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Abstract: As technology improves, criminals, find new ways to gain unauthorised access. Accordingly, face spoof-
ing has become more prevalent in face recognition systems, requiring adequate presentation attack detection.
Traditional face anti-spoofing methods used human-engineered features, and due to their limited represen-
tation capacity, these features created a gap which deep learning has filled in recent years. However, these
deep learning methods still need further improvements, especially in the wild settings. In this work, we use
generative models as a data augmentation strategy to improve the face anti-spoofing performance of a vision
transformer. Moreover, we propose an unsupervised keyframe selection process to generate better candidate
samples for more efficient training. Experiments show that our augmentation approaches improve the baseline
performance of the CASIA-FASD and achieve state-of-the-art performance on the Spoof in the Wild database
for protocols 2 and 3.

1 INTRODUCTION

Face recognition is a physical biometric modality that
has historically struggled with user acceptance due
to its non-contact nature (Jain et al., 2007). In re-
cent years, developments in technology and COVID-
19 protocols have enabled facial recognition to be-
come a more common method of user authentication
in public and private settings (Bischoff, 2021), in-
cluding workplaces, trains, and airports, using devices
such as computers and mobile phones. Although fa-
cial recognition has taken massive strides from its in-
ception, each component has inherent vulnerabilities.
The biometric sensor is the first component of an au-
thentication system that a user interacts with, making
it the easiest to access and least expensive to attack.
Unlike other components, the system has no control
over the input that the sensor is exposed to, thereby
making it susceptible to presentation attacks, such as
face spoofing.

A face spoofing attack is when an attacker
presents a two-dimensional medium, such as a photo
or video, or a three-dimensional medium, such as a
mask, of an enrolled user (commonly referred to as
a victim), to the biometric sensor to gain illegal ac-
cess (Daniel and Anitha, 2018). As an authenticated
face is often the only hurdle to accessing physical and
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digital assets, it is imperative that face spoofing is de-
tected.

In this study, we use deep learning (a Vision
Transformer) to detect two-dimensional face spoofing
attacks and generative models to enhance the results
further. To our knowledge, this paper is the first work
using Generative Adversarial Networks (GANs) as a
data augmentation strategy for face anti-spoofing. We
summarise the main contributions of this paper as fol-
lows:

1. We show the effectiveness of GANs as a data
augmentation strategy for face anti-spoofing com-
pared to traditional augmentation approaches.

2. We propose an unsupervised keyframe selection
process for more effective candidate generation
and investigate the relationship between variabil-
ity and image fidelity and its role in artefact de-
tection.

3. We explore when data augmentation should be
performed, the optimal data augmentation per-
centage and the number of frames to consider for
face anti-spoofing.

4. We benchmark our approach against the current
state-of-the-art face anti-spoofing approaches on
public datasets.

The rest of the paper is structured accordingly: We
begin with a discussion of face anti-spoofing and sim-
ilar work in Section 2, followed by an explanation of
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the proposed method in Section 3. In Section 4, we
describe the experiment setup, followed by the anal-
ysis of the results in Section 5 and a conclusion in
Section 6.

2 RELATED WORK

Face anti-spoofing has been an active research topic
for more than 15 years, with publications increasing
yearly (Yu et al., 2021). Despite researchers’ efforts,
face recognition systems are still vulnerable to sim-
ple, non-intrusive attack vectors. These attack vectors
prey on the biometric sensor and are categorised ac-
cordingly (Hernandez-Ortega et al., 2021):

1. A photo attack is when an attacker presents a
printed image of a victim to the biometric sensor.

2. A warped-photo attack is an extension of a photo
attack, implemented by manipulating the printed
image to simulate facial motion.

3. A cut-photo attack is an extension of a photo at-
tack, implemented by blinking behind eye holes
removed from the printed image.

4. A video replay attack is when an attacker uses a
device to replay a video containing a victim’s face
to the biometric sensor.

5. A 3D-mask attack is when an attacker wears a
3D mask, replicating a victim’s facial features, in
front of the biometric sensor.

6. A DeepFake attack occurs when an attacker uses
deep learning methods to replace a person’s face
in a video with a victim’s.

Thankfully, face anti-spoofing methods have ad-
vanced significantly in recent years. Traditionally,
researchers achieved face anti-spoofing by using hu-
man vitality cues and handcrafted features. The vi-
tality cues include eye blink detection (Li, 2008),
face movement analysis (Bao et al., 2009) and gaze
tracking (Ali et al., 2013). However, these ap-
proaches are susceptible to cut-photo and video-
replay attacks, making them unreliable. In contrast,
handcrafted features such as Local Binary Patterns
(LBP) (Boulkenafet et al., 2016), Speeded-Up Ro-
bust Features (SURF) (Boulkenafet et al., 2017) and
Shearlets (van der Haar, 2019) have extracted ef-
fective spoof patterns in real-time with minimal re-
sources. However, handcrafted features require a
hands-on approach from feature engineers to select
the essential features from images, which becomes
more difficult as the number of classification classes
increase (Walsh et al., 2019). Moreover, each feature

requires handling multiple parameters, which all need
fine-tuning.

