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Abstract: In 2019, Essaid et al. proposed an encryption scheme for color images based on chaotic maps. Their solution
uses two enhanced chaotic maps to dynamically generate the secret substitution boxes and the key bytes used
by the cryptosystem. Note that both types of parameters are dependent on the size of the original image.
The authors claim that their proposal provides enough security for transmitting color images over unsecured
channels. Unfortunately, this is not the case. In this paper, we introduce two cryptanalytic attacks for Essaid
et al.’s encryption scheme. The first one is a chosen plaintext attack, which for a given size, requires 256
chosen plaintexts to allow an attacker to decrypt any image of this size. The second attack is a a chosen
ciphertext attack, which compared to the first one, requires 512 chosen ciphertexts to break the scheme for a
given size. These attacks are possible because the generated substitution boxes and key bits remain unchanged
for different plaintext images.

1 INTRODUCTION

Because the use of social media is growing expo-
nentially, the protection of digital images has be-
come a sensitive topic. Therefore, the protection of
images against theft and illegal distribution has at-
tracted much attention. As a result, many researchers
have proposed a variety of image encryption schemes.
One of the most popular types of image encryption
schemes are those based on chaotic maps, due to their
high sensitivity to the previous states, initial condi-
tions or both. This property makes them highly desir-
able because their sensitivity makes it difficult to pre-
dict their behaviour or outputs. Hence, novel chaos
based cryptographic algorithms have been proposed
over the years. We refer the reader to (Zolfaghari
and Koshiba, 2022; Muthu and Murali, 2021; Hosny,
2020)for some surveys of such proposals. Unfortu-
nately, insufficient security analysis and a lack of de-
sign guidelines have led to the discovery of serious
security flaws in a substantial number of chaos based
image encryption schemes. To illustrate our point we
further present a list of broken schemes in Table 1.
Note that the list is not comprehensive.

In (Essaid et al., 2019) a chaos based encryption
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scheme is proposed. The authors use the Enhanced
Logistic Map (ELM) and Enhanced Sine Map (ESM)
as pseudorandom number generators (PRNGs). Us-
ing these two PRNGs, Essaid et al. randomly gener-
ate two substitution boxes (s-boxes), which are then
used to compute the rest of the s-boxes required by
the cryptosystem. Then, the PRNGs are combined to
create the necessary key bytes. Since ELM and ESM
are simply used as PRNGs and the scheme’s weak-
ness is independent of the employed generators, we
omit their description and simply consider the two s-
boxes and the key bytes as being randomly generated.

In this paper we conducted a security analysis on
the Essaid et al. scheme. More precisely, we pro-
pose a chosen plaintext attack and a chosen ciphertext
attack that allow an attacker to decrypt all images of
a given size. In order to achieve this, we need the
corresponding ciphertexts of 256 chosen plaintexts or
the corresponding plaintexts of 512 chosen cipher-
texts. For completeness, we also analysed the Essaid
et al. scheme when all the s-boxes are randomly gen-
erated. This should be the most secure version of their
scheme, since there are no relationships between the
s-boxes that would allow an attacker to filter out the
correct key. Unfortunately, even when the s-boxes are
random, our proposed attacks succeed in recovering
the encrypted images except two or four pixels, de-
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Table 1: Broken chaos based image encryption algorithms.
Scheme (Matoba and Javidi, 2004) (Wang et al., 2012) (Huang et al., 2014) (Khan, 2015) (Song and Qiao, 2015) (Chen et al., 2015)

Broken by (Wang et al., 2019) (Arroyo et al., 2013) (Wen et al., 2021) (Alanazi et al., 2021) (Wen et al., 2019) (Hu et al., 2017)
Scheme (Hu et al., 2017) (Niyat et al., 2017) (Hua and Zhou, 2017) (Pak and Huang, 2017) (Liu et al., 2018) (Shafique and Shahid, 2018)

Broken by (Li et al., 2019a) (Li et al., 2018) (Yu et al., 2021) (Wang et al., 2018) (Ma et al., 2020) (Wen and Yu, 2019)
Scheme (Sheela et al., 2018) (Wu et al., 2018) (Yosefnezhad Irani et al., 2019) (Khan and Masood, 2019) (Pak et al., 2019) (Mondal et al., 2021)

Broken by (Zhou et al., 2019) (Chen et al., 2020) (Liu et al., 2020) (Fan et al., 2021) (Li et al., 2019b) (Li et al., 2021)

pending on the type of attack.

