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Abstract: Electrodermal activity (EDA) reflects changes in electrical conductivity of the skin via activation of the 
sympathetic nervous system. Ambulatory EDA measurements bring multiple challenges regarding quality 
assessment and response detection. A signal quality indicator (SQI) is one method to overcome these. This 
study aimed to investigate the transferability and generalizability of several open-source state-of-the-art SQIs 
and response detectors regarding their performance against manually annotated EDA of participants in rest. 
Three annotators identified artifacts and physiological responses in wrist EDA of 45 participants (10.75 hours). 
The F1-score, precision, and recall of several state-of-the-art SQIs and response detectors were computed on 
a subset of the annotated data (n=28). The SQIs and response detectors resulted in F1 scores between 3-16% 
and 18-32%, respectively. These results indicated that current SQIs and response indicators are not performant 
enough for EDA of subjects in rest, implying similar or worse outcomes for ambulatory EDA. It is suggested 
that SQIs must be adjusted based on the used device and set-up. 

1 INTRODUCTION 

Electrodermal activity (EDA) refers to changes in the 
electrical conductivity of the skin. When the body 
responds to stress or arousal, the sympathetic nervous 
system activates the sweat glands, causing an increase 
in EDA. EDA derived features can improve mental 
health by enhancing wearable data insights. EDA can 
be decomposed into tonic and phasic components. 
The tonic component varies slowly and is referred to 
as Skin Conductance Level (SCL). The phasic 
component represents rapid responses following a 
stimulus and is referred to as Skin Conductance 
Response (SCR) (Boucsein, 2012).  

Measurements of EDA via wearables bring 
multiple challenges. First, measurements in daily life 
favour wrist measurements, which imply lower SCL 
and smaller SCRs compared to finger measurements 
(van Dooren et al., 2012). Second, measurements 
might be disrupted by loss of skin contact, movement 
of the device on the skin, or local pressure. Last, SC 
responses might not be related to mood states but to 
physical exertion or thermoregulation (Boucsein, 
2012). These challenges have implications for both 

signal quality assessment and response detection. In 
the case of short-term experiments, researchers can 
locate and remove artifacts or annotate the responses 
manually (Doberenz et al., 2011). However, in the 
case of long-term data, this is too time-consuming, 
thus automatic removal of artifacts and response 
detection are needed. New methods have been 
developed for this purpose.  

1.1 Artifact Handling 

There are two main artifact handling approaches. The 
first one is artifact reduction in which filtering is the 
most adopted technique. Low-pass filtering is often 
used to remove rapid changes in the signal (Healey et 
al., 2000; Gashi et al., 2020). The main disadvantage 
of filtering is that it can potentially distort the true 
EDA. More recently, new techniques have been 
explored such as sparse recovery (Kelsey et al., 2018) 
and wavelet-based motion artifact removal (Shukla et 
al., 2018) but these techniques are not yet 
systematically implemented.  

Another approach is artifact labelling by 
formulating a signal quality indicator (SQI), which 
calculates a quality score for a segment of the signal 
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to remove the bad quality segments during analysis. 
Recently, EDA SQI research has focused on rule-
based techniques and machine learning approaches. 
Taylor et al. (2015), for example, converted their 
classifier (binary: ‘good or bad quality’ or multiclass: 
‘good, bad, or questionable quality’) into a freely 
available web-based tool, called EDAexplorer, which 
has been widely adopted in EDA research. More 
recently, Gashi et al. (2020) published EDArtifact, a 
freely available repository for artifact detection. 

1.2 Response Handling 

Most response detection algorithms attempt to 
remove the SCL from the EDA to retrieve the SCR. 
Previously, this was done by signal differentiation, as 
this eliminates constant components. In Healey et al. 
(2000), for example, responses are registered when 
the derivative of the EDA crosses a threshold. Kim et 
al. (2004) added an additional step, i.e., convolution 
with a Bartlett window, before differentiation. 

In parallel to these differentiation-based methods, 
more complex decomposition of EDA into its tonic 
and phasic components was investigated to solve the 
problem of overlapping responses. Benedek and 
Kaernbach (2010), for example, published a 
decomposition tool called Ledalab whereas Greco et 
al. (2016) introduced cvxEDA, a variation which uses 
convex optimization.  

Regarding response detection following 
decomposition, multiple solutions have been 
proposed. Ledalab includes its own response 
detection method, whereas cvxEDA has been used in 
combination with external response detectors. 
Multiple open-source toolkits provide the latter 
option including NeuroKit2 (Makowski et al., 2021).  
However, these toolboxes rarely provide a full 
pipeline from quality control to response detection. 