In contrast, deep learning approaches discover de-
scriptive patterns independently with minimal human
intervention. Convolutional Neural Network (CNN)
architectures have been successful with face anti-
spoofing but require a large amount of data to train
models sufficiently and are prone to overfitting. To
avoid overfitting a dataset during training, researchers
use regularisation methods, such as dropout, espe-
cially when training a model with no prior knowl-
edge (Ur Rehman et al., 2017). Another strategy that
has achieved success is using a pre-trained model and
fine-tuning selected layers (Nagpal and Dubey, 2019),
(George and Marcel, 2021). This approach allows
a model to apply the features learned from a large
dataset to a similar task with a smaller dataset. Some
researchers have been successful in training CNNs
with auxiliary information. Using this approach, (Liu
et al., 2018) achieved competitive results by fusing the
depth map of the last frame with the corresponding
remote photoplethysmography signal acquired over a
sequence of frames to determine the final spoof score.
However, their approach requires multiple frames,
which limits its applicability.

Recently, researchers have achieved state-of-the-
art performance by using a hybrid approach of hand-
crafted features with deep learning. Wu et al. (2021)
created a DropBlock layer, which randomly discards
a part of the feature map to learn location-independent
features. Furthermore, their method acts as a data
augmentation strategy because the blocked regions
can represent occlusions, thus increasing the training
samples and reducing the risk of overfitting. Sim-
ilarly, inspired by how LBPs describe local rela-
tions, Yu et al. (2020) created a Central Difference
Convolution layer. This layer has the same sampling
step as a traditional convolutional layer but prefers
to aggregate the centre-oriented gradient of the sam-
pled values during the aggregation step. In doing so,
they obtain intensity-level semantic information and
gradient-level detailed messages, which they prove
are essential for face anti-spoofing.

The above analysis shows that hybrid approaches
reap the benefits of traditional and deep learning
methods. Furthermore, approaches such as Wu et al.
(2021) also act as a data augmentation strategy. To
fairly evaluate the effectiveness of our data augmen-
tation strategy, we will fine-tune a vision transformer
similar to George and Marcel (2021), which we will
discuss in the next section.
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3 PROPOSED METHOD

This paper proposes a transfer learning approach to
face anti-spoofing using a pre-trained Vision Trans-
former (ViT) model. Furthermore, we use generative
data augmentation to optimise this model by synthe-
sising candidate samples using StyleGAN3 models.
In the following sections, we will discuss the different
stages of the training pipeline, illustrated in Figure 1.

3.1 Preprocessing

We preprocessed each video to avoid background and
dataset bias. First, we employed the MTCNN algo-
rithm (Zhang et al., 2016) for face detection. Next,
we rotated the detected region (to align the eye centres
horizontally), scaled the region (to minimise the back-
ground), and cropped the region to produce a square
patch containing the subject’s eyebrows and mouth.
Although it is possible to scale the detected region
to remove the background altogether, the crop patch
does not have eyebrows or a mouth. Since these facial
features are essential for portraying emotion, we de-
cided to include slightly more background to ensure
they are both present in the cropped patch.

3.2 Data Augmentation

We followed a generative data augmentation approach
by synthesising new training images rather than ap-
plying an affine transformation to existing images.
We trained a StyleGAN3 model for each attack vec-
tor and used these models to generate new candidate
samples. We also performed data augmentation using
traditional methods to compare it against our genera-
tive approach.

NI =

(
NS ×P

100%−P

)
÷NA (1)

In equation (1), NI is the number of images gener-
ated for each attack vector; NS is the number of sam-
ples present in the training protocol; NA is the number
of attack vectors present in the training protocol, and
P is the desired data augmentation percentage. Using
equation 1, we calculated the number of images nec-
essary to achieve the desired data augmentation per-
centage for each attack vector.

3.3 Model Training

Vision transformers have received much attention
in recent years (Han et al., 2022). Initially, re-
searchers used transformers for natural language pro-

cessing (Vaswani et al., 2017), but their success in
this field caught the attention of computer vision
researchers. Kolesnikov et al. (2021) harnessed the
power of transformers for computer vision tasks by
making minor alterations. Instead of providing tokens
to a transformer as input, they divided an image into
patches and used the patch embeddings. In doing so,
they created what is now known as a Vision Trans-
former (ViT). Vision transformers have achieved re-
markable results in image classification tasks (Krish-
nan and Krishnan, 2021).

We followed a similar approach to George and
Marcel (2021), who achieved state-of-the-art results
in face anti-spoofing using their ViT. Moreover, we
regard face anti-spoofing as a binary classification
problem in which a sample is either bona fide or a
spoof. For clarity, we define a bona fide sample as
a genuine sample directly acquired from an individ-
ual. Furthermore, we define a spoof sample as a fabri-
cated sample of an individual captured indirectly from
a presented medium. Lastly, we employ a static face
anti-spoofing approach by analysing each frame inde-
pendently.

