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Abstract: Cross-site scripting (XSS) is a frequently exploited vulnerability in web applications. Existing XSS testing
tools utilize a brute-force or heuristic approach to discover vulnerabilities, which increases the testing time
and load of the target system. Reinforcement learning (RL) is expected to decrease the burden on humans and
enhance the efficiency of the testing task. This paper proposes a method to automate XSS vulnerability testing
using RL. RL is employed to obtain an efficient policy to compose test strings for XSS vulnerabilities. Based
on an observed state, an agent composes a test string that exploits an XSS vulnerability and passes the string to
a target web page. A training environment XSS Gym is developed to provide a variety of XSS vulnerabilities
during training. The proposed method significantly decreases the number of requests to the target web page
during the testing process by acquiring an efficient policy with RL. Experimental results demonstrate that the
proposed method effectively discovers XSS vulnerabilities with the fewest requests compared to the existing
open-source tools.

1 INTRODUCTION

Since recent computer systems have become more
complicated, security protection is a growing con-
cern. The cyber-space attacks are also becoming more
sophisticated, and the defense of computer systems
must be enhanced. From the defender’s viewpoint,
reinforcement learning (RL) is expected to provide
the opportunity for prior vulnerability testing (Song
and Alves-Foss, 2015; Avgerinos et al., 2018). Thus,
applying RL to cybersecurity, such as autonomous at-
tacks and vulnerability detection, has emerged as a
key research topic in recent years (Meyer et al., 2021;
Nguyen and Reddi, 2021).

In this paper, we focus on vulnerability testing
in network-attached devices. A well-known vulner-
ability is cross-site scripting (XSS), which is recog-
nized as one of the most frequent threats (OWASP
Top 10 team, 2021). XSS vulnerabilities allow attack-
ers to execute malicious scripts on the web application
of unsuspecting users by improperly handling exter-
nal input strings. Existing XSS vulnerability testing
tools utilize brute-force or heuristic methods based on
known attack patterns, which increases the number of
requests to the target web page, thus increasing the
testing time and load on the web server. Consider-
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ing the increase in network-attached devices, such as
IoT devices with limited computational resources, an
efficient vulnerability testing method must be estab-
lished.

This paper proposes a method to automate XSS
vulnerability testing using RL to understand the na-
ture of autonomous attacks. Here, an autonomous at-
tack represents that a policy in an RL agent is trained
using a training environment to select an efficient
attacking action that is adapted to a target environ-
ment. The proposed method composes a test string
that exploits a vulnerability by combining known at-
tack string fragments used in XSS attacks and state
observation by parsing the source code of the target
web page. RL is employed to obtain an efficient pol-
icy to autonomously compose the test string without
human intervention. The experimental results demon-
strate that the proposed method can discover vulnera-
bilities with the fewest requests compared to existing
open-source tools.

The contributions of the paper can be summarized
as follows:

• We define state observations by parsing the source
code of a target web page, agent actions by the
string combination, and reward by the current
state observation to implement an XSS vulnera-
bility testing method using RL.

• Based on the state, action, and reward, we propose
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an XSS vulnerability testing method using RL.

• We develop a training environment called XSS
Gym that randomly provides vulnerable web
pages based on pre-defined templates and param-
eters. XSS Gym facilitates the RL agent to experi-
ence a large number of XSS vulnerability patterns
compared to manually setting up static vulnerable
pages.

• We experimentally demonstrate that the proposed
method discovers XSS vulnerabilities with the
fewest requests compared to existing open-source
tools.

2 BACKGROUND

This section presents the background of RL and XSS
vulnerabilities.

2.1 Reinforcement Learning (RL)

RL represents an algorithm aimed at obtaining the
optimal policy by maximizing the expected reward
passed from the environment. The environment is
often modeled as a Markov decision process (MDP),
which is defined using the following elements:

• state space S that the environment can take;

• action space A , including all actions that the agent
can perform;

• state transition function P : S ×A × S → [0,1],
which is the probability of transition to state st+1
when action at is performed in state st at time t;

• immediate reward function R : S ×A → R;

• reward discount factor γ ∈ [0,1].

π(a | s) is the policy in which action a can be per-
formed in state s. The goal of RL is to maximize the
expected discount cumulative reward under policy π

through the interaction of the environment and agent.

