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Abstract: This paper employs the acoustic modality to address the human activity recognition (HAR) problem. The
cornerstone of the proposed solution is the YAMNet deep neural network, the embeddings of which comprise
the input to a fully-connected linear layer trained for HAR. Importantly, the dataset is publicly available and
includes the following human activities: preparing coffee, frying egg, no activity, showering, using microwave,
washing dishes, washing hands, and washing teeth. The specific set of activities is representative of a standard
home environment facilitating a wide range of applications. The performance offered by the proposed transfer
learning-based framework surpasses the state of the art, while being able to be executed on mobile devices,
such as smartphones, tablets, etc. In fact, the obtained model has been exported and thoroughly tested for
real-time HAR on a smartphone device with the input being the audio captured from its microphone.

1 INTRODUCTION

Human Activity Recognition (HAR) is the process
of automatic detection and identification of physical
human activities (Ramanujam et al., 2021). Its ap-
plications range from health care systems with real-
time remote tracking of patients – e.g. medical diag-
nosis and tracking of elderly people –, to smart-home
and safe-traveling systems, including the recognition
of criminal human activity (Ntalampiras and Roveri,
2016) and activities in natural environments (Ntalam-
piras et al., 2012).

The main issue in HAR is to leverage motion sig-
nals to classify the type of action that is ongoing. The
literature mainly focuses on motion and wearable sen-
sors (Ramanujam et al., 2021) or vision sensors (Bed-
diar et al., 2020) and has recently embraced the deep-
learning world (Chen et al., 2021). For instance,
CNNs with inertial sensor data, such as accelerome-
ters and gyroscopes, have been used to sample the ac-
celeration and the angular velocity of a body (Bevilac-
qua et al., 2018). In such a context, real-time HAR
has been achieved using deep learning models using
information coming from sensors typically existing
in smartphones (Ronao and Cho, 2016; Wan et al.,
2020). However, real-time audio-based HAR is still
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an open subject, and this work fills exactly that gap.
While multimodality is a key aspect in the HAR

field (Chen et al., 2021) and every commercial smart-
phone device is equipped with one or more micro-
phones, the specific modality has not been thoroughly
explored in a stand-alone neither a multimodel set-
ting, where information from multiple modalities is
exploited. This work explores how existing audio-
recognition models tailored to real-time classification
can be applied to HAR.

A few previous works presented HAR models
based on the corresponding acoustic emissions. One
work focused on the feature extraction stage, consist-
ing of a selection analysis via genetic search; the pro-
posed method is tailored to low-power consumption
devices, such as smartphones, and employs Random
Forest (RF) and Neural Network (NN) models (Ri-
boni et al., 2016). Another work focuses on trans-
fer learning for data augmentation to reduce the im-
balance bias and improve generalization (Ntalampi-
ras and Potamitis, 2018). Finally, the audio chan-
nel has been used in multimodal online HAR sys-
tems (Chahuara et al., 2016).

Regarding approaches based on traditional ma-
chine learning, i.e. not based on deep neural net-
works, non-Markovian ensemble voting has been
used for robotic applications(Stork et al., 2012).
Social network analysis based on graph statistics
has been applied by constructing networks between
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windows of the audio fragments and comparing
the graphs related to different activities (Garcı́a-
Hernández et al., 2017).

It should be mentioned that the spread of audio de-
vices listening to users’ speech, activities, etc. with-
out transparently making it public has created seri-
ous privacy concerns (Lau et al., 2018). An existing
work analyzes the impact of audio deterioration on
speech intelligibility with the hope of finding privacy-
friendly methods for HAR (Liang et al., 2020). To
the best of our knowledge, this latter path is yet to be
explored requiring more attention from the scientific
community.

With the rise and ever-increasing adoption of
Deep Neural Networks, the problem of data avail-
ability became of primary importance. While some
datasets for audio-based HAR are available – see
Sec. 2 –, various works have proven that using pre-
trained models improves model performances and re-
duces training costs. As such, we adopted a Transfer
Learning-based strategy, which is proven to be helpful
for the generalization abilities of the resulting mod-
els (Pan and Yang, 2010; Zhuang et al., 2021).