1.3 Objectives 

This study aims to investigate the performance of 
several open-source or well-described state-of-the-art 
SQIs and response detectors against manual 
annotations in an independent dataset of EDA 
collected with dry-electrodes at the wrist in a 
controlled set-up. The algorithms will be tested 
without adaptations or retraining to investigate their 
generalizability to new datasets. As algorithms 
performing poorly on data collected in controlled 
settings are unlikely to perform well in ambulatory 
settings, the comparison of these algorithms serves as 
a first step in the development of a pipeline that 

combines artifact and response detection for 
ambulatory EDA. 

2 METHODS 

2.1 Data Collection 

Physiological data from a previously collected trial 
were analysed. This dataset was collected at the 
Lowlands festival in 2019 by imec and contains data 
from 132 participants (mean age: 28 years, std: 8 
years, 52% women). Before the study, the medical 
ethical committee of the Maxima Medical Centre 
reviewed it and decided that it does not need ethical 
approval. Participants were asked to do different tests 
whilst wearing several sensors including the Biopac 
MP160 (on two fingers) and two Chill+ wristbands 
(one on each wrist). The latter is a non-commercial 
wearable developed by imec for research purpose.  

All participants completed an informed consent 
before participation. An overview of the protocol is 
shown in Table A.1 (Appendix). In this analysis, the 
following physiological signals were included: EDA, 
accelerometery (ACC), and temperature from the left 
Chill+ wristband, EDA from the right Chill+, and 
EDA from the Biopac attached to two fingers of the 
left hand. The EDA (µS) of the Chill+ was captured 
using two flat Ag-AgCl electrodes of 11 mm diameter 
at 256 Hz. The EDA captured by Biopac MP160 at 
256 Hz was used as reference EDA (Appendix Figure 
A.1).  

2.2 Pre-Processing 

87 out of the 132 participants were excluded from the 
analysis because of various reasons: 1) one of the two 
Biopac systems was wrongly calibrated, 2) 
participant drop out or abnormal behaviour, 3) 
temperature baseline issues, 4) EDA baseline issues 
or EDA consisted only of noise, 5) synchronization 
issues between the Biopac and the wristband, 6) the 
EDA electrodes were detached during the trial, and 7) 
crashing of the math test Python program caused by 
invalid user input. The data of the remaining 45 
participants (mean age of 27 years, std: 7 years, 45% 
women), were analysed. All the physiological signals 
were resampled from 256 Hz to 8 Hz. 

2.3 Annotation 

The downsampled EDA of the left Chill+ of all 
included participants (n=45, 10.75 hours in total) was 
annotated by three annotators separately (having 2-5 
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years of experience in the EDA field) using PALMS 
software (Fedjajevs et al., 2020). All annotators 
followed pre-set annotation guidelines that were 
developed using a combination of published 
guidelines and empirical experience (Boucsein, 2012; 
Taylor et al., 2015) (details available upon request). 
During annotation, the following information was 
available: 1) the EDA from the Biopac, 2) the EDA 
from the left Chill+, 3) the driver from the left Chill+ 
(derived from Ledalab deconvolution), 4) the ACC 
(x, y, and z) signals from the left Chill+, and 5) the 
standard deviation of the ACC magnitude from the 
left Chill+. In addition to these signals, an initial set 
of responses was provided by the SciPy 1.6.3 ‘find 
peaks’ function, using personalized statistics for 
minimal response height, minimal response 
prominence, and minimal response distance.  

During annotation, artifacts were labelled as 
‘artifact’ with boundaries as perceived by the 
annotator. Additionally, longer noise-like periods 
without responses were given a ‘responseless period’ 
annotation. Then, in the non-artifact segments, EDA 
responses were adjusted by evaluation of the 
automatic EDA response detection. Any uncertainties 
regarding the adjustment of an EDA response were 
marked with a ‘doubt’ partition. These ‘doubt’ 
responses reflected EDA responses that the 
annotators could not label with certainty or that did 
not comply with the pre-set guidelines. 

The resulting annotations were aligned into the 
median value if artifact boundaries, between 
annotators, differed less than one second. For the 
response annotations, the correction window was 0.5 
seconds. Subjects that contained more than 90% 
artifact or ‘responseless period’ partitions were 
removed prior to further analysis (n=17) as these 
subjects complicated the comparison of different 
state-of-the-art SQIs and SCR detectors. Also, some 
SQIs did not provide output for these ‘responseless 
periods’ (Gashi et al., 2020). The aligned annotations 
were assessed in terms of agreement by calculating 
the Cohen’s kappa and the percentage of agreement 
per annotator pair in 5-second windows for every 
participant and averaging these results afterwards.  

