gen-
erated suffer from being grammatically unclear and
ambiguous.

Visual Genome

Visual Genome (Krishna et al., 2017) was the largest
dataset when it was first released, consisting of over
100k images from the MS-COCO (Lin et al., 2014)
and YFCC100M (Thomee et al., 2016) datasets.
What is unique about the Visual Genome Dataset is
that the questions were constrained to start with one
of the Ws with an average of 17 questions per image,
resulting in approximately 1.7 million QA pairs.

2.2 Evaluation Metrics

Several automatic evaluation metrics in the form of
BLEU (Papineni et al., 2002), METEOR (Banerjee
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and Lavie, 2005), and ROUGE (Lin, 2004) originally
developed for machine translation evaluation lent to
the captioning tasks as well and have their own set
of limitations in dealing with natural language which
can be highly subjective.

Simple Accuracy

The task of Visual Question Answering faces similar
limitations but to a larger degree. VQA is framed ei-
ther as an open-ended problem, which entails the for-
mulation of a string to generate a natural language an-
swer or as a multiple-choice problem which reduces
to a multi-class classification problem. For the latter,
simple accuracy is often employed as the evaluation
metric of choice, though it may also be utilized for the
former. However, this can prove largely inadequate
due to the binary nature of the metric. Additionally,
this also overlooks the possibility of multiple correct
answers.

WUPS

Wu-Palmer Similarity (WUPS) (Wu, 1994) take se-
mantics into consideration by striving to measure
the difference between the predicted answer and the
ground truth. It assigns a value between 0 and 1 based
on the predicted and ground truth similarity. Semanti-
cally similar words, such as ’whale’ and ’blue whale,’
have a higher WUPS score than, say, ’whale’ and ’ta-
ble.’

VQA Challenge

The VQA Dataset contains ten answers per question
by different annotators. The evaluation metric utilized
by the dataset and associated challenge is:

AccuracyV QA = min(
n
3
,1) (1)

where n denotes the count of annotators who had the
same answer as the one predicted. A model is given
a full score based on if the predicted answer corre-
sponds to three or more annotators for a question.

Human Evaluation

Finally, there is the method of human evaluation, but
it presents a long list of problems that make such a
method infeasible, in terms of time, resources, and
expenses. Additionally, measuring a system’s perfor-
mance iteratively to strive to improve it greatly adds
to the problem. Lastly, judging the quality of an an-
swer requires criteria to be given to the judges. The
ideal evaluation metric for a VQA system remains to
be an open question.

2.3 Existing VQA Models and
Methodology

Some of the earliest VQA pipelines follow the most
intuitive forms of VQA pipelines, and models today
continue to morph from this fundamental architec-
ture where extracted features of both image and in-
put question are often fed into a multi-layer percep-
tron (MLP) classifier after they have been fused to-
gether (Antol et al., 2015; Kafle and Kanan, 2016;
Zhou et al., 2015). Some of the recurring methods
of combining features include element-wise addition,
product, and concatenation.

Featurization approaches have seen extensive va-
riety over past classification frameworks. The authors
of (Zhou et al., 2015) employed the GoogLeNet archi-
tecture for extraction of image features, and a bag-of-
words model to represent the question features, which
were concatenated and then fed to a multi-class lo-
gistic regression classifier. Skip-thought vectors were
utilized by (Kafle and Kanan, 2016) for question fea-
tures and ResNet-152 for visual extraction.

The authors of (Antol et al., 2015) utilized an
LSTM encoder to represent question features with
GoogLeNet for visual features. After equalizing the
dimensionality of the two features, they were fused
using the Hadamard product, which was propagated
to a 2-layer MLP. In (Malinowski et al., 2015), each
word and the corresponding CNN features of the
image concatenated were sequentially fed into the
LSTM. A softmax classifier then predicted the an-
swer.

Several studies have pointed towards the idea that
only using global features may overlook the signif-
icance of task-relevant regions of the input space.
By employing attention mechanisms, models learn
to ‘attend’ to the most relevant regions based on the
given task. Attention-based architectures have proved
to perform greatly in several NLP and vision tasks,
including image captioning, semantic segmentation,
object detection, and machine translation. For the
task of VQA as well, instead of global features, sev-
eral models have incorporated spatial attention to for-
mulating region-specific CNN features. The motiva-
tion behind this approach is that some specific visual
regions in an image, and likewise certain words in
a question, contain more information about the task
than others. A VQA model consists of the following
components or phases:

Image Featurisation

CNN’s pre-trained on ImageNet have consistently
served as well-performing networks for extracting
features for the task of VQA. Two of the most widely

Visual Question Answering Analysis: Datasets, Methods, and Image Featurization Techniques

283



employed are the VGG (Simonyan and Zisserman,
2014) and ResNet (He et al., 2016b) networks. Ow-
ing to increasing availability and accessibility to com-
putational resources, recent works have leaned to-
wards utilizing the more complex ResNets, which of-
ten achieve better results as well.