2.2 Cross-Site Scripting (XSS)

XSS is a vulnerability in a web application in which a
malicious script can be injected into the web applica-
tion, and the vulnerability allows attackers to execute
the malicious script on the web application. An at-
tacker exploits the XSS vulnerabilities to execute an
arbitrary script, payload, on the system of the web ap-
plication users and may steal confidential information
or perform malicious actions unintentionally.

<textarea>__USER_INPUT__</textarea>

<textarea></textarea><script>alert(1);</script></textarea>

(a) Response when the user input is “__USER_INPUT__.”

(b) Response in which a JavaScript code can be executed due to the XSS vulnerability.

Figure 1: Example of an XSS attack.

Figure 1 shows an example of the XSS attack.
Figure 1 (a) shows the response of a web applica-
tion when the user input is ‘__USER_INPUT__.’ Fig-
ure 1 (b) shows the attack case: a malicious attacker
inputs the underlined red string, which is a JavaScript
code with a closing tag of textarea. The closing
tag of textarea at the beginning of the input string
closes the textarea context, and the next script tag
is valid as an HTML code. Thus, the JavaScript code,
‘alert(1);’ is executed in the web application. Such
an input string to a web application can be passed as
the parameter of a GET request or payload of a POST
request. Suppose an attacker embeds a malicious code
into a URL as a GET parameter and distributes the
URL. In this case, a user who accesses the URL will
execute the malicious code injected into the web ap-
plication.

XSS is classified into three types: reflected,
stored, and DOM-based. In reflected XSS, a part of
an input string is directly reflected on a web server
output. In stored XSS, the input string is provided
to the web application and stored, for instance, in a
database. DOM-based XSS is the case in which the
input string is directly reflected on the content with-
out being passed through the web server. The nature
of the XSS vulnerability is the same across the three
types. This paper focuses on reflected and DOM-
based XSS attacks because the test strings are imme-
diately reflected on target applications.

Although XSS attacks can be prevented by a san-
itization process for the input queries, vulnerability
may remain due to the lack of security awareness or
potential bugs in external software libraries. A web
application firewall (WAF) can protect a web applica-
tion from several XSS attacks. However, WAF protec-
tion cannot address DOM-based attacks, and the pro-
cessing of WAF service may be heavy for resource-
limited devices. Therefore, vulnerability testing be-
fore deployment is required.

2.3 Autonomous Attack Using RL

Existing XSS vulnerability testing tools often adopt
a brute-force or heuristic approach to check whether
an attack string exploits the vulnerability. The brute-
force approach can exhaustively examine the vulnera-
bility, but the load on the web server and testing time
may increase. Although the impact on the server load
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may be negligible in the case of recently developed
high-performance web servers, the load is significant
for IoT devices with web interfaces to configure the
device and monitor the sensors. Such web interfaces
may be vulnerable to XSS attacks because of the low
cost and low performance of devices. In this situa-
tion, vulnerability testing with numerous requests is
impractical. Thus, it is necessary to decrease the load
on the devices and testing time.

Autonomous attack methods have been recently
studied (Zennaro and Erdodi, 2020; Erdödi and Zen-
naro, 2022; Erdödi et al., 2021; Caturano et al., 2021;
Demetrio et al., 2020). These methods try to access
hidden files that can be recognized from the URLs
specific to open-source or popular web applications,
exploit vulnerabilities of the target system, or launch
SQL injection attacks. Furthermore, RL can be ap-
plied for penetration testing on network systems (Hu
et al., 2020; Bland et al., 2020; Chowdary et al., 2020;
Ghanem and Chen, 2020).

In (Frempong et al., 2021), an automated exploit
generation method for a JavaScript XSS vulnerability,
called HIJaX, is proposed. Although HIJaX can gen-
erate various XSS attack codes, the algorithm does
not consider filter evasion that is adapted to the web
page being inspected.

In (Caturano et al., 2021), a reflected-XSS attack
method by crafting attack strings using RL is pro-
posed. This method divides an attack string into five
sections, and a list of attack string fragments is com-
posed based on known attack strings. The Q-learning
algorithm obtains the policy to compose the appro-
priate attack string for the target web application by
combining the attack string fragments in the five sec-
tions. In (Caturano et al., 2021), the number of re-
quests to detect reflected-XSS vulnerabilities is sig-
nificantly smaller than that in the existing open-source
tools for XSS testing. However, human interaction is
required to observe the state during training because
the method is based on the human-in-the-loop tech-
nique. Therefore, a person with expert knowledge of
XSS is necessary. These problems must be solved to
realize completely autonomous testing.