The contributions of this work are:

1. a proof-of-concept application for audio-based
HAR operating in real-time on commercially
available smartphones;

2. an exploration of the effectiveness of generic au-
dio classification models for HAR-specific tasks;

3. a novel extension of an existing dataset for Audio-
based HAR.

The rest of the paper is organized as follows:
the following section describes the employed dataset
and section 3 presents the proposed method. Sub-
sequently, section 4 explains the experimental set-up
and analyses the obtained results. Finally, section 5
demonstrates the developed prototype application and
section 6 provides our conclusions and directions for
future work.

2 DATASET

There are few audio datasets facilitating HAR based
on audio data. In this work, we used an existing
dataset (Riboni et al., 2016) composed of eight classes
taken in various indoor environments, so that differ-
ent background noises and acoustic conditions are
well-represented. Specifically, the classes available
are: brewing coffee, cooking, using the microwave
oven, taking a shower, dish washing, hand washing,
teeth brushing and no activity. Since this dataset suf-
fers from imbalance issues, it was expanded to com-
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Figure 1: Total duration per each activity class in the used
dataset, after expansion and balancing. Time is in seconds.

pensate the less represented classes. Namely, we
manually selected smartphone and low quality mi-
crophones recordings from Freesound 1. The down-
loaded files were annotated using the existing direc-
tory structure of the dataset.

Since there were various file types with various
sample rates (from 8 to 64 KHz) and channels (mono
or stereo), we also converted all audio files to wave
encoding format (.wav) with mono channel and 16
KHz sample rate. To improve the learning proce-
dure, silence was removed from files using Reaper,
a professional Digital Audio Workstation2. Specifi-
cally, we used the dynamic split items tool with gate
threshold set at -24dB, hence, the audio below that
threshold the activity is considered silence – except
for the “No activity” class. Moreover, the standard
deviation (21 m 25 s) and average duration (24 m 45
s) of the initial dataset clearly indicated a highly im-
balanced situation.

Consequently, we reduced the cardinality of the
classes having total duration above the average by it-
eratively removing one random audio file at a time
from the dataset, until the total duration of the class
was less than 24 minutes. In the resulting dataset the
total average duration across classes is 20 m 44 s and
the standard deviation between classes total duration
is 1 m 57 s – see Figure 1.

3 THE PROPOSED METHOD

The proposed method is based on YAMNet3, a Neural
Network for audio classification. YAMNet is fed with
log-Mel spectrograms and outputs one tag among 521
classes from the AudioSet-Youtube4 corpus. YAM-
Net consists of 86 layers based on the MobileNet-v1
architecture (Howard et al., 2017), which is created

1https://freesound.org
2https://www.reaper.fm/
3https://github.com/tensorflow/models/tree/master/

research/audioset/yamnet
4https://research.google.com/audioset/
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Figure 2: Mel-scaled spectrograms of representative seg-
ments of the considered human activities.
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Figure 3: Block diagram illustrating the pipeline of the pro-
posed method.

using depth-wise convolutions reducing the computa-
tional complexity of the network. Among those, only
28 layers have learnable weights, with 27 convolu-
tional layers, and one fully connected layer.

With the purpose of transferring knowledge learnt
by YAMNet, we discard the last fully connected layer
and substitute it with a new fully connected layer de-
signed for our custom classification task. Overall, the
portion of YAMNet we use has 3′195′456 trained pa-
rameters.

For creating the log-Mel spectrograms used by
YAMNet, it is fundamental the understanding of
frame and hop size. Indeed, long-time dependencies
may be captured more easily with long frame sizes.
At the same time, long frames may impact negatively
the training of the network for short-time dependen-
cies, because it could be saturated of information and
could have issues in the identification of the most
discriminatory features. Moreover, long frames can
reduce the total number of frames. We empirically
found that an optimal frame size was 15600× 6 sec-
onds with an overlap of the 50%. This value was cho-
sen because 15600 (0.975 seconds) is the exact seg-
ment size required by YAMNet. Figure 2 illustrates
log-mel spectrograms of representative segments of
each class existing in the dataset.

After having segmented windows, in order to im-
prove the generalization abilities of the model, we
added Gaussian noise with mean µ = 0 and standard
deviation σ= 0.2. This technique was proven to make
the model robust against realistic noise sources, e.g.,
previous work employ such a method in order to ig-
nore the noise over time (Kahl et al., 2017).