4 EXPERIMENT SETUP

4.1 Datasets

There are a variety of publicly available datasets
for face anti-spoofing. To evaluate the effectiveness
of our approach, we used the CASIA Face Anti-
Spoofing Database (CASIA-FASD) and Spoof in the
Wild (SiW) Database.
CASIA-FASD (Zhang et al., 2012). In 2012, fifty
subjects participated in producing 600 videos cap-
tured in natural scenes with no artificial environment
unification. These researchers recorded each sub-
ject normally (N) and created cut-photo (C), warped-
photo (W) and video-replay (R) attacks using a low
(1), medium (2) and high-resolution (HR) camera.
For clarity, we denote A as the attack vector and B
as the resolution in A B. For example, W HR corre-
sponds to a warped-photo attack sample captured with
a high-resolution camera.

This dataset contains seven protocols for training
and evaluating a model’s performance. Protocols 1 to
3 correspond to training and testing using only low,
medium, and high-resolution videos. Similarly, pro-
tocols 4 to 6 correspond to training and testing us-
ing only warped, cut-photo and video-replay attack
videos. Lastly, protocol 7 uses all the videos for train-
ing and testing.
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Figure 1: The stages of the proposed training pipeline.

SiW (Liu et al., 2018). In 2018, 165 subjects partic-
ipated in producing 4 478 videos, each with a differ-
ent distance, pose, illumination and expression. This
dataset contains high-resolution normal (N), photo
(P) and video-replay (R) attack videos. The re-
searchers captured the normal videos using two light-
ing variations: no lighting variation (NLV) and dif-
ferent lighting variation (ELV). To create the photo
attacks, they captured low-resolution (LR) and high-
resolution (HR) images of each subject, which they
then printed on glossy and matte paper. Lastly, the
video-replay attacks utilised a Samsung Galaxy S8
(SGS8), an iPhone 7 Plus (IP7P), iPad Pro 2017
(IPP2017) and an ASUS MB168B laptop screen
(ASUS) to display the bona fide videos.

This dataset contains three protocols to evaluate a
model’s performance. Protocol 1 evaluates the gener-
alisation capabilities by only training on the first 60
frames of the training set videos with mainly frontal
view faces and testing on all the frames of the test
set videos. Since we cannot guarantee that a gen-
erated image will be within the first 60 frames, we
will not perform this protocol. Protocol 2 evaluates
the generalisation capability on cross-mediums of the

same spoof type. This protocol follows a leave-one-
out (LOO) strategy, repeated for all mediums: using
three replay-attack mediums for training and leaving
the remaining medium for testing. Lastly, protocol
3 evaluates a model’s performance on unknown pre-
sentation attacks. This protocol is similar to proto-
col 2, using attack vectors rather than spoof medi-
ums. For clarity in later sections, we denote LOO X
as the group left out for training and used exclusively
for testing, where X is a video-replay spoof medium
(ASUS, IP7P, IPP2017 or SGS8) in protocol two and
an attack vector (P or R) in protocol three.

Since protocols 2 and 3 utilise various training
combinations, it is essential to use the mean and stan-
dard deviation of the combinations when reporting
metrics. For comparability with other work, we used
the videos of subjects 90 for training and 75 for test-
ing. Figures 2 and 3 display a sample frame from
each video captured for subjects 75 and 90, respec-
tively. We display the sample type (ST) and medium
(M) for each sample in both figures.

Although CASIA-FASD is an older and smaller
dataset compared to other face anti-spoofing datasets,
we selected it because it contains cut-photo attacks
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ST: N | M: NLV ST: N | M: ELV ST: N | M: ELV ST: N | M: NLV

ST: P | M: HR ST: P | M: LR ST: P | M: LR ST: P | M: HR

ST: R | M: SGS8 ST: R | M: IPP2017 ST: R | M: ASUS ST: R | M: IP7P

ST: R | M: IPP2017 ST: R | M: ASUS ST: R | M: IP7P ST: R | M: SGS8

Figure 2: The middle frame of each video for subject 75
from the SiW database, where ST and M correspond to the
sample type and medium.

ST: N | M: ELV ST: N | M: ELV ST: N | M: NLV ST: N | M: NLV

ST: P | M: LR ST: P | M: HR ST: P | M: HR ST: P | M: LR

ST: R | M: ASUS ST: R | M: IPP2017 ST: R | M: ASUS ST: R | M: SGS8

ST: R | M: IP7P ST: R | M: IPP2017 ST: R | M: IP7P ST: R | M: SGS8

Figure 3: The middle frame of each video for subject 90
from the SiW database, where ST and M correspond to the
sample type and medium.

and low-resolution videos. Furthermore, we selected
SiW for its variation in the subjects’ distance, pose,
illumination and expression.

4.2 Dataset Augmentation

A traditional approach to data augmentation involves
applying random transformations to an image, such
as varying brightness, rotating, or cropping (Pérez-
Cabo et al., 2019). However, some of these trans-
formations could adversely affect the sample’s label
due to the nature of the problem environment (Shorten
and Khoshgoftaar, 2019). For instance, in some

video-replay attack samples, the LCD screen back-
light makes them appear brighter than the correspond-
ing bona fide sample, as shown in Figures 2 and 3.
Thus, altering the brightness of the spoof samples
may lead to an unclear decision boundary due to label
contradictions. Hence, when using the traditional data
augmentation approach, we only use random horizon-
tal flips, rotations (within 15°), and magnifications
(within 20%).