Structure of the Paper. We provide the necessary
preliminaries in Section 2. In Section 3 we show how
an attacker can recover the private key and secret s-
boxes in a chosen plaintext scenario. We also provide
a key and s-boxes recovery attack in a chosen cipher-
text attack in Section 4. We conclude in Section 5.

Algorithm 1: Encryption algorithm.
Input: A plaintext p, an s-box list s, a secret seed seed and a

secret key k
Output: A ciphertext c

1 for i ∈ [0,H) and j ∈ [0,W ) do
2 if i = 0 and j = 0 then

c0,0← (seed⊕ k0,0 + s0[p0,0]) mod 256
3 else if j = 0 then

ci,0← (ci−1,W−1⊕ ki,0 + si[pi,0]) mod 256
4 else ci, j ← (ci, j−1⊕ ki, j + si+ j [pi, j ]) mod 256

5 return c

2 PRELIMINARIES

Notations. In this paper, the subset {1, . . . ,s−1} ∈
N is denoted by [1,s). The action of selecting a ran-
dom element x from a sample space X is represented

by x $←− X , while x← y indicates the assignment of
value y to variable x. In the case of matrices, the ←
operator assigns the values position by position and
the = operator tests the equality between all positions
of the two matrices. We use the C++ language op-
erator & as reference to a variable. By H and W we
denote an image’s height and width. Also, we denote
by L = H+W−1. Hexadecimal numbers will always
contain the prefix 0x.

2.1 Essaid et Al. Image Encryption
Scheme

In this section we present Essaid et al.’s encryption
(Algorithm 1) and decryption (Algorithm 2) algo-
rithms as described in (Essaid et al., 2019). We further
consider two cases

• s-boxes s0 and s1 are randomly generated and the
remaining ones are generated using Algorithm 3;

• all the s-boxes in list s are randomly generated.

The first version is according to the original paper
(Essaid et al., 2019), while the second one is intro-
duced to show that the scheme remains broken even
if the s-boxes are chosen at random. Note that the
seed and the key bytes ki, j are randomly generated.

Algorithm 2: Decryption algorithm.
Input: A ciphertext c, an inverse s-box list s−1, a secret seed

seed and a secret key k
Output: A plaintext p

1 for i ∈ [0,H) and j ∈ [0,W ) do
2 if i = 0 and j = 0 then

p0,0← s−1
0 [(c0,0− seed⊕ k0,0) mod 256]

3 else if j = 0 then
pi,0← s−1

i [(ci,0− ci−1,W−1⊕ ki,0) mod 256]
4 else pi, j ← s−1

i+ j [(ci, j− ci, j−1⊕ ki, j) mod 256]

5 return p

Algorithm 3: S-Box table generator.
Input: Two s-boxs s0 and s1

Output: An s-box list s
1 for i ∈ [2,L) and j ∈ [0,256) do si[ j]← si−2[si−1[ j]]
2 return s

3 CHOSEN PLAINTEXT ATTACK

In a chosen plaintext attack (CPA), the attacker A has
temporary access to the encryption machine Oenc and
can interrogate it on different inputs. Therefore, A
constructs some plaintexts that are useful for his at-
tack and then using Oenc obtains the corresponding
ciphertexts.

We further show that Essaid et al.’s image encryp-
tion scheme is insecure in the chosen plaintext sce-
nario, regardless of whether the generation method of
the s-boxes is random or Algorithm 3 is used. The
only difference between the two cases is the run time
of the attack.

