
Optimal Static Bidding Strategy for Running Jobs with Hard Deadline
Constraints on Spot Instances

Kai-Siang Wang, Cheng-Han Hsieh and Jerry Chou
National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Keywords: Cloud Computing, Bidding Strategy, EC2, Spot Instance, Deadline Constraint.

Abstract: Spot-instances(SI) is an auction-based pricing scheme used by cloud providers. It allows users to place bids for
spare computing instances and rent them at a substantially lower price compared to the fixed on-demand price.
This inexpensive computational power is at the cost of availability, because a spot instance can be revoked
whenever the spot market price exceeds the bid. Therefore, SI has become an attractive option for applications
without requiring real-time availability constraints, such as the batch jobs in different application domains,
including big data analytics, scientific computing, and deep learning. For batch jobs, service interruptions and
execution delays can be tolerated as long as their service quality is gauged by an execution deadline. Hence,
this paper aims to develop a static bidding strategy for minimizing the monetary cost of a batch job with hard
deadline constraints. We formulate the problem as a Markov chain process and use Dynamic Programming
to find the optimal bid in polynomial time. Experiments conducted on real workloads from Amazon Spot
Instance historical prices show that our proposed strategy successfully outperformed two state-of-art dynamic
bidding strategies (Amazing, DBA), and several deadline agnostic static bidding strategies with lower cost.

1 INTRODUCTION

Clouds have become an attractive computing platform
for many applications. It is a computing paradigm
to deliver ready-to-use, on-the-fly configurable re-
sources as services on Internet, and to charge these
services on a pay-as-you-use pricing model. The elas-
ticity and on-demand characteristics of cloud com-
puting further ensure higher resource utilization and
lower computing cost to users. One of the most fa-
mous cloud services is Amazon’s EC2 (EC2, 2009).
EC2 provides raw computing resources in the form of
Virtual Machines(VM). To meet computing require-
ments of a wide variety of applications, different pric-
ing options are offered, including On-Demand (OD),
Reserved and Spot Instances (SI). On-Demand pro-
vides dedicated access to a set of machines for a fixed
cost per hour with no long term commitments. On the
other hand, Reserved offers a significant discount on
hourly charge over On-demand, but users must make
a one-time, upfront payment to lease the VMs for long
periods of time (1 or 3 year terms).

In contrast to On-Demand and Reserved instances
which are charged with fix price rates, Spot Instances
allow customers to bid on spare computing capacity
with no upfront commitment and at a variable hourly

rates called the spot price (or market price). The spot
price is determined by the cloud providers based on
the demand of VMs within their infrastructure. If
the bid price submitted by a user is higher than the
spot price (which is called in-bid), then the user re-
ceives his requested instances and only pay at the
cost of spot price. Hence, many studies (Yi et al.,
2012a; Mazzucco and Dumas, 2011) have shown that
spot instances can greatly reduce the execution cost.
But, this inexpensive computational power is at the
cost of availability, because a spot instance can be
revoked whenever the spot market price exceeds the
bid (which is called out-bid). Furthermore, when a
out-bid event occurs, not only the VM becomes un-
available for the given hour, its jobs also need to be
recovered from a previous checkpoint. As a result, a
lower bid price can reduce the monetary cost, but also
potentially increase the job execution time.

While SI may not meet the computing require-
ments of any application, it is an attractive option for
batch jobs. A batch job is often described by a com-
putation time and a deadline, The computation time
can be spread within the time-window specified by
the deadline, so that the service interruptions and exe-
cution delays caused on the revocable resource can be
tolerated. (Andrzejak et al., 2010a) is one of the earli-

Wang, K., Hsieh, C. and Chou, J.
Optimal Static Bidding Strategy for Running Jobs with Hard Deadline Constraints on Spot Instances.
DOI: 10.5220/0011645400003488
In Proceedings of the 13th International Conference on Cloud Computing and Services Science (CLOSER 2023), pages 123-130
ISBN: 978-989-758-650-7; ISSN: 2184-5042
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

123

est work to show the potential cost saving from using
SI, and analyze the complicated correlation between
bid price, job execution time and monetary cost on
SI. Since then, many research efforts have been made
aiming to find the bidding strategies for minimizing
monetary cost under different problem settings, in-
cluding the constraints of job execution, the check-
point scheme for fault recovery, the transition model
of spot price, etc.