In contrast to traditional data augmentation,
GANs can create new samples that match the char-
acteristics of an image domain while maintaining the
label given to the original samples. We selected the
StyleGAN3 architecture for the generative data aug-
mentation approach. StyleGAN3 improved the im-
age synthesis by linking details to depicted object sur-
faces rather than absolute coordinates (Karras et al.,
2021). Additionally, it inherits the enhanced training
stabilisation from StyleGAN2 (Karras et al., 2020),
enabling it to achieve good results on smaller datasets.
Thus, StyleGAN3 can synthesise high-fidelity images
with limited data, making it state-of-the-art in image
generation.

We chose the alias-free rotation equivariant archi-
tecture (StyleGAN3-R) and trained each model using
the associated training configuration for 2 GPUs with
a 256 by 256-pixel resolution for 5000 kimg, where
kimg is the number of thousand images from the train-
ing set. We selected the model with the lowest Frechet
Inception Distance (FID) (Heusel et al., 2017) to gen-
erate the candidate samples. We used ordered seeds
from 1 to NI and a truncation psi value of 1 (for max-
imum variation).

For clarification, we synthesised images for each
attack vector separately, with each image labelled as
a spoof. Although it is possible to generate images
using bona fide samples, labelling them as such could
introduce a DeepFake attack vulnerability. Figure 4
illustrates the synthesised images for each SiW attack
vector using each data augmentation approach.

4.3 Face Anti-Spoofing

Training a ViT from beginning to end is very
resource-intensive, requiring adequate hardware and
a large dataset. Fortunately, researchers developed a
technique to alleviate this burden known as transfer
learning (Li and Lee, 2021). Transfer learning en-
ables us to use the knowledge learned by a model for
one task and apply it to another. Following (George
and Marcel, 2021), we used a pre-trained ImageNet
ViT-B/32 model and fine-tuned the output to meet
our needs. We resized the input images to 224 by
224 pixels and replaced the last layer with a two-
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Figure 4: The synthesised images for each SiW attack vec-
tor. The columns and rows correspond to the sample sets
and attack vectors.

node dense layer with a SoftMax activation. We froze
all the layers before the final layer and trained the
model using binary cross-entropy loss, optimised with
Adam (Kingma and Ba, 2014) at a learning rate of
1e−4. Using early stopping (with a patience value of
15), we trained each model for 70 epochs and restored
the version with the lowest validation loss before test-
ing.

We determined the optimal data augmenta-
tion percentage by performing a hyperparameter
search (Liaw et al., 2018) for the following augmen-
tation percentages: 5, 10, 20, and 30. Using a strati-
fied 3-fold cross-validation (Rodrı́guez and Lozano,
2007) approach, we split the training dataset into
80% for training and 20% for validation, each with
a batch size of 32. We repeated each trial twice
and averaged the following ISO/IEC30107-3 (ISO/IEC,
2017) metrics to compare our approach with simi-
lar work: Bonafide Presentation Classification Error
Rate (BPCER), Attack Presentation Classification Er-
ror Rate (APCER) and Average Classification Error
Rate (ACER). BPCER is the proportion of bona fide
samples incorrectly classified as an attack. Similarly,
APCER is the proportion of attack samples incor-

rectly classified as bona fide. Finally, ACER is the
mean of APCER and BPCER. Additionally, we re-
port the Equal Error Rate (ERR) for comparisons with
older face anti-spoofing approaches, which in the con-
text of biometric anti-spoofing, is the point where the
APCER and BPCER are equal (Ben Mabrouk and Za-
grouba, 2018).

4.4 Keyframe Selection

Hardly any movement in a one-second video can re-
sult in 24 near-duplicate frames. We investigated
these near-duplicate frames’ effect on the ViT train-
ing. To do this, we employed the following three-
stage unsupervised keyframe selection process.

Stage 1: Feature Extraction. We extracted fea-
tures from the preprocessed frames using a ResNet-50
backbone, pre-trained on the VGGFace2 dataset. This
large facial recognition dataset contains 9131 subjects
of various ages, ethnicities and professions in various
poses and illumination (Cao et al., 2018), making it
suitable for our task.

Stage 2: Feature Clustering. We clustered the ex-
tracted features using Lloyd’s K-Means clustering al-
gorithm. To do so, we used the Facebook AI Simi-
larity Search (FAISS) (Johnson et al., 2019) library,
which harnesses the power of GPUs and is currently
the fastest implementation of Lloyd’s K-Means clus-
tering algorithm. We conducted a hyperparameter
search to find the K that maximises the Silhouette
Score (Shahapure and Nicholas, 2020) to determine
the optimal K.

Stage 3: Keyframe Selection. For each category,
we calculated the mean optimal K. For CASIA-
FASD, we used the attack vectors as the categories;
for Spoof in the Wild, we used the medium names
associated with each session. We again clustered
the extracted features; however, we used the corre-
sponding categorical mean optimal K to obtain the
cluster centroids. Finally, we used vector quantisa-
tion to determine the features closest to these cen-
troids and selected the corresponding images as the
keyframes. Figures 5 and 6 illustrate the final result
of the keyframe selection process.

Table 1 shows the ablation study for selecting the
optimal K for CASIA-FASD. Looking at this table,
we can see that the standard deviation is greater than
the mean, implying that the optimal Ks are moder-
ately dispersed. The dispersion occurs between the
75th and 100th percentiles values. If we look at the
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Figure 5: The original frames for subject 18, video 1 in the
CASIA-FASD test release.