3.1 Randomly Generated S-Boxes

Before formally stating our attack, we first provide an
example in order to provide the intuition behind our
CPA attack.

Example 3.1. We further assume that we encrypt im-
ages of height 3 and width 4. We present in Figure 1
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how Essaid et al.’s encryption algorithm (see Algo-
rithm 1) uses the generated s-boxes. We can see that
the algorithm uses the same s-box for each cell on a
given minor diagonal.

s0 s1 s2 s3

s1 s2 s3 s4

s2 s3 s4 s5

Figure 1: Used s-boxes in an image with H = 3 and W = 4.

Lets assume that the image Ipv we want to encrypt
has the same pixel value pv everywhere. We further
write ci, j[pv] for the ciphertext byte ci, j computed for
Ipv. Then, if we write the ciphertext equations for the
third minor diagonal we obtain

c0,2[pv]← (c0,1[pv]⊕ k0,2 + s2[pv]) mod 256 (1)
c1,1[pv]← (c1,0[pv]⊕ k1,1 + s2[pv]) mod 256 (2)
c2,0[pv]← (c1,3[pv]⊕ k2,0 + s2[pv]) mod 256 (3)

From Equations (1) and (2) we derive

c0,2[pv]− c1,1[pv]≡
(c0,1[pv]⊕ k0,2− c1,0[pv]⊕ k1,1) mod 256. (4)

If we request Oenc the ciphertexts for all 256
images I0, . . . , I255 we obtain 256 equations of type
Equation (4). By checking all the values x and y that
satisfy

c0,2[pv]− c1,1[pv]≡
(c0,1[pv]⊕ x− c1,0[pv]⊕ y) mod 256,

for all pv values, we find the correct key pair
(k0,2,k1,1) and an equivalent key pair (k0,2 ⊕
0x80,k1,1 ⊕ 0x80). The second solution is derived
from the following relations

c0,2[pv]≡ (c0,1[pv]⊕ k0,2 +128
+ s2[pv]+128) mod 256
≡ (c0,1[pv]⊕ k0,2⊕0x80

+ s2[pv]⊕0x80) mod 256

c1,1[pv]≡ (c1,0[pv]⊕ k1,1 +128
+ s2[pv]+128) mod 256
≡ (c1,0[pv]⊕ k1,1⊕0x80

+ s2[pv]⊕0x80) mod 256

which lead to

c0,2[pv]− c1,1[pv]≡ (c0,1[pv]⊕ x⊕0x80

− c1,0[pv]⊕ y⊕0x80) mod 256.

After computing k0,2, using Equation (1) we recover
the correct s-box entries

s2[pv]← (c0,2[pv]− c0,1[pv]⊕ k0,2) mod 256

and from Equation (3) we obtain

k2,0 = (c2,0[0]− s2[0] mod 256)⊕ c1,3[0].

We also obtain an equivalent s-box s̃2 from

s̃2[pv]← (c0,2[pv]− c0,1[pv]⊕ k0,2⊕0x80) mod 256

and from Equation (3) we obtain

k2,0⊕0x80= (c2,0[0]− s̃2[0] mod 256)⊕ c1,3[0].

We can easily see that both the correct key bytes
k0,2,k1,1,k2,0 and s-box s2, and the equivalent key
bytes k0,2⊕ 0x80,k1,1⊕ 0x80,k2,0⊕ 0x80 and s-box
s̃2 can be used for decryption. Since we cannot deter-
mine the order of the correct and equivalent key bytes
when we brute force x and y, we assume that the first
solution we obtain is the correct one.

We repeat the same procedure for the second, forth
and fifth minor diagonals. The only key bytes and s-
boxes that we cannot recover using the above tech-
nique are k0,0, k2,3, s0 and s5.