Amazing (Tang et al., 2012) and DBA(dynamic
bidding algorithm) (Song et al., 2012) are the two
start-of-art dynamic approaches that claims to achieve
optimal bids for job with deadline constraints. Amaz-
ing uses a dual-option bidding strategy, which either
bids on the max price or zero dollars for the next
instance hour according to the current running state
and spot price. It formulates this problem as a Con-
strained Markov Decision Process (CMDP), and finds
an optimal randomized bidding strategy through lin-
ear programming. However, Amazing only guarantees
the expected execution time to be less or equal to the
deadline, so it is an approach for job with soft dead-
line constraints. On the other hand, DBA guarantee
jobs to be finished before their deadlines by switching
to On-Demand instances when necessary. Like most
dynamic approaches, it assumes the bid price can be
adjusted without interrupting the VM instances. But
in the real EC2 environment, spot instance request can
only be associated with one bid price. Thus, in order
to change bid price, users have to cancel the exist-
ing SI request, and then re-create a new request with
the new bid. As a result, in practice, users still prefer
to use static bidding strategies which use a fixed bid
price throughout the job execution.

To accommodate to the real cloud provider en-
vironment and cloud users behavior, this work pro-
posed a static bidding strategy for jobs with hard
deadline constraint and using hourly checkpoint re-
covery. This is one of the most commonly seen use
scenarios for spot instance. But, to our knowledge,
its optimal bids have not been discussed in the previ-
ous literature. We formulate the problem as a finite-
time stochastic dynamic program, and prove the opti-
mal bid can be determined in polynomial time. We
also show our formulation can be extended to in-
clude the execution time overhead from checkpoint
and restart process. The performance of our algo-
rithm is extensively evaluated using a real data-set of
Amazon EC2 spot price history obtained from (EC2,
). By comparing with the state-of-art dynamic bid-
ding strategies (Amazing, DBA), and several deadline
agnostic static bidding strategies, we demonstrate that
our optimal static strategy can achieve the lowest cost
with better computation efficiency and applicability

in practice.
The remainder of this paper is organized as fol-

lows: Section 2 introduces the characteristics of spot
instances and our problem formulation. Our bidding
algorithm is describe in Section 3 and extensively
evaluated in Section 4. Finally, related work and con-
clusions are given in Section 5 and Section 6, respec-
tively.

2 SPOT INSTANCES & PROBLEM
FORMULATION

2.1 Spot Instance Characteristics

Amazon introduces spot instances as a bidding op-
tion for excess EC2 resources. Currently there are 64
types of Spot Instances available in market, and they
differ by computing power, memory/disk space, OS
and geographical location, etc (Stokely et al., 2009a).
Amazon sets the spot price, which fluctuates depend-
ing on the supply and demand of Spot Instance capac-
ity. While the Spot Price may change anytime, in gen-
eral the spot price will change once per hour, which
is named as instance hour (or time interval) in this
work, and in many cases less frequently. As observed,
the spot price is often less than 1/3 of the on-demand
price. But occasionally, the spot price can also ex-
hibit some spikes higher than the on-demand instance
price. Nevertheless, in general, spot instances still
provide a huge cost saving opportunity to users (Yi
et al., 2012b).

To use Spot Instances, users place a spot instance
request, specifying the instance type, the AWS re-
gion, the number of instances, and the maximum price
they are willing to pay per hour which is known as
the bid price. There are two main ways of request-
ing an instance also referred as bidding strategies: the
dynamic bidding strategy consists of placing a bid at
each time epoch while the static bidding strategy de-
cides only one bid until completion of the job. Cur-
rently, EC2 doesn’t allow users to change the bid price
of a Spot Instance request once it is submitted. To
change the bid price, users have to cancel the orig-
inal request, stop the running instances and create a
new request with the updated bid price. Thus, as
shown in figure. 1, dynamic strategy requires to set
a bid for each time epoch while static bidding strat-
egy bids with the same price for the course of the ex-
ecution. When a user’s bid is higher than the current
spot price, the requested resource is granted and the
user is charged by the current spot price, not the bid
price. In contrary, when a user’s bid is less than the
current price, the requested instance is stopped imme-

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

124

Figure 1: Dynamic and Static bidding strategies on Spot
Instances. The green intervals indicates the effective job
computation time. b is the static unique bid price; and for
dynamic strategy, bi represent the bid price for each time
instant.