Figure 6: The keyframes for subject 18, video 1 in the
CASIA-FASD test release.

75th percentile, the values are close to the mean ex-
cept for the medium resolution warped-photo attack
category (W 2). Thus, using the categorical-mean op-
timal K is better than the individual-video optimal K
due to outlier videos. Figure 7 depicts the Keyframe
reduction effect on CASIA-FASD. The unsupervised
keyframe reduction process reduced the 110 882
frames in the original dataset to 7850 keyframes, re-
sulting in a 1412% frame reduction.
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Figure 7: The number of original frames (blue) vs the num-
ber of keyframes (red) for each video in the CASIA-FASD
ordered by video frame count.

To avoid confusion, we introduce notations to dis-
tinguish the Vision Transformer models using their
corresponding data augmentation approach. We be-
gin by representing the baseline model, trained on

Table 1: The mean, std. deviation and five-number-
summary for the optimal K of each attack vector in CASIA-
FASD.

Five-Number-Summary

Attack Vector Mean Min 25th 50th 75th Max

N 1 14.2 ± 15 2 2 5 23.3 42
N 2 9.6 ± 16.8 2 2 2.5 4.3 54

N HR 12.3 ± 20.2 2 2 3 5.3 68
C 1 2.2 ± 0.2 2 2 2 2 3
C 2 2.2 ± 0.5 2 2 2 2 4

C HR 3.1 ± 4.2 2 2 2 2 21
W 1 32.8 ± 21.4 2 20.3 31.5 49.5 73
W 2 17.4 ± 30.9 2 2 3 4.5 95

W HR 20.7 ± 28.5 2 2.8 4.5 39.8 101
R 1 14.1 ± 20.8 2 2 2.5 18.3 63
R 2 10.8 ± 13 2 2 2 21.3 40

R HR 18.2 ± 29.5 2 2 2.5 14.5 85

0 1

Figure 8: The average metrics of the traditional (ViTT) and
generative (ViTGAN3 and ViTKFGAN3) data augmenta-
tion models performed before (B) and after (A) the valida-
tion split for SiW protocols 2 and 3, using data augmenta-
tion percentages: 5, 10, 20 and 30.

the original dataset with no data augmentation as
ViT. Next, we represent a ViT model optimised using
the traditional data augmentation approach as ViTT.
Since our generative data augmentation approach uses
StyleGAN3-R models, we represent a ViT model op-
timised with this approach as ViTGAN3. We intro-
duce KFGAN3 as a keyframe generative data aug-
mentation approach, in which we train the Style-
GAN3 models using only the keyframes. Thus, we
represent a ViT model optimised with the keyframe
generative data augmentation approach as ViTKF-
GAN3.

5 RESULTS

We conducted an ablation study using SiW protocols
1 and 2 to determine when to perform data augmen-
tation, the optimal data augmentation percentage, and
the optimal number of frames to detect face spoofing.
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Table 2: The performance of the baseline (ViT), traditional data augmentation (ViTT) and generative data augmentation
(ViTGAN3, ViTKFGAN3) models for SiW protocols 2 and 3, in terms of ACER (%) for the image-based and video-based
classification approaches, using a window size of 5, 7, 10, and 15.

Model Aug. (%) Protocol 2 Protocol 3

Image 5 7 10 15 Image 5 7 10 15
ViT (Baseline) 0 3.51 0 0 0 0 8.92 2.83 1.49 1.19 0

ViTT (Before)

5 4.08 0.78 0.26 0.26 0 8.79 2.08 2.08 1.19 0.3
10 3.4 0 0 0 0 8.45 2.9 2.9 2.01 0.3
20 4.28 0.26 0.26 0.26 0.26 8.48 2.98 2.68 1.49 0
30 4.02 0.26 0.26 0 0 8.06 2.98 2.98 2.38 0.3

ViTT (After)

5 3.39 0 0 0 0 9.08 3.13 2.53 1.93 1.34
10 3.5 0 0 0 0 7.96 1.79 1.79 1.49 1.04
20 3.66 0 0 0 0 7.94 3.27 2.68 1.19 0.3
30 3.8 0.26 0.26 0.26 0 7.62 2.68 2.68 1.79 0.3

ViTGAN3 (Before)

5 3.89 0 0 0 0 9.12 2.68 2.38 2.08 1.79
10 3.43 0 0 0 0 11.4 5.21 5.21 4.02 4.32
20 3.04 0.52 0.52 0 0 11.34 3.57 3.57 2.68 2.68
30 3.42 0 0 0 0 12.01 5.51 5.51 4.61 5.21

ViTGAN3 (After)

5 3.94 1.04 1.04 1.04 0.52 9.13 2.38 2.08 1.79 0.89
10 3.29 0.26 0.26 0.26 0.26 11.98 5.36 5.36 4.46 4.46
20 3.88 0.78 0.26 0.52 0.26 11.25 5.95 5.65 4.76 3.87
30 3.38 0 0 0 0 11.39 8.78 8.78 8.18 7.59

ViTKFGAN3 (Before)

