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Abstract: In recent years, image generation has become one of the most popular research areas in the field of computer

vision. Significant progress has been made in image generation based on generative adversarial network

(GAN). However, the existing generative models fail to capture enough global structural information, which

makes it difficult to coordinate the global structural features and local detail features during image generation.

This paper proposes the Persistent Homology based Generative Adversarial Network (PHGAN). A topological

feature transformation algorithm is designed based on the persistent homology method and then the topological

features are integrated into the discriminator of GAN through the fully connected layer module and the self-

attention module, so that the PHGAN has an excellent ability to capture global structural information and

improves the generation performance of the model. We conduct an experimental evaluation of the PHGAN

on the CIFAR10 dataset and the STL10 dataset, and compare it with several classic generative adversarial

network models. The better results achieved by our proposed PHGAN show that the model has better image

generation ability.

1 INTRODUCTION

Image generation has always been a key problem

in the field of computer research, and how to make

computers automatically generate realistic images

has always puzzled computer scholars. In 2014,

the emergence of Generative Adversarial Network

(GAN)(Goodfellow et al., 2014) made significant

progress in computer-generated images. GAN con-

sists of a generator and a discriminator. The generator

is trained to generate images that are as similar as pos-

sible to real images, and the discriminator is trained

to determine whether the potential distribution of the

generated images is consistent with the potential dis-

tribution of the real images. Through the confronta-

tion between the generator and the discriminator, the

generator can generate more and more realistic im-

ages.

After GAN was proposed, Radford et al.(Radford

et al., 2015) conducted further research on the un-

derlying architecture of GAN and used the convolu-

tional neural network as the underlying architecture

of the generator and discriminator of GAN. The gen-

eration performance has been greatly improved, lead-

ing to commonly use of convolutional neural network

in subsequent GAN-based models(Zhu et al., 2017;

Wang et al., 2022) as backbones.

Although GANs based on the convolutional neu-

ral network structure have achieved success in im-

age generation, there are still some problems to be

solved: the model performs well in generating lo-

cal details but poorly in overall structure generation.

Study(Zhang et al., 2019) found that this is because

GANs based on the convolutional neural network rely

on the convolution operation for feature extraction,

while the convolution operation has a limited size of

the convolution kernel. Its receptive field is limited,

and some long-distance dependencies cannot be cap-

tured, so that the model does not perform well in the

overall structure.

In recent years, persistent homology

(PH)(Zomorodian and Carlsson, 2004) has at-

tracted attention in terms of data feature extraction.

Compared with existing data feature extraction

methods, persistent homology method can connect

algebra and topology, and provides measurable

global information. The quantitative numerical

value of the topological feature has opened up new

research directions in the field of computer science.

For example, Kindelan et al.(Kindelan et al., 2021)

and Khramtsova et al.(Khramtsova et al., 2022)

researched the classification problem based on

persistent homology. Byrne et al.(Byrne et al., 2022)

and Li et al.(Li et al., 2022) researched the image
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segmentation based on persistent homology. Carriere

et al.(Carrière et al., 2020) and Kim et al.(Kim et al.,

2020) proposed the topological feature layer that can

be embedded in neural networks based on persistent

homology. Moor et al.(Moor et al., 2020) studied the

optimization of machine learning models using the

topological features of the data as a new loss term.

This paper proposes the Persistent Homology

based Generative Adversarial Network (PHGAN).

Based on the original convolutional neural network

architecture of GAN, the topological features ob-

tained by persistent homology are integrated into

GAN. The topological features of the data make up

for the lack of the original model’s ability to capture

long-distance dependencies so that PHGAN can co-

ordinate the global structural features and local detail

features when generating images.