Our Goal: Our goal is to automate XSS vulnerability
testing with a few attempts such that defenders can
test their web applications efficiently without expert
knowledge. RL can be used to compose test strings
autonomously and efficiently. However, the settings
for an RL agent and preparation of the training envi-
ronment are the problems. In this paper, we propose
a method to automate XSS vulnerability testing and a
training environment.

3 PROPOSED METHOD

This section presents a method to automate XSS vul-
nerability testing using RL.

3.1 Overview

We establish an XSS vulnerability testing method us-
ing RL. The proposed method uses RL to obtain an
efficient policy to compose test strings autonomously
through string-combining operations and state obser-
vations based on the parsing of web pages.

Attackers must add strings before and after the
payload such that the payload is reflected in a web
application content as an executable script. Then,
the payload becomes executable, and the XSS attack
succeeds. We define the complete string obtained
through such an operation as the test string.

As mentioned in Section 2.1, the RL algorithm
can obtain the optimal policy π in the environment
that follows a Markov decision process or can approx-
imate it. Therefore, it is necessary to determine the
action A , state S , and reward r to obtain an efficient
policy. This paper defines these items as follows (de-
tails are presented in the following sections):

• a ∈ A : an operation of composing a test string.
• s ∈ S : a parser state for the payload string.
• r: determined based on the number of steps re-

quired to achieve the goal.
Figure 2 shows an overview of the proposed method.
The action selection, state observation, and reward ac-
quisition are repeatedly performed between the agent
and environment (Section 3.2, Section 3.3, and Sec-
tion 3.4). The agent implements RL and involves the
policy that determines the next action based on the
current state (Section 3.5). The environment is the
target web application to be tested. A training envi-
ronment, called XSS Gym, is proposed in Section 3.6.
The proposed method aims to acquire an efficient pol-
icy to compose the test string that successfully ex-
ploits XSS vulnerability.

3.2 Action

The key task in the proposed method is the composi-
tion of the test string by adding strings before and af-
ter the payload script. First, the test string is split into
four sections. Next, the operations on the sections are
defined as actions to compose the test string.

3.2.1 Sections of a Test String

The test string is split into four sections to simplify
the composition of a test string.
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Environment (Target web application)

<div> alert(1); </div>

Test string:

[Section 3.6] Training Environment

Agent (Test string composition)

alert(1);

PayloadPreString

*/</style>, -->,

'>, ">, </script>

<script>

PrePayload

javascript:,

onerror='

</script>

PostPayload

;/*, ;//, ", ‘,

[Section 3.5]

Algorithm using RL

Parse

Concatenate

[Section 3.3] State 𝑠𝑡：Data state

[Section 3.4] Reward 𝑟𝑡：𝑟pre𝑝𝑎𝑟𝑒
[Section 3.2] Action 𝑎𝑡: 
(iii, (<script>, </script>))

(Output content)

<div> alert(1); </div>

(Test string)

<script>alert(1);</script>

alert(1);

Output content:

Figure 2: Overview of the proposed method.

</textarea> <script> alert(1); </script>

PreString PrePayload Payload PostPayload

Test string: </textarea><script>alert(1);</script>

Split into four sections.

Figure 3: Sections of a test string.

1. PreString: The string in this section closes the
previous context.

2. PrePayload: The string in this section starts the
new context for rendering the payload executable.

3. Payload: The string in this section is an arbitrary
script to be executed on the web application.

4. PostPayload: The string in this section closes the
context of the payload.

Figure 3 shows an example of a test string and its sec-
tions. In the test string, ‘alert(1);’ is the payload
script, which belongs to the Payload section. The
script tag encloses the payload script. According
to the section definitions, the starting tag ‘<script>’
belongs to the PrePayload section, and the closing tag
‘</script>’ belongs to the PostPayload section. The
first piece of the test string ‘</textarea>’ closes the
textarea context that is originally displayed by the
web application and belongs to the PreString section.