2.4 Quality Assessment 

A ground-truth signal was created by merging the 
artifact annotations for every time point in the 
following manner: if all three annotators labelled this 
time point as clean, the merged annotation received 
‘clean’ (or good), if two or more annotators labelled 
this time point as an artifact, the merged annotation 
received ‘artifact’, and if only one annotator labelled 

this time point as an artifact the merged annotation 
received ‘questionable’. This allowed for two 
analyses: where questionable was considered as clean 
(‘Questionable as good’, QasG) or artifact 
(‘Questionable as bad’, QasB), respectively. The 
ground truth artifact signal was used to compare 
several state-of-the-art quality or well-described 
indicators in terms of F1, precision, and recall scores. 
More specifically EDAexplorer, as designed by 
Taylor et al. (2015), the one made by Kocielnik et al. 
(2013) implemented by Smets et al. (2018), the one 
designed by Kleckner et al. (2018), and EDArtifact 
by Gashi et al. (2020). Because several state-of-the-
art SQIs classify artifacts in 5-second windows 
(Gashi et al., 2020; Taylor et al., 2015), all results 
were reported in 5-second windows, so they could be 
optimally compared. Thus, the SQIs of Kleckner 
(2018) et al., Kocielnik et al. (2013), and the ground 
truth annotated artifact signal (reported quality per 
sample) were resampled to 5 seconds by classifying 
the window as ‘artifact’ if at least 10% of the window 
was labelled as an artifact. 

Bad quality segments, as detected by the SQIs, 
were evaluated according to their detection (correct, 
incorrect, or missed) regarding characteristics such as 
the EDA baseline, the duration, the EDA range, and 
the ACC magnitude during the co-occurring 
annotated artifact. For this analysis questionable 
artifacts were removed. If a SQI indicated at least one 
bad quality label within an annotated artifact, the 
artifact was labelled as ‘correct’, if not, it got 
‘missed’. When a segment was labelled as bad quality 
by a SQI, but all three annotators annotated it as good, 
it got ‘incorrect’. In case of ‘correct’ and ‘missed’ 
artifacts, the boundaries of the annotated artifacts (per 
sample) were used to compute artifact characteristics 
as this was relevant for duration. Otherwise, for 
incorrectly detected artifacts, the boundaries of the 
artifact, as suggested by the SQI, were used (in a 5-
second window or per sample depending on the SQI). 
The three different detection categories were assessed 
per characteristic (e.g. EDA baseline) for significant 
differences using a Kruskal-Wallis test, followed by 
Dunn’s test in case of significant results. Whenever 
there were only two categories available, a Mann-
Whitney U test was used. 

2.5 Response Assessment 

For the creation of the merged response annotated 
signal, also the artifact and doubt periods were 
considered. For each response that was annotated by 
at least one of the annotators, three measures were 
examined to determine if this response would be 
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included in the merged signal: the number of 
annotators that marked this timepoint 1) within an 
artifact partition, 2) within a doubt partition, and 3) as 
‘responseless’. If the sum of the number of marked 
responses and the number of non-artifact partitions 
(doubt or ‘responseless’) was higher than the number 
of artifact partitions, the response was included in the 
merged signal. 

Several state-of-the-art response detection 
algorithms were compared with the annotated ground 
truth responses in terms of F1, precision, and recall. 
More specifically, the one made by Healey et al. 
(2000) implemented by Smets et al. (2018), the 
Ledalab response detector made by Benedek and 
Kaernbach (2010), the EDAexplorer response 
detector by Taylor et al. (2015), and the one from Kim 
et al. (2004). The same response detection algorithms 
were applied to the phasic signal (computed using 
Ledalab with the parameters set to the default values), 
combined with the responses of the impulse signal 
automatically detected by Ledalab.  

Several response characteristics such as the 
baseline, rise time (the duration, in seconds, between 
the beginning of the response and the maximum of 
the response), and amplitude (the difference in µS 
between the maximum and minimum of the 
response), were compared between correctly 
detected, incorrectly detected, and missed responses 
for each algorithm using the merged annotations as 
ground truth. 