Figure 2: Spot instance Model: the in-bid intervals are the
time epochs in which the resource is granted. The red in-
tervals require an on-demand instance to complete the job.
The completion time of the job includes the sum of all in-
tervals and is bounded by the given deadline D. The sum of
in-bid and on-demand intervals must be higher or equal to
the estimated execution time E.

diately1, and the instance usage of that partial hour is
not charged. In this work, we call the former case as
in-bid interval, and the later case as out-bid inter-
val. To recover the job progress after out-bid inter-
vals, users must make checkpoint (i.e. VM snapshot)
at the end of an in-bid interval, and restart from the
next in-bid interval using the snapshot VM image to
resume the job. As shown in figure. 1, both check-
point and restart require additional time which often
depends on the resource usage of an instance (Jang-
jaimon and Tzeng, 2015). Thus these overhead are
also considered in our problem formulation and ex-
periments.

2.2 Spot Price Model

There is very limited information available from
Amazon as to how they determine the spot price.
Amazon does not reveal bids by users or the amount
of demand. But the historical spot prices are made
available and accessible via the Amazon Console
API (Amazon, 2004). Hence, there is a general
agreement in the recent literature (Song et al., 2012;
Chohan et al., 2010; Tang et al., 2012) that the spot
price should be modeled as a stochastic process using
Markov Chain, where its current spot price depends

1Currently Amazon offers a 2min notice prior to stop-
page.

only on the previous spot price. In this work, we use
S(t) to denote the spot price at an instance hour t, and
adapt the same price model defined in (Song et al.,
2012). Let S(t) be a stochastic process following the
Markov model below at time t:

S(t) =

{
S(t −1), with probability p
S, with probability (1− p)

(1)

where S is a random variable generated from a
general distribution function f (s). We also use F(s)
to denote the cumulative distribution function of spot
price, such that F(s) = Pr(S < s). In practice, there
are only limited number of spot prices (|S| = n), and
f (s) can be an empirical distribution function derived
from observed spot price traces. Thus given a current
spot price, the price will remain the same for the next
instance hour with probability p, and change to a new
price determined by the random variable S with prob-
ability (1− p).

We note that the above synchronous discrete-time
model is an an approximation of an actual continuous-
time spot bidding system, and the spot price could be
modeled by other Markov Chain definitions (Javadi
et al., 2011). But we justify the above model by show-
ing it captures the essential variation behavior of spot
price and provides a tractable mathematical model for
finding the optimal bids. In the experiments, we also
use the real trace of historical spot price to evaluate
our algorithms and models, and show F(s) can be de-
fined as an empirical distribution function according
to the historical spot prices.

2.3 Problem Formulation

Here we formally describe our problem formulation.
Table 1 summarizes all the variables we use through-
out the paper. As shown in Figure. 2, the input of
our problem is a job described by an execution time
E and a deadline D, and the goal of our algorithms is
to find an optimal bid price b∗, such that the mone-
tary cost for completing the job on spot instances is
minimized.

To form the optimization function, we first intro-
duce the following variables to describe the running
status of a job associated with a given bid price b and
time interval t. As described in the previous subsec-
tion, the cloud provider generates a spot price S(t)
at each time interval t according to Eq. 1. If the spot
price S(t) is less or equal to the bid price b, user’s spot
instance request is granted, and the requested VM in-
stances are charged by the spot price S. Otherwise,
the user does not get any VM. Hence, we use I(t) to

Optimal Static Bidding Strategy for Running Jobs with Hard Deadline Constraints on Spot Instances

125

Table 1: Variables and descriptions.

variable description
input E job execution time

D job deadline
output b∗ optimal bid

S spot prices. (|S|= n)
p transition probability of spot price

problem f (s) spot price distribution. F(s) = Pr(S < s)
setting SOD price of on-demand instances

γ restart time overhead
κ checkpoint time overhead

B(t) bid price at time t
I(t) in-bid status at time t

status K(t) checkpoint time spent at time t
R(t) restart time spent at time t
e(t) remaining execution time

at the beginning of time t
progress at the current time interval

c(b,st−1) with given bid price b and
previous spot price st−1

indicate whether t is an in-bid interval or out-bid in-
terval. The cost of an in-bid interval is S(t), and the
cost of a out-bid interval is 0.