The formal description of our chosen plaintext at-
tack is provided in Algorithm 4 and is a generalization
of the method presented in Example 3.1. For com-
pleteness, in Algorithm 4 we compute two possible
key, s-boxes pairs.Note that in order to be able to use
our attack we must have H,W ≥ 2.

The complexity of Algorithm 4 is O(224L+HW )
and we need 256 oracle queries. For example, if we
encrypt 2 megapixels1 images we obtain that the com-
plexity of Algorithm 4 is O(224 · 211.45 + 220.87) =
O(235.45). In the case of 12 megapixels2, we obtain
O(224 ·212.77 +223.5) = O(236.77).

3.2 Essaid et Al.’s Generation Method
for S-Boxes

As in the previous subsection, we begin with an ex-
ample.

Example 3.2. Compared to Example 3.1, in the case
of Essaid et al.’s generation method it is enough to
compute s̃0,1, s̃1,1, s̃0,2, s̃1,2, s̃0,3 and s̃1,3 and the re-
maining s-boxes can be easily deduced using Algo-
rithm 3. Note that in this case we can also compute s0
and s5.

The first thing that we do after deducing ŝ0,1, ŝ1,1,
ŝ0,2, ŝ1,2 from the 256 encrypted images is to compute
ŝ0,1 ◦ ŝ0,2, ŝ0,1 ◦ ŝ1,2, ŝ1,1 ◦ ŝ0,2, ŝ1,1 ◦ ŝ1,2 and check
which one coincides with ŝ0,3 or ŝ1,3. This leads to
two possible combinations, one for ŝ0,3 and one for
ŝ1,3. We denote the first combination by s̃0,1, s̃0,2 and
s̃0,3 and the second one by s̃1,1, s̃1,2 and s̃1,3.

Let pos ∈ [0,2). After computing s̃pos,1, s̃pos,2 and
s̃pos,3, the remaining s-boxes can be calculated as fol-
lows: s̃pos,4 = s̃pos,3 ◦ s̃pos,2, s̃pos,5 = s̃pos,4 ◦ s̃pos,5 and

1W ×H = 1600×1200
2W ×H = 4000×3000
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Algorithm 4: CPA attack (randomly generated).

1 for t ∈ [0,256) do
2 for i ∈ [0,H) and j ∈ [0,W ) do pi, j ← t
3 Send the plaintext p to the encryption oracle Oenc.
4 Receive the ciphertext c̄ from the encryption oracle Oenc.
5 ct ← c̄

6 for j ∈ [1,L−1) do
7 α←max(0, j− (W −1)); β←min( j,H−1); pos← 0
8 for x ∈ [0,256) and y ∈ [0,256) do
9 ctr← 0

10 for t ∈ [0,256) do
11 f ← ct,α, j−α− ct,α+1, j−(α+1) mod 256
12 if j ̸= α+1 then

g← (ct,α, j−α−1⊕x−ct,α+1, j−α−2⊕y) mod 256

13 else g← (ct,α, j−α−1⊕ x− ct,α,W−1⊕ y) mod 256

14 if f = g then ctr← ctr+1

15 if ctr = 256 then
16 k̃pos,α, j−α← x; k̃pos,α+1, j−(α+1)← y
17 for t ∈ [0,256) do

s̃pos, j [t]← (ct,α, j−α− ct,α, j−α−1⊕ x) mod 256
18 for t ∈ [0,256) do s̃−1

pos, j [s̃pos, j [t]]← t
19 for t ∈ [α+2,β+1) do
20 k̃pos,t, j−t ←

((c0,t, j−t − s̃pos, j [0]) mod 256)⊕ c0,t, j−t−1

21 pos← pos+1

22 return k̃, s̃, s̃−1

s̃pos,0 = s̃pos,2 ◦ s̃−1
pos,1. Once all the s-boxes are known,

we can easily compute the key k̃pos.
We remark that only one of the two solutions is

the correct one. We can see that from the following
relation

s̃3[i] = s3[i]⊕0x80= s2[s1[i]]⊕0x80= s̃2[s1[i]].