3 RESULTS 

3.1 Quality Assessment 

Annotations of artifacts resulted in an overall 
moderate Cohen’s kappa of 0.45 (std: 0.22) and 
acceptable agreement of 88.4% (std: 5.7%). The 
merged artifact signal (n=28) contains a total of 21 

mins of annotated artifacts (>2 annotators, 373 
segments), 32 mins of questionable sections (1 
annotator, 222 additional segments), and 334 mins of 
clean data (0 annotators). Table 1 shows the F1, 
precision, and recall scores of the used state-of-the-
art SQIs against the annotated artifacts for QasG and 
QasB. The SQIs of Kocielnik et al. and Kleckner et 
al. have high precision (~0.75) as they find only a few 
subjects with artifacts. Moreover, in those subjects, 
these SQIs detect only a few artifacts, which can be 
seen from their low recall rate (~0.03), and results in 
low F1 scores (~0.03). Taylor et al. (F1: 0.12) seems 
to slightly outperform the SQI of Gashi et al. (F1: 
0.10) if QasG, whereas Gashi et al. (F1: 0.16) 
outperforms Taylor et al. (F1: 0.07) more confidently 
if QasB. Generally, the recall rate goes down and the 
precision goes up if questionable artefacts are added 
(QasA instead of QasG). Thus, the increase of 
successful artifact detection (true positives increase, 
false positives decrease) is much smaller than the 
additional mistakes (true negatives decrease, false 
negatives increase) with the smallest effect observed 
for the SQI of Gashi et al.  

All SQIs miss a substantial number of artifacts 
(75% - 99%) of the 373 annotated artifacts used in 
this analysis (Table 2). As the SQI of Kleckner et al. 
detects only four artifacts correctly, the comparison 
of artifact characteristics is mostly insignificant and 
irrelevant. The SQI of Gashi et al. misses the least 
artifacts (280), though it has a high number of 
incorrectly detected artifacts (163), which was 
already apparent from the relatively high recall and 
low precision of Table 1. Table 2 shows some clear 
trends that are present for all SQIs. In general, all 
SQIs miss artifacts that are small in range (0.01µS) 
and short in duration (~2s), without any significant 
differences in ACC magnitude (~1.02g) between the 
detection categories. Only for the SQI of Gashi et al., 
the missed (2.1s) and correct (2.4s) artifacts do not 
differ significantly regarding duration. The incorrect  
 

Table 1: Quality indicator performance scores compared to annotations (mean ± std). 

Per 5s window QasG (n=28) QasB (n=28) 
Subjects with 

no artifact* 
 F1 Precision Recall F1 Precision Recall N (%)
Kocielnik 0.05 

(±0.09) 
0.72 

(±0.43) 
0.03 

(±0.05)
0.03 

(±0.06)
0.75  

(±0.43)
0.02 

(±0.04) 
17  

(60.7%)
Kleckner 0.03 

(±0.16) 
0.75 

(±0.35) 
0.03 

(±0.14)
0.03 

(±0.15)
1.00  

(±0.00)
0.02 

(±0.12) 
26  

(92.9%)
Taylor 0.12 

(±0.15) 
0.49 

(±0.46) 
0.09 

(±0.13)
0.07 

(±0.10)
0.57 

(±0.46)
0.04 

(±0.08) 
0  

(0.0%)
Gashi 0.10 

(±0.19) 
0.19 

(±0.30) 
0.15 

(±0.23)
0.16 

(±0.18)
0.39 

(±0.32)
0.16 

(±0.20) 
6  

(21.4%)
* These subjects are similar for QasG and QasB 
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Table 2: Comparison of characteristics of artifacts with respect to SQIs (n=28). 
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Total number of artifacts 
(sum) 

373 369 351 351 280 0 9 1 163 4 22 22 93 

ACC magnitude (g) 
(median ± iqr) 

1.02 
±0.01 

1.02*a 
± 0.01 

1.02 
± 0.01

1.02 
± 0.01

1.02 
± 0.02

/ 
 

1.03 
± 0.02

 
1.01 

1.02 
± 0.01

1.00*a 
± 0.00 

1.02 
± 0.02 

1.03 
± 0.01

1.02 
± 0.01

Baseline of artifacts (µS) 
(median ± iqr) 

0.79 
± 3.12 

0.80*a 
± 3.14 

0.80*c

± 3.24
0.73*a

± 3.10
0.63*b

± 2.24
/ 

 
1.14*c

± 0.81
1.90* 3.36*b

± 4.50
0.05*a 
± 0.00 

0.11*c 
± 0.93 

2.20*a 
± 3.83

3.32*b

± 8.01

Duration of artifacts (s) 
(median ± iqr) 

2.25 
± 2.88 

2.12 
± 2.88 

2.00*b

± 2.56
2.00*a

± 2.56
2.06*d

± 3.00
/ 

 
0.38*b

± 0.50
5.00* 5.00*d

± 5.00
2.81 

± 0.56 
3.62*b 
± 3.09 

3.00*a 
± 2.59

2.38*d

± 2.12

Range of artifacts (µS) 
(median ± iqr) 