Question Featurisation

Skip-thought vectors (Kiros et al., 2015), Bag-of-
words (BOW), gated recurrent units (GRU) (Cho
et al., 2014), and long short-term memory (LSTM)
encoders (Hochreiter and Schmidhuber, 1997) are
some of the methods adopted for question featuriza-
tion.

Feature Integration

Simple mechanisms such as element-wise addition,
element-wise multiplication, and concatenation (An-
tol et al., 2015; Kafle and Kanan, 2016; Zhou et al.,
2015) are widely used in VQA research. Additionally,
Bilinear pooling (Kim et al., 2016; Saito et al., 2017)
has often been employed. Computing spatial atten-
tion maps for the visual features based on question
features (Yang et al., 2016), and using Bayesian mod-
els that utilize the question-image-answer feature dis-
tributions (Kafle and Kanan, 2016; Malinowski and
Fritz, 2014) are also prevalent.

Answer Generation

The most common is the classification framework, but
some have also utilized frameworks to generate multi-
word answers sequentially, such as (Malinowski et al.,
2015), that used LSTMs for the same.

3 DATA SET(S) USED

The following datasets were employed for experi-
ments with VQA systems (chronologically)

3.1 VizWiz

The dataset contains 20,523 image/question pairs
and 205,230 answer/answer confidence pairs for
the Training. The Validation set has 4,319 im-
age/question pairs and 43,190 answer/answer confi-
dence pairs. The Test set has 8,000 image/question
pairs distributed among 4 question types: Yes/No,
number, other and unanswerable types.

3.2 VQA v2

The dataset contains 82,783 images, 443,757 ques-
tions, and 4,437,570 answers for the Training. The
Validation set has 40,504 images, 214,354 questions,
and 2,143,540 answers. The Test set has 81,434 im-
ages and 447,793 questions

4 PROPOSED TECHNIQUE(S)
AND ALGORITHM(S)

4.1 Proposed Model

The proposed model extends upon the co-attention
model first devised in (Lu et al., 2016) illustrated
below. The model uses joint attention to simulta-
neously attend to both image regions and question
parts. The co-attention mechanism is implemented
hierarchically at three stages (word, phrase, and sen-
tence/question level).

4.1.1 Symbolic Notations

Let the question with M words be denoted as Q =
{q1,q2, .....qM}, qm being the m-th word’s feature
vector. Word-level, phrase-level, and question-level
embeddings at a position m is represented as qwo

m ,
qph

m and qqu
m . Image feature vectors at k spatial lo-

cations, on the other hand, are represented as I =
{i1, i2, .....iK}. îl and q̂l denote co-attention features
at each stage of the hierarchy for the image and ques-
tion, respectively, where l denotes the level in the hi-
erarchy, i.e., l ε{wo, ph,qu}. W represents weights
throughout.

4.2 Word, Phrase, and Sentence Levels

Tokenized and one-hot encoded questions are first fed
through an embedding matrix, the output of which is
our word-level embeddings, Qw = {qwo

1 ,qwo
2 , .....qwo

M }.
1-D convolutions are then applied with three filter
sizes denoting trigram, bigram, and unigram scopes.

q̂ph
s,m = tanh(Wlqwo

m:m+l−1), l ∈ {1,2,3} (2)

which is then max-pooled to obtain the final phrase-
level embeddings at each location:

q̂ph
m = max(q̂ph

1,m, q̂
ph
2,m, q̂

ph
3,m),m ∈ {1,2, .....M} (3)

The phrase-level embeddings are encoded through
an LSTM to get the sentence or sentence-level embed-
dings of the entire question.

A detailed illustration of the hierarchical embed-
dings is represented in fig. 1
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Figure 1: Proposed VQA architecture for hierarchical em-
beddings.

4.2.1 Core Mechanism

This mechanism is carried out at each stage of the
hierarchy. Similarity is computed between the re-
spective features at each image-question location pair.
Concretely, an affinity matrix A ∈ RM×K is computed
between the image feature map I ∈Rd×K and question
Q ∈ Rd×M .

A = tanh(QT WbI) (4)
The image and question attention is learnt as de-

scribed:
(Image attention:)

Zv = tanh(WiI+(WqQ)A),

av = so f tmax(wT
ziZ

i),
(5)

(Question attention:)
Zq = tanh(WqQ+(WiI)AT ),

aq = so f tmax(wT
zqZq),

(6)

where ai ∈ RK and aq ∈ RM represent the image
region ik and word qm attention probabilities respec-
tively. Consequently, the image and question atten-
tion are calculated as a weighted sum:

î =
K

∑
k=1

ai
kik, q̂ =

M

∑
m=1

aq
mqm (7)

at each stage of the hierarchy.