2 RELATED WORK

2.1 Persistent Homology

The topological features obtained by persistent ho-

mology are generally represented by the persistent di-

agram or the persistent barcode. However, these data

formats are not suitable for subsequent machine learn-

ing tasks, so some researches are carried out on topo-

logical feature transformation. Adams et al.(Adams

et al., 2017) and Cang et al.(Cang et al., 2018) re-

searched how to transform topological features into

two-dimensional matrices or three-dimensional ten-

sors. After transformation, such data formats can be

treated as images for machine learning tasks. Mi-

leyko et al.(Mileyko et al., 2011) proposed to use

the Wasserstein distance to measure the proximity of

the topological features of the two data. Merelli et

al.(Merelli et al., 2015) proposed to use entropy to

measure the distribution of topological features and

assign a certain entropy value to the distribution of

topological features of data. Hofer et al.(Hofer et al.,

2017) proposed to use of a neural network for topo-

logical feature transformation so that the neural net-

work can learn to obtain topological feature transfor-

mation parameters that are most suitable for machine

learning tasks.

In this paper, we proposed to transform topologi-

cal features obtained by persistent homology into one-

dimensional vector, then the vector can be input into

neural network for processing.

2.2 Persistent Homology Based

Generative Model

Recently, some researchers have explored the appli-

cation of persistent homology in the field of image

generation. For example, Khrulkov et al.(Khrulkov

and Oseledets, 2018) used the approximate value of

the topological features of the generated images and

the real images as an indicator to measure the gen-

eration performance of GANs. Coincidentally, Ho-

rak et al.(Horak et al., 2021) also proposed a differ-

ent GANs generation performance evaluation index

based on the persistent homology method. However,

what they proposed only used the topological features

of the generated images and real images to measure

the generation performance of GANs, and did not use

the topological features of the real images to guide the

generator to generate images.

Brüel-Gabrielsson et al.(Gabrielsson et al., 2020)

proposed to use the topological features obtained by

persistent homology to guide GAN to generate im-

ages, but the author only did explicit topological fea-

ture optimization for the noise input to the generator,

and the generator did not learn the topological feature

distribution of real images.

In addition, there are also some studies on the ap-

plication of persistent homology in other generative

models. For example, Schiff et al.(Schiff et al., 2022)

proposed a variational autoencoder model based on

the persistent homology, using the topological fea-

tures as a new reconstruction loss term to optimize

the generation performance of the variational autoen-

coder model.

Our proposed PHGAN uses the topological fea-

tures of real images to guide the generator of GAN to

generate images, so that the generator can learn the

topological feature distribution of real images.

3 METHOD

The overall model architecture of our proposed PH-

GAN is shown in Figure 1. We sample random noise

from a Gaussian distribution, and then feed this noise

into the generator to generate an image. The gener-

ated image and the real image are input into the dis-

criminator to discriminate the real and fake. In the

discriminator, the input image is not only processed

by the convolution module to obtain the features of

the convolutional neural network, but also processed

by the persistent homology module and topological

feature transformation module to obtain the topologi-

cal features. These two features are connected in se-

ries to discriminate the real and fake images.

Persistent Homology Based Generative Adversarial Network
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Figure 1: PHGAN Architecture.

In this way, we can incorporate the topological

features which reflect the global structure of the im-

age into GAN. On the one hand, the topological fea-

tures enable the model to discriminate the real and

fake images on the global structure, and on the other

hand, in the adversarial training process of the gener-

ator and the discriminator, the ability of the generator

to generate images can be improved. The specific im-

plementation details are described below.

3.1 Persistent Homology: From Image

to Topological Features

Persistent homology is a method for extracting the

topological features of data. The basic process is to

construct complex and complex filtering based on the

original data, and then extract the topological features

of the data. In this paper, the datasets consist of only

two-dimensional images, and for image data, cubical

complex(Ziou and Allili, 2002) is the most suitable

choice for complex construction. We represent the

two-dimensional image data with a two-dimensional

array X of Ni ∗N j, the value of each point Xi j in the

array is the value of the image pixel, and then we con-

struct a subset of the array X , that is, the set of pixels

in the array X that are below the threshold t, as shown

in Eq. (1). We use the S to denote a subset of the array

X .

S(t) =Ui, jXi j : Xi j <= t (1)

where U denotes the set of pixel points.