3.2.2 Components of an Action

The operations on the four sections are defined as ac-
tions to compose the test string. An action a ∈ A is

defined as the tuple (target, content). The target ele-
ment shows the target section to be operated on. The
content element shows the content of the operation.
The remaining section describes the target and con-
tent elements.

Target of an Action. In terms of the target of an ac-
tion, this paper defines five targets based on the four
sections introduced above. Because an attacker ar-
bitrarily determines the script of the Payload section,
our algorithm does not change this section. Other sec-
tions, a pair of sections, and the whole string are the
targets for the actions.

1. Target 1: PreString: The action targeting this
section closes the previous context and changes
the context of the following sections.

2. Target 2: PrePayload: The action targeting this
section changes the current context to the new
context for the Payload section.

3. Target 3: PrePayload and PostPayload: The ac-
tion targeting these sections encloses the Payload
section with a specified tag and can change to a
different context with only one operation.

4. Target 4: PostPayload: The action targeting this
section closes the context of the Payload section.

5. Target 5: Whole String: This action converts
(e.g., encodes) the whole string.

Targets 1, 2, and 4 focus on the PreString, PrePay-
load, and PostPayload sections, respectively. Tar-
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get 3 simultaneously focuses on the PrePayload and
PostPayload sections. It is useful to consider that a
pair of sections are simultaneously changed because
the PrePayload and PostPayload sections often corre-
lated according to the known test strings for XSS vul-
nerabilities. For example, when we wish to enclose
the Payload section with the script tag, it is neces-
sary to set ‘<script>’ for the PrePayload section and
‘</script>’ for the PostPayload section. Target 5
corresponds to the conversion of the whole text, such
as changing the text encoding to another one. The
text encoding can be changed to fake the XSS detec-
tor and is effective in evading the pattern-matching
mechanism.

Content of an Action. In terms of the content of
action, a test string can be composed by replacing the
string in the specified section(s) with another string.
The string in the target section defined in the previous
section is replaced with another string. To prepare the
strings to be placed in each section, the string frag-
ments are collected from the known test strings, and
the string fragment list is generated. The string frag-
ment list stores string fragments and their correspond-
ing targets. The string fragments include null strings
for each section to remove the string in a target.

Another operation is converting the string in the
target section(s) to the specified encoding method.
For example, the UTF-7 encoding expresses the char-
acter ‘<’ and ‘>’ as ‘+ADw-’ and ‘+AD4-’, respectively.
Thus, the starting tag of the script context ‘<script>’
is converted to ‘+AD-script+AD4-.’ Therefore, pat-
tern matching protection can be evaded by this con-
version. Although this exploit does not work for mod-
ern web browsers with an ordinal situation, several
old systems might still be vulnerable.

3.2.3 Action Space

An action in the action space is represented by the
tuple of the target and content, as discussed. The ac-
tion space is constructed before the training based on
a training dataset.

3.3 State

The state definition is of significance to efficiently ob-
tain an optimal policy by RL. It is desirable to be able
to mechanically represent the state of the source code
of a web page. This paper introduces the parsing of
the source code to represent states. Furthermore, the
states are defined to efficiently estimate the reward
discussed later.

3.3.1 State Definition Based on Parsing

In the proposed method, the source code obtained as
a response from the target web application is parsed.
Through parsing, the state of the payload script (the
string in the Payload section) is observed for RL.

Table 1 shows examples of the parsing states for
the payload script, ‘alert(1);.’ The second column
lists the responses from a web server, and the third
column lists the states of the payload script (the fourth
column is introduced later). In this table, we refer to
the HTML5 specification (WHATWG, ) to recognize
the state.

In row (a), the user’s input is reflected inside the
div tag in the response. The div tags are often used
to divide the sections of the contents on the web page.
According to the HTML5 specification, the string di-
rectly inside the div tag is identified as ‘Data state.’
The string at ‘Data state’ is displayed as text and is
not executable.

In row (b), the user’s input is reflected inside the
textarea tag in the response. The textarea tags
are used to provide an input box that accepts multi-
line strings from users. The string directly inside the
textarea tag is identified as the ‘RCDATA state’ ac-
cording to the HTML5 specification. The string at
the ‘RCDATA state’ is displayed as text and is not
executable. In contrast to those in the ‘Data state,’
the ‘RCDATA state’ strings are no longer parsed as
an HTML code until the end of the ‘RCDATA state,’
whereas HTML tags inside the ‘Data state’ strings are
recognized. Therefore, even if the user’s input con-
tains the script tag with a payload script, it is dis-
played inside the textarea tag.