I(t)=

{
1, if S(t)≦ b(t is an in-bid interval)
0, otherwise(t is a out-bid interval)

(2)

In this paper, we consider a hourly checkpoint
strategy is used, and assume the time for checkpoint-
ing and restarting are constant values κ and γ, respec-
tively. We leave it as a future work to discuss the
possibility of adapting our model to other checkpoint
strategies, such as rising edge. Under hourly check-
point strategy, there is a checkpoint overhead at every
in-bid interval. But the restart overhead only occurs
when a out-bid interval followed by an in-bid inter-
val. Hence, at each in-bid interval t, we use variables
K(t) and R(t) to denote the overhead time spent on
checkpoint and restart as follows.

K(t) =

{
κ, if I(t) == 1
0, otherwise

(3)

R(t) =

{
γ, if I(t −1) == 0 && I(t) == 1
0, otherwise

(4)

Accordingly, the remaining execution time at in-
terval t can be denoted by e(t) as below. The value is
taken by the ceiling function because spot instances
are purchased in the unit of hourly interval.

e(t) = ⌈E −
t−1

∑
i=0

(I(i)−K(i)−R(i))⌉ (5)

Therefore, let (e,st−1, t) denote the state where e
is the amount of computation left at the start of in-
terval t, and st−1 is the observed spot price from the
previous interval t − 1. The monetary cost for com-
pleting the reminding execution time e starting from
job state (e,st−1, t) under a given static bid b is de-
noted as Cb(e,st−1, t).

Furthermore, to guarantee job completion before
deadline, on-demand instance must be used when the
reminding execution time is equal to the time left.
Otherwise, any out-bid interval occurs in the future
will certainly cause job exceeds deadline. For in-
stance, if deadline is D = 8, and the reminding execu-
tion time is 3, then spot instances must be used from
t = 5. Therefore, we enforce a boundary condition,
such that

Cb(e,st−1,T) = SOD · ⌈e⌉, if ⌈e⌉≧ T,∀st−1 (6)

where SOD is the on-demand price.
In sum, our problem can be formulated as below:

Input: (E,D), a job description.
sinit , the spot price observed initially.
< p, f (s),SOD,κ,γ >, problem set-

tings.
Output: b, the optimal bid
Objective: Cb(E,sinit ,0) is minimized.
Subject to: Eq. 1 ∼ Eq. 6.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

126

3 BIDDING STRATEGY

Our goal is to compute Cb(E,sinit ,0) with a given bid
price b. First of all, at any state < e,st−1, t >, as-
sume we already know the cost of all possible future
states, Cb(e′,s′t−1, t

′) where e′ ≤ e,s′t−1 ∈ S, and t ′ ≥ t.
Thus the monetary cost of a state < e,st−1, t > can be
formulated as below based on the random variable of
current spot price st at time interval t:

Cb(e,st−1, t) = Est [Cb(e,st , t +1) · (1− I(st ≦ b))
+(st +Cb(e− c(b,st−1),st , t +1)) · I(st ≦ b)]

(7)

The first term represents the cost when the current
spot price is larger than the bid price, and the second
term represents the cost when it is not. In first term,
the current interval is out-bid, so the cost is simply
equal to the cost from t + 1 with the same remain-
ing computation time e. Whereas in the second term,
the current interval is in-bid, so the cost is the sum
of cost incurred at current time t and the accumulated
cost from time t + 1 with the remaining computation
(e− c(b,st−1), where c(b,st−1) is the progress of job
execution in the in-bid interval. In this work, we use
hourly checkpoint, and the restart is only required if
the previous interval is a out-bid interval. Thus, the
actual progress of an interval is depending on the pre-
vious spot price and bid price as below:

c(b,st−1) =

{
1−κ, if st−1 ≤ b
1−κ− γ, otherwise

(8)

Next, we replace the value of st in Eq 7 with the
random variable S according to the spot price defined
in Eq 1. After re-writing the equation, we get

Cb(e,st−1, t) = p{st−1I(st−1 ≦ b)
+Cb(e− c(b,st−1),st−1, t +1)I(st−1 ≦ b)
+Cb(e,st−1, t +1)(1− I(st−1 ≦ b))}
+(1− p){ES[SI(S ≦ b)]
+ES[Cb(e− c(b,st−1),S, t +1)I(S ≦ b)]
+ES[Cb(e,S, t +1)(1− I(S ≦ b))]}

(9)

As shown in the above equation, the value of st−1
remains the same throughout the recursion, and b is a
given fixed value. Therefore, we further simplify the
equation and discuss its solution in two separate cases
based on the relation between st−1 and b as follows.