5 4.43 1.3 1.3 0.78 0.52 9.67 3.87 3.87 3.27 2.68
10 4.17 0.52 0.52 0.52 0.52 8.13 3.13 3.13 1.93 1.04
20 3.42 0 0 0 0 8.57 2.08 2.83 2.83 2.23
30 4.03 0 0 0 0 7.73 2.08 1.49 0.595 0

ViTKFGAN3 (After)

5 3.97 0.26 0.52 0 0 7.37 1.93 2.53 1.34 1.93
10 3.47 0 0 0 0 9.33 2.9 2.31 2.01 2.23
20 3.64 0 0 0 0 7.38 1.64 1.64 1.64 1.04
30 3.74 0 0 0 0 8.34 1.79 1.19 0.595 0

Data Augmentation Before or After the Valida-
tion Split. As illustrated in Figure 8, the generative
data augmentation approach (GAN3) performed bet-
ter for both protocols and achieved its lowest ACER
before the validation split. In contrast, the tradi-
tional data augmentation approach performed better
and achieved its lowest ACER after the split. Inter-
estingly, the keyframe generative data augmentation
(KFGAN3) performed better before the split for pro-
tocol two and after the split for protocol 3. Tables 5
and 6 confirm these results on the CASIA-FASD,
except for the ViTGAN3 ACER, which performed
slightly better after the split.

The Optimal Data Augmentation Percentage
(DAP). As shown in Figure 8, the GAN3 approach
works best with a DAP of 20% and 0% for protocols 2
and 3, respectively. Similarly, the KFGAN3 approach
works best with a DAP of 20% and 5% for protocols
2 and 3, respectively. Lastly, the traditional approach
works best with a DAP of 5% and 30% for protocols
2 and 3, respectively. Tables 5 and 6 confirm that
beyond 30%, we encounter diminishing returns.

Image-Based Classification Versus Video-Based
Classification. One advantage of using a static
analysis approach to face anti-spoofing is that it can
be incorporated into image-based and video-based
recognition systems. Accordingly, we investigated
the effectiveness of our approach in each scenario by
using image-based and video-based classification. We
treated each video frame as a separate presentation
attempt for image-based classification and classified
them independently. For video-based classification,
we treated each video as a separate presentation at-
tempt by aggregating the predictions from the first ‘n’
frames and using the majority vote as the final label.
When n is even, the vote favours the spoof label. The
study results are shown in Table 2.

Starting with the image-based classification
method, we found that the GAN3 approach performed
the best in SiW protocol 2 but the worst in protocol
3. In contrast, the KFGAN3 approach performed the
best in protocol 3 but the worst in protocol 2. Upon in-
vestigation, we observed that the FID of the KFGAN3
models was much larger than the GAN3 models, as
shown in Table 4. Since FID is a measure of similar-
ity between the generated and original samples, there
is more variability in the training set using KFGAN3
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Table 3: The performance of the models trained with the traditional (ViTT) and generative data augmentation (ViTGAN3 and
ViTKFGAN3) approaches, compared to similar work models on protocols 2 and 3 of SiW. We denote ‘-B’ and ‘-A’ as our
models trained with data augmentation before and after the validation split, respectively. As a reminder, we did not perform
protocol one since we could not guarantee that the generated image would appear within the first 60 frames.

Model Classification Approach Metric (%) Protocol
2 3

Auxiliary (Liu et al., 2018) Video-based
APCER 0.57 ± 0.69 8.31 ± 3.81
BPCER 0.57 ± 0.69 8.31 ± 3.80
ACER 0.57 ± 0.69 8.31 ± 3.81

CDCN (Yu et al., 2020) Image-based
APCER 0.00 ± 0.00 1.67 ± 0.11
BPCER 0.13 ± 0.09 1.76 ± 0.12
ACER 0.06 ± 0.04 1.71 ± 0.11

CDCN++ (Yu et al., 2020) Image-based
APCER 0.00 ± 0.00 1.97 ± 0.33
BPCER 0.09 ± 0.1 1.77 ± 0.1
ACER 0.04 ± 0.05 1.90 ± 0.15

FAS-SGTD (Wang et al., 2020) Video-based
APCER 0.00 ± 0.00 2.63 ± 3.72
BPCER 0.04 ± 0.08 2.92 ± 3.42
ACER 0.02 ± 0.04 2.78 ± 3.57

FasTCo (Xu et al., 2021) Video-based
APCER 0.02 ± 0.02 2.73 ± 0.91
BPCER 0.00 ± 0.00 1.28 ± 0.21
ACER 0.01 ± 0.01 2.00 ± 0.56

PatchNet (Wang et al., 2022) Image-based
APCER 0.00 ± 0.00 3.06 ± 1.10
BPCER 0.00 ± 0.00 1.83 ± 0.83
ACER 0.00 ± 0.00 2.45 ± 0.45

ViTGAN3-B (20%) Image-based
APCER 5.31 ± 5.86 20.59 ± 18.63
BPCER 0.78 ± 0.78 2.08 ± 4.49
ACER 3.04 ± 2.91 11.34 ± 8.57