In row (c), the user’s input is reflected inside the
script tag in the response. The string directly inside
the script tag is identified as the ‘Script data state.’
The string at the ‘Script data state’ is executable as a
script on the web application. Therefore, if a mali-
cious script is included in the user’s input and iden-
tified as ‘Script data state,’ it is unintentionally exe-
cuted by the user.

As described, the parser state can help identify
whether the payload script is executable or not. In
the proposed method, the parser state is observed and
used as a state for RL. A simple method to realize
autonomous XSS vulnerability testing is to generate
a test string that actually exploits an XSS vulnerabil-
ity. Thus, we aim to ensure that the payload string is
executable as a script.

3.3.2 State Sets

To systematically consider the parser states, they are
classified into sets based on the steps to the state at
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Table 1: Examples of states.

Response State of alert(1); State set Executable? Reward
(a) <div>alert(1);</div> Data state S1 rprepare
(b) <textarea>alert(1);</textarea> RCDATA state S2 rother
(c) <script>alert(1);</script> Script data state S0 = Sg X rgoal

which the payload script is executable.
As mentioned, our goal is to ensure that the pay-

load string is in the state in which the string is exe-
cutable. This state, known as the goal state, is defined
as follows:

Definition 1 (Goal State). Sg is a set of goal states
that are parser states in which a string is executable
as a script on the web application.

Hereafter, our goal is to ensure that the payload
string is in a set of goal states Sg.

Next, the parser states other than the goal states
are classified. When the proposed method composes
a test string, it is helpful to estimate how many steps
are needed to achieve one of the goal states.

Definition 2 (Distance to the Goal State). Sd is a set
of states whose steps to any goal state are d. Here,
S0 = Sg and s0 ∈ S0. sd ∈ Sd is recursively defined as
follows:

• s is a state, and goal state s0 ∈ S0 is reached after
action a is applied from s. If s /∈ S0, the number of
steps to any goal state d is 1, and s is an element
of S1, s1(sd ,d = 1).

• s is a state, and state sn ∈ Sn is reached after ac-
tion a is applied from s. If s /∈ Si,0 ≤ i ≤ n, the
number of steps to any goal state d is n+1, and s
is an element of Sn+1, sn+1(sd ,d = n+1).

The fourth column in Table 1 shows the steps to any
goal state. The ‘Data state’ in row (a) is catego-
rized as S1 because enclosing the payload script with
a script tag renders the script executable. The ‘RC-
DATA state’ in row (b) is categorized as S2. In the
‘RCDATA state,’ even if the payload script is enclosed
with a script tag, the script does not become ex-
ecutable. The textarea context must be closed to
render the script executable. Since the operation in-
volves two steps, the ‘RCDATA state’ is categorized
as S2. The ‘Script data state’ in row (c) is categorized
as S0 (i.e., Sg) because the script has already been ex-
ecutable, as shown in the fifth column.

3.4 Reward

As described in the previous section, the state sets are
defined based on the steps to the goal state. It is help-

ful to estimate the step to the goal state. In this sec-
tion, the reward for RL is defined based on the state
sets.

The reward types are defined as follows:

• rgoal: reward when the environment achieves any
goal state sg ∈ Sg.

• rprepare: reward when the environment achieves
state s1 ∈ S1 where the minimum number of steps
to any goal state is 1.

• rother: reward when the environment achieves
state si ∈ Si, i ≥ 2 where at least two steps are re-
quired to achieve any goal state.

Real values are assigned to the rewards. The relation-
ship between the rewards is defined as follows:

rgoal > rprepare > rother (1)

The reward values used in the experiment are shown
in Section 4.

The simplest way to determine the reward is to
assign a reward only if an attack actually exploits a
vulnerability. However, many test strings must be
considered until any XSS vulnerability is exploited.
Therefore, this paper considers the state sets defined
in the previous section to determine the reward effi-
ciently. Table 1 lists the examples of the relationship
between the state and reward. Row (a) is the ‘Data
state’ that is categorized as S1. This state requires
only one step to a goal state. As shown in the sixth
column, the reward becomes rprepare, according to the
definition. Similarly, the rewards of rows (b) and (c)
are determined as rother and rgoal, respectively.