For the case of st−1 ≦ b: The term with (1 −
I(st−1 ≦ b)) can be eliminated from Eq. 9, and
c(b,st−1) is equal to (1−κ). Therefore, the final form

of our recursion equation becomes

Cb(e,st−1, t) =
p(st−1 +Cb(e− (1−κ),st−1, t +1))
+(1− p){ES[SI(S ≦ b)]
+ES[Cb(e− (1−κ),S, t +1)I(S ≦ b)]
+ES[Cb(e,S, t +1)(1− I(S ≦ b))]}

(10)

For the case of st−1 > b: The term with (I(st−1 ≦
b)) can be eliminated from Eq. 9, and c(b,st−1) is
equal to (1−κ− γ). Therefore, the final form of our
recursion equation becomes

Cb(e,st−1, t) = pCb(e,st−1, t +1))
+(1− p){ES[SI(S ≦ b)]
+ES[Cb(e− (1−κ− γ),S, t +1)I(S ≦ b)]
+ES[Cb(e,S, t +1)(1− I(S ≦ b))]}

(11)

Clearly, in both cases, Cb(e,st−1, t) can be derived
from its own equation with decreasing values of e and
increasing values of t. Therefore, with the known
boundary condition stated in Eq. 6, we can compute
Cb(e,st−1, t) recursively using a DP algorithm intro-
duced in the next subsection.

4 EVALUATIONS

4.1 Setup

In order to evaluate the performance of our model,
we collected historical prices form Amazon EC2
API (Amazon, 2004) for the period of January ∼
June 2015. For the following experiment, we con-
sider the prices of the instance type us-west-1a.linux-
m1.small. We derived the price transition matrix from
the real traces, then mapped it to the random variable
S described in the problem definition in sect. 2.2. The
variation of the price interval spans from 1g to 1$.
By default, we set the checkpoint time to 5min and
the required time to restart an instance to 10min. We
compare our strategy labeled as static to a number
of existing strategies: Dynamic represents the dy-
namic optimal bidding strategy (Song et al., 2012)
and the Amazing (Tang et al., 2012) strategy which
proposed an optimal cost reduction for average com-
pletion time. Amazing basically does not propose to
solve the problem with a constrained deadline. There-
fore, it often forces to use on-demand instance when
leftover time is equal to the deadline. For a fair com-
parison, we introduced two different values (b = 0)
and (b = 0.5) which represents the percentage of ex-
tra time margin when deciding the bidding price with

Optimal Static Bidding Strategy for Running Jobs with Hard Deadline Constraints on Spot Instances

127

Amazing. For example, when b = 0 the actual ex-
ecution time is used and the likelihood of switch-
ing to on-demand instance is high. In the contrary,
when the bid price is estimated with b = 0.5, less
on-demand instances will be required. We also in-
clude naive scheduling algorithms such as bidding at
the maximum price, the mean price among al the bid-
ding prices, a randomly selected bidding price and us-
ing on-demand instances only, labeled respectively as
Max, Mean, Random and On-demand. The base-
line experiment consists of running jobs that requires
100hrs to complete. We vary the deadline D from 100
to 200 by a step of 10. The reason for doing so, is to
measure different levels of looseness of the deadline
and to capture behavior of the strategies at each point.

4.2 Monetary Cost Analysis

In Fig. 3, we present the average cost of 1000 runs for
all compared algorithm. Static outperforms Dynamic
by a small 2% of cost reduction. In all experiments,
Static performs the best or equal to Dynamic. The
reason lies on the restart overhead carried out in dy-
namic bidding strategy. In fact, Dynamic can make
better decisions on which interval to bid or give up,
however, it requires a restart each time a new bid is
introduced. Bidding, at on-demand price is unaware
of the deadline flexibility and therefore the cost re-
mains high when deadline is loosened. In contrast,
by adopting the Mean price bidding strategy, the cost
is proportionally decreased as the deadline is loos-
ened. Amazing strategy performs better than Max,
Min and Random. However, Amazing still costs
higher than Static and Dynamic. Random price bid-
ding strategy results in a high cost when deadline is
loosened. That’s because the Random price bidding
strategy is oblivious to the execution time and the
deadline. In order to minimize the cost our strategy
takes into consideration both the execution time the
deadline and the captures the price fluctuations. That
is also the case of Dynamic with a minor difference
that a new bidding price is introduced at each time
epoch, which leads to restart conditions.