4.2.2 Predicting Answers

A multi-layer perceptron consumes the co-attention
features of question and image encompassing the hi-
erarchy to predict the answer.

zwo = tanh(Wwo(q̂wo + îwo
))

zph = tanh(Wph[(q̂ph + îph
),zwo])

zqu = tanh(Wqu[(q̂qu + îqu
),zph])

p = so f tmax(Wzzqu)

(8)

where p represents the answer probability.

Figure 2: Simplistic representation of proposed VQA
pipeline.

4.3 Proposed Techniques

A simple representation of the pipeline is represented
in fig. 2. An ablation study was carried out over
all existing combinations of the below techniques and
can be found summarised in table 3.

• Image Featurization: An array of pre-trained im-
age feature extractors were employed:

1. CNNs: VGG19, Resnet101, EfficientNetB5,
DenseNet169 pre-trained on ImageNet

2. Transformers: Vision Transformers pre-trained
on the ImageNet and ImageNet 21k datasets

• Loss Functions: Three different loss functions
were employed. The loss function formulas are
listed below.

1. Categorical Cross Entropy

CCE =−
N

∑
i=1

C

∑
j=1

(yi jlogŷi j) (9)

2. Focal Loss

FL =−
N

∑
i=1

C

∑
j=1

α(1− ŷi j)
γ(yi jlogŷi j) (10)

where α is the weight adjust hyperparameter,
and γ is for adjusting the curve. The higher the
value of α, the lower the loss for well-classified
datasets and vice versa. Upon iterative exper-
imentation, values of γ = 2 and α = 1 yielded
best results.

3. UniLoss

UL =−
N

∑
i=1

((1− ε)logŷik +
C

∑
j=1

(0+
ε

C
)logŷi j)

(11)
where the hyper-parameter, ε, indicates the degree
to which the majority class examples’ influence
should be divided towards other classes; ŷik is the
predicted probability of sample i on its true kth

category. Upon iterative experimentation, value
of ε = 0.5 yielded the best results.

Visual Question Answering Analysis: Datasets, Methods, and Image Featurization Techniques

285



Vision Transformers

The base variant of Vision Transformers (Vit-Base)
with 12 layers and pre-trained weights were employed
with a patch size of 32x32. The output of the trans-
former with the extra learnable token at the beginning
discarded was used as the image features for the VQA
pipeline.

5 EXPERIMENTS AND ANALYSIS

This section analyzes the effectiveness of different
image featurization and error analysis techniques
with the Co-attention architecture on the VizWiz and
VQAv2 datasets.

5.1 VizWiz Dataset

Architecture

Pre-trained VGG16 and Resnet152 CNN networks
were employed for Image Featurization and GloVe
Word Embeddings, followed by Bidirectional LSTM
layers for question featurization. Visual and Linguis-
tic features were fused using element-wise multipli-
cation. When utilizing only the part of the dataset
with the yes/no question type, the top layers consisted
of a single dense layer with 512 neurons followed
by an output layer with 1 neuron and sigmoid acti-
vation for binary classification. When utilizing the
entire dataset, the top layers were exactly as specified
in the accompanying fig. 3. The loss functions em-
ployed were Categorical Cross Entropy, Focal loss,
and UniLoss. All models were trained for 25 epochs.

Figure 3: Architecture for the complete VizWiz dataset.

Experimental Setup

A summary of the hyperparameters settings for the
VizWiz dataset is provided as follows: The maximum
answer value taken is 1000, learning is rate 1e-3, and
the number of epochs is 25.

Results

Accuracy of 98.98% and 60.51% were obtained on
the training and test set, respectively, for the yes/no
part of the VizWiz Dataset. The results on the com-
plete dataset are summarized below in table 1. The
table shows that RESNET152 with cross-entropy per-
forms better in comparison to other networks.

Table 1: Results on the entirety of VizWiz Dataset.

Pretrained
CNN

Loss
function

Training
accuracy

Validation
accuracy

VGG16 CROSS
EN-
TROPY

57.89 45.00

VGG16 FOCAL
LOSS

57.42 45.72

VGG16 UNILOSS 57.21 45.16
RESNET152 CROSS

EN-
TROPY

60.41 46.74

RESNET152 FOCAL
LOSS

58.92 47.03

RESNET152 UNILOSS 58.85 47.01

5.2 VQAv2 Dataset

Architecture

The hierarchical Question-Image Co-Attention model
(Lu et al., 2016) was implemented that utilizes visual-
linguistic co-attention for the task of VQA. For the
purposes of experimentation, only the training por-
tion of the dataset was utilized, out of which a 75-25
split was maintained for training and validation sets.
This meant that the 82,783 training images and asso-
ciated 443,757 training questions were split between
training and validation sets. All models were trained
for 60 epochs. Categorical Cross Entropy, Focal Loss,
and UniLoss were used for experimentation purposes.