3.5 Agent

An agent can be enhanced to search for an optimal
policy by applying the two mechanisms.

One mechanism is an LSTM-based policy. As
mentioned in Section 2.1, an environment is often
modeled as MDP for RL. Although the observation
states are carefully set up, completely observing the
internal state of an environment is difficult. A par-
tially observable MDP (POMDP), in which an agent
can observe a part of an actual internal state, can
be employed in security. In a POMDP, an observa-
tion implies several states probabilistically. Since the
probabilities can be estimated based on the trajectory
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contents:

html_href:

variables:

quote: ["", "'", '"']

content:

<a href=__QUOTE____USER_INPUT____QUOTE__>link</a>

(a) Configuration for XSS Gym (YAML format).

XSS Gym

<body>

<p>Vulnerable Page</p>

<a href=xxx>link</a>

</body>

(c) Source code with a user input “xxx.”(b) Generated content.

Load configurations

Generate contents randomly

Figure 4: Example of XSS Gym.

of observations, an LSTM-based policy is used to pre-
dict the current internal state.

The second mechanism is an intrinsic curiosity
module (ICM) (Pathak et al., 2017). The module
makes the agent explore unpredicted responses from
the environment. We compare the training results
with or without the ICM in Section 4.

3.6 Training Environment: XSS Gym

We propose a training environment for XSS vulner-
ability testing, called XSS Gym, to effectively learn
various XSS vulnerabilities.

The training environment must behave in a man-
ner that mimics real-world web applications. How-
ever, the training web applications for security begin-
ners provide only a limited number of vulnerable web
pages. To solve the problem, XSS Gym provides var-
ious web pages that are randomly configured based
on several templates and parameters. First, a set T of
web page templates in which a given string is shown
as a content is prepared. Each template τ ∈ T has
several parameters Pτ. Figure 4 shows an example
of XSS Gym. Figure 4 (a) shows a configuration for
XSS Gym that is described in a YAML format. In the
configuration, ‘content’ shows a template τ, and ‘vari-
ables’ shows a list of parameters Pτ for the template
τ. In the example, the string __QUOTE__ in the tem-
plate is randomly replaced with either (no character),
’, or ". Then, a content is generated as shown in Fig-
ures 4 (b) and (c), in which __USER_INPUT__ in the
template is replaced with an user input ‘xxx.’

During the training of RL, XSS Gym continuously
provides web pages. At the beginning of an episode,
XSS Gym randomly chooses a template τ ∈ T and
configures the web page with parameters ρ ∈ Pτ. The
template and parameters are not changed during the

episode. The agent sends a signal to XSS Gym at the
beginning and end of the episode for cooperation.

To mimic the real-world situations in which an
XSS sanitization is partially applied, a set F of fil-
ter configurations is also prepared. The web page be-
haves differently by randomly applying several vari-
ations of XSS filters, even if the content looks the
same.

3.7 Vulnerability Testing

The RL model is trained based on the action, state,
and reward. However, the introduced model does not
completely follow the Markov model. Specifically,
the transition function P is stochastic and not deter-
ministic because several web applications often filter
out test strings. This aspect must be considered to es-
tablish a vulnerability testing algorithm using RL.

Algorithm 1: XSS vulnerability testing.

Input: Trained model M , Environment E , Payload
string X

Output: Test string T
1: T ← X , H ← /0, s← Initial state
2: while s /∈ Sg do
3: L←{(a, p) | p = π(a | s),a ∈ A} // Obtain

next actions and their probabilities from model
M .

4: Sort L with respect to p in descending order.
5: i← 0, (a, p)← L[i]
6: while (s,a) ∈H and i < |L| do
7: i← i+1
8: (a, p)← L[i]
9: end while

10: if i == |L| then
11: return null // Not found
12: end if
13: H ←H ∪{(s,a)}
14: Perform action a and update T .
15: s← Observe a state from environment E .
16: end while
17: return T

Before vulnerability testing, the agent learns the
training dataset and obtains a policy. Training can
be performed through the normal RL process. In the
training phase, an agent performs an action accord-
ing to the current policy and composes a test string.
The test string is provided to the target web appli-
cation, and the web application returns the response.
The agent observes the state of the payload string and
obtains the reward according to the state. This pro-
cess is repeated multiple times for various target web
pages. Finally, a model that obtains an efficient policy
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for composing a test string is established.
Algorithm 1 describes the process flow for XSS

vulnerability testing. This algorithm repeatedly com-
poses a test string and attempts to exploit the vulner-
ability using the string. If an exploit is successful, the
algorithm returns the successful test string. If the al-
gorithm cannot find the appropriate test string within
a specified number of iterations, the algorithm returns
null and notifies the user that no XSS vulnerabilities
are discovered.