When the threshold t changes from small to large,

we can get a series of sets:

∅⊆ S(0)⊆ S(t1)⊆ S(t2)⊆ . . . ⊆ S(1)⊆ X (2)

Each such set of pixel points can be constructed

to form a cubical complex, and the cubical complex

formed by this series of sets is called a complex filter-

ing.

When the value of t is relatively small, accord-

ing to Eq. (1), the set S consists of only a few pix-

els. As the threshold t continues to increase, new

pixels are added to the set S to form a new cubical

complex, and the topological features appear and dis-

appear during the transformation of the old and new

cubical complex. The persistent homology method

is to calculate the number of topological features of

the cubical complexes formed under different thresh-

olds. We use βk to represent the number of topo-

logical features of k-dimension: β0, the number of

topological features of 0-dimension (connected com-

ponents); β1, the number of 1-dimensional topolog-

ical features (rings/holes). Because we are study-

ing two-dimensional image data, we only involve 0-

dimensional and 1-dimensional topological features

here.

The final result of the persistent homology method

is the appearance and disappearance of each topolog-

ical feature (appears at the threshold tbirth and disap-

pears at the threshold tdeath). We generally use a per-

sistent diagram or a persistent barcode to represent

the result of persistent homology analysis, as shown

in Figure 2.

For topological features, the longer the persistent

time (the disappearance time minus the appearance

time we call the persistent time), the more important

and meaningful the feature is. If topological features

are of short persistent time, we usually treat them as

noise.
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Figure 2: Persistent diagram and persistent barcode; the
far left is 0 in the MNIST dataset. After persistent homol-
ogy analysis, 0-dimensional topological features (connected
components, red) and 1-dimensional topological features
(rings/holes, blue) are obtained.

3.2 Topological Feature Transformation

After the image is processed by the persistent homol-

ogy module, the obtained topological features are ex-

pressed as a persistent diagram or a persistent bar-

code. However, these data formats are not suitable

for input into the subsequent discriminator. There-

fore, we need to transform the topological features.

We use the persistent time of each topological fea-

ture as a measure of this topological feature:

τi
k = di

k–bi
k (3)

where bi
k, di

k, τi
k represent the appearance time, dis-

appearance time and the persistent time of the i-th k-

dimensional topological feature.

For our image data, the topological features ob-

tained by persistent homology analysis have two

dimensions, one of which is the 0-dimensional

connected components, and the other is the 1-

dimensional holes. We combine the persistent time

of 0-dimensional and 1-dimensional topological fea-

tures contained in an image to form a vector. In this

way, the topological features of the image are trans-

formed into a vector data format.

The specific process of topological feature trans-

formation is shown in Algorithm 11.

3.3 Discriminator Network

The overall network structure of the discriminator is

shown in Figure 3.

After the image is processed by the persistent ho-

mology module and fed to topological feature trans-

formation, the vector representation (νtopo) of the

topological features is obtained. In addition, we trans-

form the features extracted by the original convolu-

tional neural network into vector νconv for represen-

tation and then concatenate these two vectors (νtopo,

νconv) to form a vector (ν).

Here, we process the vector ν using two different

network structures: one using a fully connected layer

network and the other using a self-attention network.

1We use the Python module Gudhi to produce the per-
sistent diagrams.

Algorithm 1: The algorithm of topological feature transfor-

mation.

Input: image X of size H ∗W with C

channels.

Output: vector νtopo represents the

topological features of image.

1 For X using persistent homology, obtaining a

0-dimensional persistent diagram and a

1-dimensional persistent diagram.

2 Obtaining persistent time τi
k using Eq. (3) for

each topological feature in 0-dimension and

1-dimension.

3 Obtaining νtopo = (τ1
0, τ2

0, τ3
0, ......, τn

0, τ1
1, τ2

1,

τ3
1, ......, τm

1 ).

4 Return νtopo.

3.3.1 Fully Connected Layer

We use the network structure of the fully connected

layer to process the input concatenated vector ν. The

fully connected layer can combine topological fea-

tures with convolutional neural network features to

discriminate between real and fake images. The fully

connected layer will learn the most appropriate pa-

rameter relationship between these two features dur-

ing the training process and coordinate the influence

of topological features and convolutional neural net-

work features on the discrimination result.