Since s̃3 is not generated by s̃2[s̃1[i]], we do not obtain
the equivalent key, s-boxes pair, and thus one of the
solutions will not decrypt images correctly.

The formal description of our chosen plaintext at-
tack is provided in Algorithm 5 and is a generalization
of the method presented in Example 3.2. The com-
plexity of Algorithm 5 is O(224 +28L+HW ) and we
need 256 oracle queries. For example, if we encrypt
2 megapixels images we obtain that the complex-
ity of Algorithm 5 is O(224 + 28 · 211.45 + 220.87) =
O(224.21). In the case of 12 megapixels, we obtain
O(224 +28 ·212.77 +223.5) = O(224.85).

Note that according to (Essaid et al., 2019) the
security of their scheme is O(2128). Using 256 en-
crypted images and Algorithm 5, we lower the secu-
rity strength of Essaid et al.’s scheme from 128 bits to
approximately 24 bits.

Algorithm 5: CPA attack (Essaid et al.’s generation
method).

6 for j ∈ [1,4) do
7 α←max(0, j− (W −1)); pos← 0
8 for x ∈ [0,256) and y ∈ [0,256) do
9 ctr← 0

10 for t ∈ [0,256) do
11 f ← ct,α, j−α− ct,α+1, j−(α+1) mod 256
12 if j ̸= α+1 then

g← (ct,α, j−α−1⊕x−ct,α+1, j−α−2⊕y) mod 256

13 else g← (ct,α, j−α−1⊕ x− ct,α,W−1⊕ y) mod 256

14 if f = g then ctr← ctr+1

15 if ctr = 256 then
16 x̃pos, j−1← x; ỹpos, j−1← y
17 for t ∈ [0,256) do
18 ŝpos, j−1[t]←

(ct,α, j−α− ct,α, j−α−1⊕ x) mod 256
19 pos← pos+1

20 for i ∈ [0,2) and j ∈ [0,2] do
21 for t ∈ [0,256) do f = ŝi,0[ŝ j,1[t]]
22 if f = ŝ0,2 then s̃0,1← ŝi,0; s̃0,2← ŝ j,1; s̃0,3← ŝ0,2

23 if f = ŝ1,2 then s̃1,1← ŝi,0; s̃1,2← ŝ j,1; s̃1,3← ŝ1,2

24 for pos ∈ [0,2) do
25 for j ∈ [4,L) and t ∈ [0,256) do

s̃pos, j [t]← s̃pos, j−2[s̃pos, j−1[t]]
26 for j ∈ [1,L) and t ∈ [0,256) do s̃−1

pos, j [s̃pos, j [t]]← t
27 for t ∈ [0,256) do s̃pos,0[t]← s̃pos,2[s̃−1

pos,1[t]]

28 for t ∈ [0,256) do s̃−1
pos,0[s̃pos,0[t]]← t

29 for i ∈ [0,H) and j ∈ [0,W ) do
30 if i = 0 and j = 0 then

k̃pos,0,0 = (c0,0,0− s̃pos,0[0]) mod 256
31 else if j = 0 then k̃pos,i,0 = (c0,i,0− s̃pos,i[0]) mod 256
32 else k̃pos,i, j = (c0,i, j− s̃pos,i+ j [0]) mod 256

33 return k̃, s̃, s̃−1

4 CHOSEN CIPHERTEXT
ATTACK

Compared to the chosen plaintext attack, in a chosen
ciphertext attack (CCA), A has temporary access to
the decryption machine Odec. Therefore, A constructs
some ciphertexts that are useful for his attack and then
using Odec obtains the corresponding plaintexts.

In this scenario, we provide two types of attacks
against Essaid et al.’s cryptosystem, one for images
with odd width and one for images with even width.
Again the s-box generation method is irrelevant to the
success of the attacks, the only thing that is affected
is their run time.