Next, we evaluate the cost saving by the com-
pared algorithms. In Fig. 4, we present the cost sav-
ing as compared to the optimal Static bidding strat-
egy. Based on our observations, the cost saving as
compared to Max and Mean price bidding strategies
are inversely proportional. This is expected because
as deadline is tight, Mean quickly turns to use more
on-demand instances and cost high. At the same time
Max will use the first T market prices. However, as
the deadline is loosened, Mean and Static both re-
duce the cost by avoiding high price intervals. There-

Figure 3: Monetary cost.

Figure 4: The amount of cost Saving from the optimal static
bidding strategy.

fore, the cost saving of static over Mean reduces as
deadline is loosened. In contrary, Max, invariably to
the deadline factor, will still use the first T intervals.
As such, the cost saving increased because Static is
aware of the deadline factor and minimizes the cost
accordingly.

As expected using on-demand instance results in
higher cost than all other bidding strategies in Spot
instance except for tight deadline like when the ratio
E/D is 1. In this case, using spot instance will in-
troduce additional cost for restarts and checkpoints.
The Max bid strategy fails to capture the market price
fluctuations . The rational in bidding on the Maxi-
mum bidding price is that the user still pays the mar-
ket price, instead of the bid price. As such, users can
achieve high availability while paying less than the
Max. However, the main reason bidding at the max-
imum price is not suitable strategy for workload with
flexible deadline is that user still pays for higher price
rather than postponing for potential cheaper price.
There is inherently a dual-option bid when bidding
on spot instances as described by ShaoJie Tang et
al. (Tang et al., 2012) which consists for each time
epoch to decide to bid or not depending on the job ur-
gency and the current price. However, bidding at the
maximum price withdraws from this principle. The
conclusion we draw from these naive algorithms is
that a bidding strategy is needed.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

128

Amazing strategy has a higher cost than our strat-
egy because Amazing cannot guarantee the deadline.
Therefore in most of the cases with tighter deadlines,
Amazing will switch quickly to on-demand instance.
Depends on the buffer setting of Amazing. It could
perform the best, but also could be worst. Neverthe-
less, Amazing has much larger variance than other
compared strategies because it bids on the highest
spot price. It shows Amazing is a more risky bid-
ding strategy and will rely more often on on-demand
instances to complete the job.

Static has similar or even lower cost than Amaz-
ing and Dynamic. It shows that dynamically chang-
ing the price is not necessary, and could cause addi-
tional computation and running overhead as explained
in section 2.1.

5 RELATED WORK

Cloud economies has drawn a tremendous attention
over the past decade (Regev and Nisan, 1998; Stokely
et al., 2009b; Chaisiri et al., 2011; Genaud and Gossa,
2011; Chard et al., 2015; Oh et al., 2022). Part of
this is attributable to the dynamic nature of cloud and
the vast pool of underutilized resources in data cen-
ters (Stokely et al., 2009a). In auction-based cloud
economies such as Spot Instances (SI), availability
and cost saving are difficult tradeoff to make (Andrze-
jak et al., 2010b; Chaisiri et al., 2011; Genaud and
Gossa, 2011) since it involves understanding the mar-
ket fluctuations and the resource model including the
availability. Nevertheless, spot instances still provide
cheaper resources (Lu et al., 2013). It is therefore im-
portant to design a bidding strategy to benefit from
this resource model.

6 CONCLUSION

In this paper, we proposed a Static Bidding strategy to
efficiently decide the bid price for executing deadline-
constraint jobs on Spot Instances. The inputs of our
problem are the estimated job execution time and the
deadline to complete the job. With these information,
we use the historical market data to map the price fluc-
tuation in to random variable based on the Markov
chain decision process. Furthermore, to guarantee the
completion of the job within the constrained deadline,
on-demand instances are used when the deadline is
close. We have modeled and included these consider-
ations in the optimal solution. We then pointed out the
recursive behavior of solution. Next, we prove that by
a means of a Dynamic Programming algorithm, the

optimal bidding price can be derived with the check-
point and restart overhead. Our evaluations conducted
with real historical traces from Amazon Spot markets
show that Static Bidding strategy can significantly re-
duce the execution cost on Spot Instance, guarantee
the deadline requirement and effectively cope with the
checkpoint/restart overheads. As compared to the dy-
namic bidding strategy, our method is more practical
and suitable to the current spot markets. Moreover,
we can achieve similar or even better result than the
existing strategies.