ViTKFGAN3-A (5%) Image-based
APCER 5.51 ± 5.88 13.79 ± 11.62
BPCER 2.42 ± 2.77 0.95 ± 0.84
ACER 3.97 ± 2.62 7.37 ± 5.45

ViTKFGAN3-A (30%) Video-based
APCER 0.00 ± 0.00 1.19 ± 2.78
BPCER 0.00 ± 0.00 0.00 ± 0.00

Window size of 10 ACER 0.00 ± 0.00 0.595 ± 1.39

ViTKFGAN3-A (30%) Video-based
APCER 0.00 ± 0.00 0.00 ± 0.00
BPCER 0.00 ± 0.00 0.00 ± 0.00

Window size of 15 ACER 0.00 ± 0.00 0.00 ± 0.00

Table 4: The FID for the StyleGAN3 models trained using
the original frames (GAN3) and keyframes (KFGAN3) for
each attack vector in SiW.

Attack Vector FID

Model ASUS IP7P IPP2017 SGS8 P

GAN3 25.33 18.18 34.76 35.14 26.47
KFGAN3 54.66 57.91 99.41 82.98 66.38

than GAN3-generated candidates. Furthermore, per-
forming the data augmentation after the split can in-
crease the variability of the training set. The high
variability seems beneficial for unseen presentation
attacks (protocol 3), and the low variability appears
beneficial for unseen spoof mediums of the same type
(protocol 2).

Regarding the optimal frame window, we found
no need for data augmentation for protocol 2 when
using frame sizes 5, 7, 10 and 15. Moreover, we
found that the baseline, traditional, and KFGAN3 ap-
proaches achieved state-of-the-art performance across

both protocols using a frame size of 15. Despite this
remarkable performance, we found that the KFGAN3
approach achieves comparable performance with less
processing time, using a window size of 10. As the
window size increases, the image-based classification
trend emerges with reduced error values. As for the
CASIA-FASD, we found that the KFGAN3 approach
performed the best for image and video-based classi-
fication when using a window size of 7. Even though
the other approaches achieved the same ACER and
EER values using the same window size, the KF-
GAN3 approach achieved the lowest values simulta-
neously. Thus, the optimal window size for video-
based classification lies between the first 7 (CASIA-
FASD) and 15 frames (SiW). From this study, we sus-
pect that the first few video frames can effectively re-
veal whether a presentation is genuine or a spoof.

Tables 3 and 7 benchmark our approach against
similar research. Although our independent frame ap-
proach improved the baseline model’s performance,
more was needed to compete with the state-of-the-
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Table 5: The performance of the baseline (ViT), traditional
data augmentation (ViTT) and generative data augmenta-
tion (ViTGAN3, ViTKFGAN3) models for CASIA-FASD
protocol 7 in terms of EER (%) for the image-based and
video-based (window size of 7) classification approaches.

Model Aug. (%) EER (%)

Image Video
ViT (Baseline) 0 1.75 2.01

ViTT (Before)

5 1.96 2.18
10 2 1.83
20 2.12 2.36
30 2.18 2.36

ViTT (After)

5 1.89 1.65
10 1.96 1.82
20 2.13 2
30 2.21 1.82

ViTGAN3 (Before)

5 1.77 1.65
10 1.72 1.47
20 1.75 1.71
30 1.81 1.29

ViTGAN3 (After)

5 1.72 1.53
10 1.8 1.83
20 1.83 1.65
30 1.87 1.83

ViTKFGAN3 (Before)

5 1.71 1.83
10 1.71 1.29
20 1.73 1.47
30 1.85 1.65

ViTKFGAN3 (After)

5 1.78 1.83
10 1.82 1.83
20 1.86 2.01
30 1.9 2.01

art image-based classification methods. However, our
video-based classification approach achieved top per-
formance across both SiW protocols. Although the
baseline and traditional approaches obtained the same
results as the KFGAN3 approach using a window size
of 15, we decided the KFGAN3 approach was the best
when considering its performance on CASIA-FASD.

Upon investigating our suspicion of the first few
frames’ effectiveness, we found that (Xu et al., 2021)
also encountered this phenomenon and hypothesised
large motions and illumination changes to be the
cause. Unlike (Xu et al., 2021), who developed
a module to estimate uncertainty for a sequence of
frames, we found improved performance using a ma-
jority vote on the first fifteen frames.

6 CONCLUSION

In this work, we optimised the performance of a vi-
sion transformer using generative and traditional data
augmentation approaches. We trained a StyleGAN3
model for each attack vector and used these models
to generate candidate samples. We extended this ap-

Table 6: The performance of the baseline (ViT), traditional
data augmentation (ViTT) and generative data augmenta-
tion (ViTGAN3, ViTKFGAN3) models for CASIA-FASD
protocol 7 in terms of ACER (%) for the image-based and
video-based (window size of 7) classification approaches.