4.1 Randomly Generated S-Boxes

We first provide an example for images with odd
width and then one for images with even width. After,
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we present the formal description of our CCA attack.

Figure 2: Ciphertext patterns for H = 3 and W = 5.

Example 4.1. We further assume that we decrypt im-
ages of height 3 and width 5. In the first part of the
attack we use ciphertexts of type C0(t) (see Figure 2).
If we explicit the relations for the forth minor diago-
nal we obtain

s3[p0,3[t]]← (2− t⊕ k0,3) mod 256 (5)
s3[p1,2[t]]← (1− t⊕ k1,2) mod 256 (6)
s3[p2,1[t]]← (1− t⊕ k2,1) mod 256. (7)

Since we consider all t values, in Equations (5)
and (6) permutation s3 iterates through all its values.
Therefore, all we need is to find the t values for which
p0,3 = p1,2. Therefore, we define

tab0[p0,3[t]]← t and tab1[p1,2[t]]← t,

and using Equations (5) and (6) we obtain

(2− tab0[i]⊕ k0,3)≡ (1− tab1[i]⊕ k1,2) mod 256,

for all i values. By checking all the values x and y
that satisfy

(2− tab0[i]⊕ x)≡ (1− tab1[i]⊕ y) mod 256,

for all i values, we find the correct key pair (k0,3,k1,2)
and the equivalent key pair (k0,3⊕0x80,k1,2⊕0x80).
As in Example 3.1, we consider that the first solu-
tion is the correct one. Once the first two key bytes
are known, we can easily compute the third s-box us-
ing Equation (5) and the third key byte using Equa-
tion (7).

We repeat the process for the second and sixth mi-
nor diagonals. In the second part of our attack, we
use ciphertexts of type C1(t) (see Figure 2) and then
we use the same procedure as before for the third and
fifth minor diagonal. The only key bytes and s-boxes
that we cannot recover using the above technique are
k0,0, k2,4, s0 and s6.

Example 4.2. For the even width case, we consider
images of height 3 and width 6. In this case we use
the same procedure as in Example 4.1, but instead
of using C0(t) and C1(t) ciphertext patterns, we use
C2(t) and C3(t) (see Figure 3). The only difference
between the even and odd width cases is that in the
even case we cannot recover k0,1, k1,0 and s1. This is
because in the even case we could not put t on the last
cell in the first line of C2(t) without interfering with
the recovery of the other bytes and s-boxes.

Note that we can recover the two key bytes and
one s-box if we create one additional ciphertext pat-
tern that satisfies the previously stated condition (see

Figure 3: Ciphertext patterns for H = 3 and W = 6.

Figure 4). However, we have to ask 256 more oracle
queries. Therefore, we decided that is more practical
to lose the ability to decrypt two extra bytes, than to
ask the additional queries, since images can still be
recognized without them. For example, an emoji has
a resolution of 32×32 and removing the four pixels it
does not affect the informational content.

Figure 4: Additional ciphertext pattern for H = 3 and W =
6.

Algorithm 6: Helper functions.
1 Function choose plaintext(parity)
2 for t ∈ [0,256) do
3 for i ∈ [0,H) and j ∈ [0,W ) do
4 α←max(0, i+ j− (W −1))
5 if i+ j ≡ parity mod 2 then ci, j ← t
6 else if i = α then ci, j ← 2
7 else ci, j ← 1
8 Send the ciphertext c to the decryption oracle