The frames are then fed into the pre-trained YAM-
Net and the produced embeddings, after a ReLU ac-

tivation function, are passed to a fully-connected lin-
ear layer trained from scratch on the new dataset –
see Figure 3. The output is then processed with
SoftMax activation during training, while a simple
argmax function can be used at inference time.

For training, we used “Adam” (Kingma and
Ba, 2014) update algorithm and Categorical Cross-
Entropy as multi-class loss function. Batch size was
set to 10 and training was performed for 100 epochs.
Both epochs and batch size values were chosen after
preliminary exploration using cross-validation.

3.1 Comparative Analysis with k-nn

k-Nearest Neighbor Classifier (k-NN) despite its sim-
plicity it is a suitable approach for multi-class prob-
lems (Hota and Pathak, 2018). The standard version
of the k-NN classifier has been used with the Eu-
clidean distance as similarity metric.

Feature Extraction. The short-term features feed-
ing the k-NN model are the following: a) zero cross-
ing rate, b) energy, c) energy’s entropy, d) spectral
centroid and spread, e) spectral entropy, f) spectral
flux, g) spectral rolloff, h) MFCCs, i) harmonic ra-
tio, j) fundamental frequency, and k) chroma vec-
tors. We opted for the mid-term feature extraction
process meaning that mean and standard deviation
statistics on these short term features are calculated
over mid-term segments. More information on the
adopted feature extraction method can be found in
(Giannakopoulos and Pikrakis, 2014).

Parameterization. Short- and mid-term window
and hop sizes, have been discovered after a series of
early experimentations on the various datasets. The
configuration offering the highest recognition accu-
racy is the following: 0.05, 0.025 seconds for short-
term window and hop size; and 1.0, 0.5 seconds for
mid-term window and hop size respectively. Overall,

Table 1: Standard deviation of the obtained recognition ac-
curacy per class and data division scheme.

Class 10-folds 3-folds
doing coffee 0.03188 0.01067
frying egg 0.03580 0.03124
no activity 0.01921 0.00790
showering 0.01381 0.00391
microwave 0.02805 0.00839

washing dishes 0.04032 0.01001
washing hands 0.01779 0.01384
washing teeth 0.02321 0.01221
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Table 2: Average and Standard Deviation of Balanced Ac-
curacy; * refers to the baseline model described in (Riboni
et al., 2016); ** refers to the k-NN model

Folds Avg
10 0.8617

10** 0.8091
3 0.8820

3* 0.8560
3** 0.8098

the both feature extraction levels include a 50% over-
lap between subsequent windows.

Moreover, parameter k has been chosen using test
results based on the ten-fold cross validation scheme;
depending on the considered data population, the ob-
tained optimal values range in [3, 21]. The best k
parameter obtained is k=3.

4 EXPERIMENTAL SET-UP AND
RESULTS

For evaluating the proposed system, we designed
two experiments, namely a 3 and a 10 fold cross-
validation.

The metrics used to evaluate the trained model are
summarized in the following list:

• Balanced accuracy per fold: computes the mean
of the true positive rate obtained on each class of
a fold; it corresponds to the following formula:

∑
M−1
i=0

t pi
t pi+ f ni

M
where M is the number of classes, t pi and f ni are
the number of true-positives and false-negatives
of the i-th class;

• Average balanced accuracy: computes the mean
of the balanced accuracy across folds;

• Standard deviation of balanced accuracy: com-
putes the standard deviation of the average bal-
anced accuracy;

• Per-class standard deviation: for each class, the
true-positive-rate is averaged across the folds;
then, the standard deviation is computed;

• Normalized confusion matrix: all the confusion
matrices of all folds are summed; then, they nor-
malized so that each row sums to one.
Comparing 10 and 3-fold cross-validation – see

Table 2 – the model seems to suffer from the in-
crease of data in the training set, leading to a decrease
of performance in the 10-fold cross-validation. Ta-
ble 1 shows the standard deviation across folds of

Figure 4: Confusion Matrix of 3-fold (top) and 10-fold (bot-
tom) evaluation test. Matrices are created by summing the
confusion matrix obtained in each fold and then normaliz-
ing so that each row sums to 1.

the true positive rates for each class. Since the ef-
fect is noticeable in all classes, we assume that it is
not connected with specific samples. Therefore, the
increased dataset size should be thoroughly assessed
for possible negative effects, which may impact the
learning ability of the model.