3.3.2 Self-Attention Network

Different from the use of the fully connected

layer network structure, the use of the self-

attention(Vaswani et al., 2017) network will learn the

correlation between the convolutional neural network

features and the topological features during the train-

ing process, and then discriminate the authenticity

of the image. We input the vector ν into the self-

attention network, then obtain the vector νsa after the

convolutional neural network features interacts with

the topological features. we use the residual network

to add the vector νsa to the original vector ν, as shown

in Eq. (4), to obtain the vector ν′. Finally, the vector

ν′ input to the fully connected layer to judge the au-

thenticity of the image.

ν′ = γ∗νsa +ν (4)

Where γ denotes a learnable parameter.

3.4 Loss Function

After we incorporate topological features into GAN,

in addition to the original convolutional neural

network-based loss, a new topological feature loss

Persistent Homology Based Generative Adversarial Network
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Figure 3: Schematic diagram of the structure of the PHGAN discriminator based on the fully connected layer and the self-
attention network.

term is added to the discriminator. In the PHGAN,

the generator and the discriminator are alternately

trained. When training the discriminator, the topolog-

ical feature loss term will guide the discriminator to

discriminate between real image and generated image

in terms of global structure, and then when training

the generator, the discriminator can guide the genera-

tor to generate an image that is more similar in global

structure to the real image. The total loss function of

the discriminator and the generator are shown in the

following Eqs. (5) and (6):

argmaxD[Ex∼Pdata
log(Dconv(x)⊕Dtopo(x))+

Ez∼Pzlog(1− (Dconv(G(z))⊕Dtopo(G(z))))]
(5)

argmaxG[Ez∼Pzlog(Dconv(G(z))⊕Dtopo(G(z)))]
(6)

Where Dtopo represents discrimination based on topo-

logical features. Dconv represents discrimination

based on convolutional neural network features. ⊕
represents the combination of convolutional neural

network features and topological features through

the fully connected layer and self-attention network

structure for discrimination.

See Algorithm 2 for the training process of the

PHGAN.

4 EXPERIMENT

4.1 Experimental Environment and

Preparation

We use the CIFAR10 dataset(Krizhevsky, 2012) and

the STL10(Coates et al., 2011) dataset for experi-

mental evaluation and comparative analysis with DC-

Algorithm 2: The algorithm of training PHGAN.

Input: image X of size H ∗W with C

channels.

Input: epoch: number of training iterations.

1 for epoch do

2 Obtaining noise z by randomly sampling.

3 Generating fake image Y using noise z.

4 For fake image Y run steps 7-10,

obtaining the discriminant result.

5 For real image X run steps 7-10,

obtaining the discriminant result.

6 Update generator and discriminator

parameters using Eqs. (5) and (6).

7 For input image run algorithm 1, obtaining

topological features vector representation

νtopo.

8 For input image, obtaining convolutional

features vector representation νconv by

convolutional neural network in

discriminator.

9 Obtaining image feature vector representation

ν by concatenating νtopo and νconv.

10 Input ν into MLP/Self-Attention to get the

discriminant result.

GAN(Radford et al., 2015) , WGAN-GP(Gulrajani

et al., 2017) , and WGAN(Arjovsky et al., 2017) .

The CIFAR10 dataset consists of 10 categories of

32x32 color images. Each category contains 6000 im-

ages, of which 5000 images are used as training sets

and 1000 images are used as test sets. The STL10

dataset consists of 10 categories of 96x96 color im-

ages, each with 1300 images, 500 for training, and

800 for testing. In the experiment of this paper, the

original image is first cropped into a 32x32 size image

by center cropping, and then the training set is used
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Table 1: Experimental results on the CIFAR10 dataset.