Odec.
9 Receive the plaintext p̄ from the decryption

oracle Odec.
10 pt ← p̄
11 return pt

12 Function partial attack(low,upp, pt ,&k̃,&s̃,&s̃−1)
13 for j ∈ [low,upp) and at each step increment j with

2 do
14 α←max(0, j− (W −1)); β←min( j,H−1);

pos← 0
15 for t ∈ [0,256) do tab0[pt,α, j−α] = t;

tab1[pt,α+1, j−(α+1)] = t
16 for x ∈ [0,256) and y ∈ [0,256) do
17 ctr← 0
18 for t ∈ [0,256) do
19 f ← (2− tab0[t]⊕ x) mod 256
20 g← (1− tab1[t]⊕ y) mod 256
21 if f = g then ctr← ctr+1
22 if ctr = 256 then
23 k̃pos,α, j−α← x; k̃pos,α+1, j−(α+1)← y
24 for t ∈ [0,256) do

s̃pos, j[t]← (2− tab0[t]⊕x) mod 256
25 for t ∈ [0,256) do s̃−1

pos, j[s̃pos, j[t]]← t
26 for t ∈ [α+2,β+1) do
27 k̃pos,t, j−t ← ((ct, j−t −

s̃pos, j[p255,t, j−t) mod 256)⊕
ct, j−t−1

28 pos← pos+1

The formal description of our chosen ciphertext
attack is provided in Algorithm 7 and is a general-
ization of the methods presented in Examples 4.1 and
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Algorithm 7: CCA attack (randomly generated).

1 Function main odd()
2 pt ← choose plaintext(0)
3 partial attack(1,L−1, pt , k̃, s̃, s̃−1)

4 pt ← choose plaintext(1)
5 partial attack(2,L−1, pt , k̃, s̃, s̃−1)

6 return k̃, s̃, s̃−1

7 Function main even()
8 pt ← choose plaintext(0)
9 partial attack(3,L−1, pt , k̃, s̃, s̃−1)

10 pt ← choose plaintext(1)
11 partial attack(2,L−1, pt , k̃, s̃, s̃−1)

12 return k̃, s̃, s̃−1

4.2. For completeness, in Algorithm 7 we compute
two possible key, s-boxes pairs just as in Algorithm 4.
Note that in order to be able to use our attack we must
have H ≥ 2 and W ≥ 3.

The complexity of Algorithm 7 is the same as the
complexity of Algorithm 4, namely O(224L+HW ).
The only difference between the two attacks is that
in the case of Algorithm 7 we need 512 decryption
oracle queries.

Algorithm 8: More helper functions.

1 Function partial attack(low,upp, pt , f lag,&k̃,&s̃,&s̃−1)

2 for j ∈ [low,upp) and at each step increment j with 2 do
3 α←max(0, j− (W −1)); pos← 0
4 for t ∈ [0,256) do tab0[pt,α, j−α] = t;

tab1[pt,α+1, j−(α+1)] = t
5 for x ∈ [0,256) and y ∈ [0,256) do
6 ctr← 0
7 for t ∈ [0,256) do
8 f ← (2− tab0[t]⊕ x) mod 256
9 g← (1− tab1[t]⊕ y) mod 256

10 if f = g then ctr← ctr+1

11 if ctr = 256 then
12 x̃pos, j−1− f lag← x; ỹpos, j−1− f lag← y
13 for t ∈ [0,256) do ŝpos, j−1− f lag[t]←

(2− tab0[t]⊕ x) mod 256
14 pos← pos+1

15 Function extract key(pos,&k̃)
16 for i ∈ [0,H) and j ∈ [0,W ) do
17 if i = 0 and j = 0 then

k̃pos,0,0 = (c0,0,0− s̃pos,0[p255,0,0]) mod 256
18 else if j = 0 then

k̃pos,i,0 = (c0,i,0− s̃pos,i[p255,i,0]) mod 256
19 else k̃pos,i, j = (c0,i, j− s̃pos,i+ j [p255,i, j ]) mod 256

4.2 Essaid et Al.’s Generation Method
for S-Boxes

In the case of Essaid et al.’s generation method is
enough to compute three s-boxes using the ideas from
Examples 4.1 and 4.2. Then using similar techniques
as the ones from Example 3.2 we can recover all the
s-boxes, and implicitly all the key bytes.

The formal description of our chosen ciphertext
attack is provided in Algorithm 9. The complexity of
Algorithm 9 is the same as the complexity of Algo-
rithm 5, namely O(224+28L+HW ). The only differ-
ence is that in the case of Algorithm 9 we need 512
oracle queries.