4 EVALUATION

This section describes the evaluation of the proposed
method using a vulnerable web application. As men-
tioned in Section 2, our goal is to automate XSS
vulnerability testing. The proposed method uses RL
to compose test strings autonomously and efficiently.
The experiments aim to answer the following research
questions:

RQ1: Does XSS Gym provides appropriate samples
for training an RL agent?

RQ2: Does the agent obtain an efficient policy to
compose a test string?

4.1 Setup

The programs are implemented in Python.
PPO (Schulman et al., 2017) is applied as an
RL algorithm. In the experiments, we use the Ray1

library to implement a PPO algorithm.

Training. We train RL agent using XSS Gym. The
template and parameters are prepared based on the
existing vulnerable web pages in WAVSEP (Chen,
2014) and Webseclab (Yahoo Inc., 2020). The pro-
gram and vulnerability testing tools run as Docker
containers and are connected via a virtual network.

We prepare four settings. Random uses XSS Gym
as a training environment and an LSTM network as
a policy network in RL. Weighted uses a weighted
version of XSS Gym, in which XSS Gym gives prior-
ity to providing the templates that have not yet been
selected or for which an agent takes a large num-
ber of requests in previous episodes. Random+ICM
(resp. Weighted+ICM) is configured based on Ran-
dom (resp. Weighted), but an ICM is employed when
exploration.

The model is trained for 100k steps with a batch
size of 1000 steps. The learning rate is 0.001, and

1https://github.com/ray-project/ray

Table 2: Open-source tools used in the experiments.

Tool URL
XSpear https://github.com/hahwul/XSpear
XSSer https://github.com/epsylon/xsser
XSSMap https://github.com/Jewel591/xssmap
Wapiti https://github.com/wapiti-scanner/wapiti
w3af https://github.com/andresriancho/w3af

the GAE parameter in (Schulman et al., 2017) is 0.95.
Other parameters are set to the default settings of Ray.

For the reward values, we assign a positive value
to rgoal and 0 to rprepare. rother is set to a negative value
that is decreased as the number of steps in an episode
increases.

Testing. Algorithm 1 is performed using the trained
model. Since the agent produces the same test string
several times in certain cases, we count the number
of unique requests during the evaluation. The open-
source tools that scan XSS vulnerabilities in web
pages are used in the experiments to confirm that the
proposed method can obtain an efficient policy. We
select the tools that are available online for free and
maintained in 2020 or later. Table 2 lists the tools
used in the experiments. We count the number of re-
quests until a vulnerability is detected.

We use 19 web pages in Webseclab (Yahoo Inc.,
2020), which contains several web pages vulnerable
to XSS, as target web pages.

4.2 Results

4.2.1 Training Using XSS Gym

To answer RQ1, we evaluate XSS Gym. We trained
the agent using XSS Gym. Figure 5 shows the suc-
cess rate of exploiting an XSS vulnerability on a tar-
get web page. The x-axis shows the episode num-
ber, and the y-axis shows the success rate during the
last 500 episodes. In Figure 5, all plots show a trend
of increasing success rate. In particular, Random
and Random+ICM slightly outperform the Weighted
(with and without ICM) settings. This is because the
agents with the weighted version of a training envi-
ronment train intuitively difficult web pages to exploit
XSS vulnerabilities due to the weighting mechanism
of XSS Gym. In any case, the agent could improve
the success rates as the number of episodes increases.
From the results, XSS Gym provides appropriate vul-
nerable web pages for training an RL agent.

4.2.2 Evaluation on Vulnerable Web Pages

To answer RQ2, we evaluate the proposed method us-
ing the Webseclab pages. The Webseclab pages, all
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Figure 5: Success rate when training.