Experimental Setup

A summary of the hyperparameters settings for the
VQAv2 dataset is provided in Table 2.

Results

The results of the experiments conducted on the VQA
v2 dataset using the proposed model and varying set-
tings can be found summarised in table 3. Exper-
iments were conducted with different combinations
of image featurization and error analysis techniques.
The Table shows that the performance of the Vision
Transformers with cross-entropy loss on the training
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Table 2: Summary of main hyperparameters and their val-
ues.

HYPERPARAMETER VALUE
Maximum answers 1000
Maximum words in a sequence 22
Epochs 150
Dimension d 512
Dimension k 256
Learning rate 1e-4
Dropout rate 0.5
Optimizer Adam
Focal Loss Gamma 2
Focal Loss Alpha 0.25
Focal Loss Epsilon 1e-9

Table 3: Results on the VQAv2 dataset (Training portion
[75-25 split]).

Feature Ex-
tractor

Loss function Training
F1
Score

Validation
F1
Score

VGG19 Cross-
Entropy

43.19 40.42

VGG19 Focal Loss 42.34 40.45
VGG19 Uniloss 40.56 40.12
Vision Trans-
former

Cross-
Entropy

55.16 40.13

Vision Trans-
former

Focal Loss 52.38 39.66

Vision Trans-
former

Uniloss 50.66 39.94

ResNet101 Cross-
Entropy

44.87 41.41

ResNet101 Focal Loss 43.42 41.67
ResNet101 Uniloss 43.26 40.10
EfficientNetB5 Cross-

Entropy
52.79 41.68

EfficientNetB5 Focal Loss 50.65 41.58
EfficientNetB5 Uniloss 43.26 40.10
DenseNet169 Cross-

Entropy
53.45 41.94

DenseNet169 Focal Loss 51.65 42.08
DenseNet169 Uniloss 43.26 41.10

dataset is good. While on the Validation set, Densenet
with Focal loss function performs well.

5.3 VQA Web Application

In order to provide the interface for posing the query,
a web application is created. Figure 4 depicts the
graphical interface. The Flask framework is used
to build the web application’s backend, and HTML,
CSS, and JavaScript are used to build its front end.
The application can accept an image and a text query
as input and returns the relevant answer.

Figure 4: The GUI for the deployed VQA app.

6 CONCLUSIONS

There appears to be an indicative trend regarding at-
tention mechanisms and their benefits to a multimodal
problem, such as Visual Question Answering. Al-
though Computer Vision problems have been unable
to leverage the advantages that Transformer archi-
tectures hold over Convolutional Networks. The re-
search on Vision Transformers to that end has been
a considerable step in this regard. Pre-trained Vi-
sion Transformers were utilized in our experiments
for image featurization. While they offer similar re-
sults in terms of accuracy performance, the models
train much faster than one CNNs of a similar scale
are employed. Co-attention mechanisms incorporated
into Transformer architectures seem to be the way for-
ward concerning VQA problems. They could hold
great potential in terms of holistically understanding
the visual medium as well as learning the correct re-
gions to attend to based on the input question in natu-
ral language.

Detailed studies have shown that most models per-
form slightly worse when they infer answers based
on only the question rather than when considering
both the input image and question. There is, there-
fore, a need to focus on visual attention so that the
visual information is adequately taken into account
for generating an answer to the input space. All of
the data and the final deployed model were posted
to the ”https://github.com/AbhimanyuSethi-98/VQA-
Flask-App.git” repository.

ACKNOWLEDGMENT

The authors like to express their sincere gratitude
to the Department of Science and Technology
(DST/ICPS/CLUSTER/DataScience/2018/Proposal-
16:(T-856)) for giving financial support at the
department of CSIS, Birla Institute of Technology
and Science, Pilani, India.

Visual Question Answering Analysis: Datasets, Methods, and Image Featurization Techniques

287



REFERENCES

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,
Zitnick, C. L., and Parikh, D. (2015). Vqa: Visual
question answering. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2425–
2433.

Banerjee, S. and Lavie, A. (2005). Meteor: An automatic
metric for mt evaluation with improved correlation
with human judgments. In Proceedings of the acl
workshop on intrinsic and extrinsic evaluation mea-
sures for machine translation and/or summarization,
pages 65–72.
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