Similar to the case of the CPA attack, using 512
decrypted images and Algorithm 9, we managed to
lower the security strength of Essaid et al.’s scheme
from 128 bits to approximately 24 bits.

Algorithm 9: CCA attack (Essaid et al.’s generation
method).

1 Function main odd()
2 pt ← choose plaintext(0)
3 partial attack(1,4, pt ,0, k̃, s̃, s̃−1)

4 pt ← choose plaintext(1)
5 partial attack(2,3, pt ,0, k̃, s̃, s̃−1)

6 for i ∈ [0,2) and j ∈ [0,2] do
7 for t ∈ [0,256) do f = ŝi,0[ŝ j,1[t]]
8 if f = ŝ0,2 then s̃0,1← ŝi,0; s̃0,2← ŝ j,1; s̃0,3← ŝ0,2

9 if f = ŝ1,2 then s̃1,1← ŝi,0; s̃1,2← ŝ j,1; s̃1,3← ŝ1,2

10 for pos ∈ [0,2) do
11 for j ∈ [4,L) and t ∈ [0,256) do

s̃pos, j [t]← s̃pos, j−2[s̃pos, j−1[t]]
12 for j ∈ [1,L) and t ∈ [0,256) do s̃−1

pos, j [s̃pos, j [t]]← t
13 for t ∈ [0,256) do s̃pos,0[t]← s̃pos,2[s̃−1

pos,1[t]]

14 for t ∈ [0,256) do s̃−1
pos,0[s̃pos,0[t]]← t

15 extract key(pos, k̃)

16 return k̃, s̃, s̃−1

17 Function main even()
18 pt ← choose plaintext(0)
19 partial attack(3,4, pt ,1, k̃, s̃, s̃−1)

20 pt ← choose plaintext(1)
21 partial attack(2,5, pt ,1, k̃, s̃, s̃−1)

22 for i ∈ [0,2) and j ∈ [0,2] do
23 for t ∈ [0,256) do f = ŝi,0[ŝ j,1[t]]
24 if f = ŝ0,2 then s̃0,2← ŝi,0; s̃0,3← ŝ j,1; s̃0,4← ŝ0,2

25 if f = ŝ1,2 then s̃1,2← ŝi,0; s̃1,3← ŝ j,1; s̃1,4← ŝ1,2

26 for pos ∈ [0,2) do
27 for j ∈ [5,L) and t ∈ [0,256) do

s̃pos, j [t]← s̃pos, j−2[s̃pos, j−1[t]]
28 for j ∈ [2,L) and t ∈ [0,256) do s̃−1

pos, j [s̃pos, j [t]]← t
29 for t ∈ [0,256) do s̃pos,1[t]← s̃pos,3[s̃−1

pos,2[t]]

30 for t ∈ [0,256) do s̃−1
pos,1[s̃pos,1[t]]← t

31 for t ∈ [0,256) do s̃pos,0[t]← s̃pos,2[s̃−1
pos,1[t]]

32 for t ∈ [0,256) do s̃−1
pos,0[s̃pos,0[t]]← t

33 extract key(pos, k̃)

34 return k̃, s̃, s̃−1

5 CONCLUSIONS

In (Essaid et al., 2019), the authors described an im-
age encryption scheme that they claimed provided a
security strength of 128 bits. Unfortunately, in this
paper we showed that the actual security strength of
Essaid et al.’s scheme is roughly 24 bits. To achieve
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our security bound, we devised a chosen plaintext at-
tack which needs 256 queries to the encryption ora-
cle. We also describe a chosen ciphertext attack which
needs 512 queries to the decryption oracle and has
a complexity of O(224). For completeness, we also
show how to attack Essaid et al.’s cryptosystem when
all its s-boxes are randomly generated. In this case,
using our CPA or CCA attacks, we lower the security
strength to 36 bits.
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