Model Aug. (%) ACER (%)

Image Video
ViT (Baseline) 0 1.42 1.42

ViTT (Before)

5 1.39 1.45
10 1.38 1.27
20 1.38 1.39
30 1.41 1.45

ViTT (After)

5 1.37 1.11
10 1.39 1.17
20 1.41 1.2
30 1.42 1.2

ViTGAN3 (Before)

5 1.37 1.2
10 1.36 1.11
20 1.41 1.36
30 1.42 1.14

ViTGAN3 (After)

5 1.36 1.11
10 1.35 1.27
20 1.35 1.23
30 1.36 1.3

ViTKFGAN3 (Before)

5 1.42 1.3
10 1.36 1.11
20 1.34 1.14
30 1.38 1.23

ViTKFGAN3 (After)

5 1.36 1.27
10 1.36 1.2
20 1.35 1.36
30 1.34 1.3

Table 7: The performance of the models trained with the
traditional (ViTT) and generative data augmentation (ViT-
GAN3 and ViTKFGAN3) compared to similar work models
using CASIA-FASD protocol 7. We denote ‘-B’ and ‘-A’ as
our models trained with data augmentation before and af-
ter the validation split. Moreover, ‘I’ and ‘V’ correspond
to image-based and video-based classification approaches,
with ‘W-N’ denoting the first N frames.

Model Approach EER (%)
DoG (Zhang et al., 2012) I 17.00

LBP (Boulkenafet et al., 2016) I 3.20
Deep LBP (Li et al., 2017a) I 2.30

Hybrid CNN (Li et al., 2017b) I 2.2
Attention CNN (Chen et al., 2020) V 3.145

Dropblock (Wu et al., 2021) I 1.12
ViTKFGAN3-B (10%) I 1.71

ViTKFGAN3-B W-7 (10%) V 1.29

proach by training the StyleGAN3 models using only
keyframes rather than all the training samples. We im-
plemented the traditional data augmentation approach
using random rotations, horizontal flips and magnifi-
cations.

We found that the samples generated using
keyframes increased the variability among the train-
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ing and validation sets, whereas the samples gener-
ated using all the frames increased the similarity. We
found high variability beneficial for unknown presen-
tation attack detection and high similarity beneficial
for unknown presentation attacks of the same kind.

We explored face anti-spoofing performance using
image-based and video-based classification methods.
We found the first few frames more effective for de-
tecting face spoofing attacks than using each frame
independently. The keyframe data augmentation ap-
proach using the first 15 frames achieved the top per-
formance for Spoof in the Wild protocols 2 and 3.

The SiW and CASIA-FASD results proved
keyframe data augmentation to be the most effective
approach. Furthermore, we suspect augmenting train-
ing sets with generated spoof images can make deep
learning models more robust against DeepFake at-
tacks. We will investigate this in future work, along
with more advanced GAN image generation tech-
niques.
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López-Sastre, R. J. (2019). Deep anomaly detection
for generalized face anti-spoofing. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), pages 1591–1600.

Rodrı́guez, J. and Lozano, J. (2007). Repeated stratified k-
fold cross-validation on supervised classification with
naive bayes classifier: An empirical analysis.

Shahapure, K. R. and Nicholas, C. (2020). Cluster qual-
ity analysis using silhouette score. In 2020 IEEE 7th
International Conference on Data Science and Ad-
vanced Analytics (DSAA), pages 747–748.

Shorten, C. and Khoshgoftaar, T. (2019). A survey on image
data augmentation for deep learning. Journal of Big
Data, 6.

Ur Rehman, Y. A., Po, L. M., and Liu, M. (2017). Deep
learning for face anti-spoofing: An end-to-end ap-
proach. In 2017 Signal Processing: Algorithms, Ar-
chitectures, Arrangements, and Applications (SPA),
pages 195–200.

van der Haar, D. T. (2019). Face antispoofing using shear-
lets: An empirical study. SAIEE Africa Research Jour-
nal, 110(2):94–103.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Walsh, J., O’ Mahony, N., Campbell, S., Carvalho, A., Kr-
palkova, L., Velasco-Hernandez, G., Harapanahalli,
S., and Riordan, D. (2019). Deep learning vs. tradi-
tional computer vision.

Wang, C.-Y., Lu, Y.-D., Yang, S.-T., and Lai, S.-H. (2022).
Patchnet: A simple face anti-spoofing framework via
fine-grained patch recognition. In 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 20249–20258.

Wang, Z., Yu, Z., Zhao, C., Zhu, X., Qin, Y., Zhou, Q.,
Zhou, F., and Lei, Z. (2020). Deep spatial gradient
and temporal depth learning for face anti-spoofing. In
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5041–5050.

Wu, G., Zhou, Z., and Guo, Z. (2021). A robust method with
dropblock for face anti-spoofing. In 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 1–8.

Xu, X., Xiong, Y., and Xia, W. (2021). On improving tem-
poral consistency for online face liveness detection
system. In 2021 IEEE/CVF International Conference
on Computer Vision Workshops (ICCVW), pages 824–
833.

Yu, Z., Qin, Y., Li, X., Zhao, C., Lei, Z., and Zhao, G.
(2021). Deep learning for face anti-spoofing: A sur-
vey.

Yu, Z., Zhao, C., Wang, Z., Qin, Y., Su, Z., Li, X., Zhou,
F., and Zhao, G. (2020). Searching central difference
convolutional networks for face anti-spoofing. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5294–5304.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499–1503.

Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., and Li, S. Z.
(2012). A face antispoofing database with diverse at-
tacks. In 2012 5th IAPR International Conference on
Biometrics (ICB), pages 26–31.

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

640