REFERENCES

Amazon (2004). Amazon console.
Andrzejak, A., Kondo, D., and Anderson, D. (2010a). Ex-

ploiting non-dedicated resources for cloud computing.
In Network Operations and Management Symposium
(NOMS), 2010 IEEE, pages 341–348.

Andrzejak, A., Kondo, D., and Yi, S. (2010b). Decision
model for cloud computing under sla constraints. In
MASCOTS, pages 257–266.

Chaisiri, S., Kaewpuang, R., Lee, B.-S., and Niyato, D.
(2011). Cost minimization for provisioning virtual
servers in amazon elastic compute cloud. In MAS-
COTS, pages 85–95.

Chard, R., Chard, K., Bubendorfer, K., Lacinski, L., Mad-
duri, R., and Foster, I. (2015). Cost-aware cloud pro-
visioning. In IEEE International Conference on e-
Science, pages 136–144.

Chohan, N., Castillo, C., Spreitzer, M., Steinder, M.,
Tantawi, A., and Krintz, C. (2010). See spot run: Us-
ing spot instances for mapreduce workflows. In Hot-
Cloud, pages 7–7.

EC2, A. (2009). Amazon ec2.
Genaud, S. and Gossa, J. (2011). Cost-wait trade-offs in

client-side resource provisioning with elastic clouds.
In Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, pages 1–8.

Jangjaimon, I. and Tzeng, N.-F. (2015). Effective cost re-
duction for elastic clouds under spot instance pricing
through adaptive checkpointing. IEEE Transactions
on Computers, 64(2):396–409.

Javadi, B., Thulasiramy, R., and Buyya, R. (2011). Sta-
tistical modeling of spot instance prices in public
cloud environments. In Utility and Cloud Computing
(UCC), 2011 Fourth IEEE International Conference
on, pages 219–228.

Lu, S., Li, X., Wang, L., Kasim, H., Palit, H., Hung,
T., Legara, E., and Lee, G. (2013). A dynamic hy-
brid resource provisioning approach for running large-
scale computational applications on cloud spot and
on-demand instances. In ICPADS, pages 657–662.

Mazzucco, M. and Dumas, M. (2011). Achieving perfor-
mance and availability guarantees with spot instances.
In HPCC, pages 296–303.

Optimal Static Bidding Strategy for Running Jobs with Hard Deadline Constraints on Spot Instances

129

Oh, K., Zhang, M., Chandra, A., and Weissman, J.
(2022). Network cost-aware geo-distributed data ana-
lytics system. IEEE Transactions on Parallel and Dis-
tributed Systems, 33(6):1407–1420.

Regev, O. and Nisan, N. (1998). The popcorn mar-
ket—an online market for computational re-
sources. In Proceedings of the First Interna-
tional Conference on Information and Computation
Economies, ICE ’98, pages 148–157.

Song, Y., Zafer, M., and Lee, K.-W. (2012). Optimal bid-
ding in spot instance market. In INFOCOM, pages
190–198.

Stokely, M., Winget, J., Keyes, E., Grimes, C., and Yolken,
B. (2009a). Using a market economy to provision
compute resources across planet-wide clusters. In
IPDPS, pages 1–8.

Stokely, M., Winget, J., Keyes, E., Grimes, C., and Yolken,
B. (2009b). Using a market economy to provision
compute resources across planet-wide clusters. In
IPDPS, pages 1–8.

Tang, S., Yuan, J., and Li, X. Y. (2012). Towards opti-
mal bidding strategy for amazon ec2 cloud spot in-
stance. In 2012 IEEE Fifth International Conference
on Cloud Computing, pages 91–98.

Yi, S., Andrzejak, A., and Kondo, D. (2012a). Monetary
cost-aware checkpointing and migration on amazon
cloud spot instances. IEEE Transactions on Services
Computing, 5(4):512–524.

Yi, S., Andrzejak, A., and Kondo, D. (2012b). Mone-
tary cost-aware checkpointing and migration on ama-
zon cloud spot instances. Services Computing, IEEE
Transactions on, 5(4):512–524.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

130