Overall, as shown in Figure 4, all classes are well-
predicted. Miss-classifications are mainly concen-
trated in the differentiation among “washing dishes”,
“washing hands”, and “washing teeth”, probably be-
cause of the water sound in the background. Other
miss-classifications are between “frying egg” and
“doing coffee”, probably because they include metal
sounds (of pots and pans) and some parts with very
low intensity sounds.

We compared the best-performing model to a
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baseline work (Riboni et al., 2016) on the dataset
without our expansion nor our balancing strategy. For
the comparison, we used 3-fold cross-validation. The
specific work focuses on the usage of low-power con-
sumption devices. Even though the overall accuracy
does not differ significantly from the baseline model,
it is interesting to note that there are relevant dif-
ferences in the way misclassifications are distributed
across classes (see Figure 5):

• “doing coffee”: the proposed model produces less
miss-classifications with “frying eggs” and “mi-
crowaves”;

• “no activity”: less miss-classifications with
“washing teeth’ using the proposed method;

• “using microwave”: the baseline model confused
this class with “doing coffee”, while the proposed
method does not;

• washing hands: similar, but our model performed
0.04 worse than the baseline in the 10-fold cross
validation, while 0.08 worse in the 3-fold cross
validation, miss-classifications in our classifier
are in dishes and teeth (this could be because of
the similar water environments);

• washing teeth: similar, but our model scored
higher by about 0.03.
In addition, we contrasted the best performing

model with a k-NN classifier described in subsection
3.1 trained on the expanded dataset, by looking at
table 2 k-NN is outperformed by both the baseline
model of Riboni and by the classifier implemented
with YAMNet. Figure 6 shows the confusion matrix
of the 10 cross forld validation of the k-NN model.

The implementation of the proposed classifier
along with the presented experiments is available
at https://github.com/LIMUNIMI/HAR-YAMNet en-
suring full reproducibility of the obtained results.

5 ANDROID APPLICATION

For experimental purposes, we have also built an An-
droid application which uses the proposed model to
classify real-life sounds. The application runs in real-
time and performs a new inference every 500 millisec-
onds on the previous 500 ms of recorded audio, visu-
alizing it on the screen. An example of the applica-
tion running on Android mobile operating system is
shown in Figure 7.

To improve the accuracy of the app, two filters
were implemented. The first filter leverages the orig-
inal YAMNet predictor – not the one we trained – to
filter-out silence: if the original YAMNet predicts si-
lence with a score >0.89, no prediction is performed

Figure 5: Confusion Matrix of best model obtained with the
baseline model (Riboni et al., 2016).

Figure 6: Confusion matrix of best k-NN configuration
where k=3.

by our model and a corresponding message is visual-
ized on the screen (“No activity from YAMNet”).

The second filter is a threshold of 0.3 for each
class: it filters classification for low probability
scores, so that if a classification is lower than the
threshold its classification is disregarded and no tag
is visualized on the screen.

6 CONCLUSION AND FUTURE
DEVELOPMENTS

This article proposes a Deep Neural Network frame-
work with transfer learning from a CNN (YAMNet)
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Figure 7: Screenshot of the developed prototype application
running on Android mobile operating system. The winning
class along and the associated probability is displayed to the
user.

to classify human activities using a reasonably-sized
dataset. The obtained results demonstrate the supe-
riority of the proposed system over the state-of-art
based on supervised feature learning. Weaknesses of
the model could emerge in case of scaling the num-
ber of classes with proportional number of instances:
indeed, the model would need more data to learn a
more complex problem for which the current neural
architecture may not be enough accurate.

Future works include the use of artificial data aug-
mentation to enlarge the dataset. Possibly YAMNet
hyper-parameters could be fine-tuned if the dataset
is sufficiently large. Moreover, the effectiveness of
the smartphone application should be assessed thor-
oughly in terms of complexity along with the required
resources. Finally, the developed application could be
employed to enhance the capabilities of a wide range
of systems including smart-home assistants, such as
Amazon Alexa, Google Home, etc.
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