Table 3: Average results of each setting (five trials).

Setting Requests (s.d.) Success rate
Random 160.0 (11.4) 0.853
Weighted 149.2 (25.1) 0.874
Random+ICM 175.2 (58.5) 0.863
Weighted+ICM 122.4 (16.7) 0.884

of which have XSS vulnerabilities, are tested with the
trained agent.

We evaluated the agents with four settings in Sec-
tion 4.1. We tried five trials with different random
seed numbers and obtained the averaged results. Ta-
ble 3 shows the averaged number of requests and suc-
cess rates to exploit the web pages in Webseclab. As
shown in Table 3, Weighted+ICM shows the fewest
requests and obtained the largest success rate in ex-
ploiting XSS vulnerabilities in the tested web page.

We focus on the agent setting with the best result
in the previous evaluation. Table 4 shows the target
pages accessed in the experiment and the unique num-
ber of requests with the Weighted+ICM setting. As
shown in Table 4, the agent exploits XSS vulnerabil-
ities in each page within 33 requests. The proposed
method requires less than ten requests for 16 pages to
detect the XSS vulnerability. The trained agent suc-
cessfully obtains an efficient policy and selects attack-
ing actions that are adapted to a target web page.

Figure 6 and Figure 7 show the comparison re-
sults of the proposed method with the open-source
tools. Figure 6 shows the total number of requests to
complete the testing process. Since the open-source
tools aim to cover all XSS vulnerabilities in the test-
ing, a number of test strings are queried. Although
this strategy covers many XSS vulnerabilities, several
test strings are inapplicable to the target content. In
contrast, the proposed method requests the most suit-
able test string considering the state of the content.
Therefore, the total number of requests is consider-
ably smaller than the other tools.

We count the minimum requests to detect at least
one XSS vulnerability by the open-source tools. Here,
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Figure 6: Total number of requests.
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Figure 7: Average minimum number of requests.

we average the count over the 19 web pages. The
number is considered to be 20 when more than 20
requests are required to exploit an XSS vulnerabil-
ity in existing tools. Figure 7 shows the results of
the average minimum requests. The sign ‘>’ shows
that one or more cases require more than 20 requests.
Therefore, the actual average counts are larger than
the shown counts. As shown in Figure 7, the pro-
posed method shows the fewest requests among the
open-source tools. This finding implies that the pro-
posed method obtains an efficient policy during the
training phase and thus, successfully detects an XSS
vulnerability with the fewest requests compared to the
recent open-source tools.

4.3 Limitation

Since the agent composes the test string based on
the pre-defined action space, it cannot address un-
known XSS vulnerabilities. Introducing a natural
language processing technique, which is applied in
(Frempong et al., 2021), and using a generative ad-
versarial network would be solutions to address the
problem. However, how to efficiently integrate such
techniques must be considered.

The quality of the obtained policy depends on
the training dataset. Typically, RL can learn experi-
enced actions and corresponding rewards. Therefore,
web pages that involve various XSS vulnerabilities
are needed. XSS Gym partially solves the problem
by randomly generating vulnerable web pages based
on given templates and parameters. However, how to
prepare the templates and parameters is remained to
be considered. Collecting real-world web application
logs and analyzing XSS exploitations from them can
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Table 4: Number of requests pertaining to the proposed method.

Page Requests Page Requests
backslash1 3 js6_sq_combo1 4
basic 2 js_script_close 13
basic_in_tag 2 oneclick1 24
doubq1 6 onmouseover 9
enc2 33 onmouseover_div_unquoted 6
full1 2 onmouseover_unquoted 8
js3 1 rs1 2
js3_notags 1 textarea1 4
js4_dq 6 textarea2 4
js6_sq 4

be a solution. More work is still needed to enhance
training environments.

5 CONCLUSION

This paper presents an XSS vulnerability testing
method using RL and a training environment, XSS
Gym. The proposed method trains an RL agent to
autonomously compose test strings by replacing the
fragments of known test strings and observing the
parsing of the target web page. Since RL obtains an
efficient policy for composing test strings, the num-
ber of requests for testing web pages is drastically de-
creased. The experimental results demonstrate that an
RL agent can be trained using XSS Gym and the pro-
posed method discovers vulnerabilities in web pages
with the fewest requests compared to other existing
vulnerability testing tools.
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