DCGAN WGAN-GP WGAN PHGANml p PHGANsa

IS↑ 5.01 5.05 4.43 5.24 5.37

FID↓ 66.61 65.00 70.02 64.57 62.50

GS(10−4) ↓ 10.20 14.50 20.04 9.48 6.97

DCGAN WGAN-GP WGAN PHGANmlp PHGANsa

Figure 4: Experimentally generated images base on CIFAR10 dataset.

to train the generative model. In addition to using

the FID (Fréchet Inception Distance)(Heusel et al.,

2017) and IS (Inception Score)(Salimans et al., 2016)

to evaluate the generative model performance, we

also used the GS (Geometry Score)(Khrulkov and Os-

eledets, 2018) evaluation index: a generative adver-

sarial network model generation performance evalua-

tion based on the similarity of topological features.

Experiments are conducted on a Linux server,

Ubuntu 18.04 system, and Nvidia Tesla P40 24 GB

single graphics card. The Adam optimizer(Kingma

and Ba, 2014) with β1=0.5, β2=0.999 was used, the

batch size was set to 64, and the learning rate during

training was 0.0002.

4.2 Experimental Results and Analysis

Table 1 shows the results of our proposed PHGAN on

the three image generation metrics of FID, IS, and GS

on the CIFAR10 dataset, and compares it with three

classic generative adversarial network models: DC-

GAN, WGAN, WGAN-GP.

It can be seen from the table that the generation

results of our proposed PHGAN outperform that of

the three comparative GANs on the evaluation indica-

tors of FID and IS. Among them, the PHGAN using

the self-attention network (PHGANsa) has better FID

and IS evaluation indicators than the PHGAN using

the fully connected layer (PHGANml p), so its experi-

mental performance is the best among the five GANs.

From the experimental results, it can be seen that the

integration of topological features into the genera-

tive adversarial network model can enhance the image

generation performance.

In addition, we also use the GS evaluation index

to evaluate the experimental results. The GS evalua-

tion index is based on the similarity of the topological

features of the generated images and the real images.

From the experimental results, we can see that when

we use the topological features of the real images to

guide the generative adversarial network model, the

generated images can better learn the topological fea-

ture distribution of the real images. Figure 4 shows

the images generated by the experimental five gen-

erative adversarial network models on the CIFAR10

dataset. We observe that the images generated by the

PHGAN have a clearer overall structure so that it is

easier to see the category of the images.

Table 2 shows the experimental results on the

STL10 dataset. Similarly, on the FID and IS evalu-

ation indicators, PHGAN performs the best. Differ-

ent from the experimental results on the CIFAR10

Persistent Homology Based Generative Adversarial Network
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Table 2: Experimental results on the STL10 dataset.

DCGAN WGAN-GP WGAN PHGANml p PHGANsa

IS↑ 2.97 2.67 2.81 3.04 3.12

FID↓ 74.14 79.41 73.96 71.07 72.84

GS(10−4) ↓ 17.19 39.95 22.32 14.47 11.68

DCGAN WGAN-GP WGAN PHGANmlp PHGANsa

Figure 5: Experimentally generated images base on STL10 dataset.

dataset, the PHGANml p is slightly better than the

PHGANsa in the FID evaluation index. It might be-

cause the STL10 dataset is relatively small. If we use

the self-attention network to process the images, there

may be a slight overfitting phenomenon, which leads

to the FID indicator not as good as the PHGAN that

directly uses the fully connected layer.

Similarly, on the GS indicator, we can also see that

PHGAN can learn the topological feature distribution

of the real images relatively well on this dataset. Fig-

ure 5 shows the images generated by the experimen-

tal five generative adversarial network models on the

STL10 dataset. We can see that the images gener-

ated by PHGAN have sharper boundaries and overall

structure.

5 CONCLUSION

This paper proposes the PHGAN which integrates the

topological features obtained by persistent homology

into the generative adversarial network model. The

PHGAN has a good ability to capture global informa-

tion. It has been verified in experiments. Compared

with the original several classic generative adversarial

network models, PHGAN has achieved better results

in the evaluation matrics for image generation, and

the generated images are more realistic. This paper

explores the application of the persistent homology

method in image generation. And the application in

other fields, such as image editing, and image style

transfer, is the direction that can be studied in the fu-

ture.
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