0.01 
± 0.04 

0.01 
± 0.04 

0.01*a 
± 0.04

0.01*a

± 0.03
0.01*b

± 0.02
/ 

0.04*

± 0.27
0.72* 0.20*

± 0.25
0.01 

± 0.01 
0.05*a  

± 0.18 
0.29*a 
± 0.22

0.08*b

± 0.17
*: Significant with p < 0.05 (Kruskal-Wallis), a: A↔ C, b: A ↔ C, B, c: A, B, C, d: B ↔ A, C (post-hoc Dunn) 

artifacts are significantly longer with a median value 
of 5s, caused by the 5s-window defined SQIs since 
the boundaries as suggested by the SQI were used (as 
explained in section 2.4). For Taylor et al. and Gashi 
et al., the missed category has a significantly lower 
baseline than correct and incorrect (if present) ones 
whereas for other classifiers, the missed category has 
a significantly higher baseline (0.80μS) than the 
correctly detected artifacts (~0.1μS). 

3.2 Response Assessment 

Annotations of responses resulted in an overall 
moderate Cohen’s kappa of 0.55 (std: 0.21) and good 
agreement of 99.1% (std: 0.6%). The merged 
response signal contains 2071 annotated responses of 
which 309 lay in doubt partitions (n=28). The F1, 
precision, and recall scores of several state-of-the-art 
response detectors were calculated regarding the 
annotated responses and are shown in Table 3. 

The best scoring response identifiers are Kim et 
al., Ledalab, and Taylor et al. on the phasic signal. 
The relatively high F1 score for Ledalab (0.27) comes 
from a high recall rate (0.83), whereas the F1 scores 
for Taylor et al. and Healey et al. (~0.2) come from 
high precision rates (~0.86). For all the response 
detectors, the performance on the phasic signal is 
slightly better. The F1, recall, and precision scores for 
the response detection algorithms are higher than 
those for the SQI detection algorithms but remain 
rather low. 
 

Table 3: Response detectors performance scores compared 
to annotations (mean ± std). 

Per sample (n=28) F1 Precision Recall 

Ledalab On EDA 0.27 
(±0.13) 

0.17 
(±0.1) 

0.83 
(±0.19) 

On (phasic)
impulse

0.29 
(±0.14) 

0.18 
(±0.11) 

0.89 
(±0.20) 

Taylor  On EDA 0.24 
(±0.20) 

0.90 
(±0.22) 

0.16 
(±0.14) 

phasic 0.25 
(±0.21) 

0.87 
(±0.23) 

0.17 
(±0.15) 

Kim  On EDA 0.29 
(±0.19) 

0.49 
(±0.26) 

0.23 
(±0.15) 

phasic 0.32 
(±0.20) 

0.52 
(±0.28) 

0.26 
(±0.20) 

Healey  On EDA 0.18 
(±0.20) 

0.83 
(±0.26) 

0.12 
(±0.14) 

phasic 0.19 
(±0.20) 

0.83 
(±0.21) 

0.12 
(±0.14) 

Table 4 shows that Ledalab has the highest 
number of correctly detected responses (87%) 
compared to the other peak detectors (22-37%). 
Furthermore, it is the only one that labels more 
incorrect responses (9273) than correct ones (1793), 
but also the only one that misses fewer responses 
(278) than it has correctly found ones. In general, all 
the response detectors miss responses that have 
significantly smaller amplitudes (~0.01µS), shorter 
rise times, and lower baselines than the correctly  
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Table 4: Comparison of characteristics of response with respect to response detection algorithms (n=28). 
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Total number of 
responses (#) 
(sum) 

2071 278 1621 1312 1543 9273 23 654 82 1793 450 759 528 

Baseline of 
responses (µS) 
(median ± iqr) 

3.20 
± 5.40 

2.11*a 
± 4.82 

2.78*b 
± 5.06 

3.04*a

± 5.18
2.71*b 
± 4.79

2.62*a

± 4.55
6.76*b

± 7.68
1.25*a

± 3.16
4.88*b

± 7.74
3.30*a 
± 6.00 

3.64*b 
± 7.17 

3.33*a 
± 6.47 

4.41*b

± 8.07

Rise time of 
responses (s) 
(median ± iqr) 

1.50 
± 1.25 

0.88*a 
± 0.88 

1.25*b 
± 1.12 

1.25*a

± 1.50
1.38*c 
± 1.25

0.75*a

± 0.75
1.88*b

± 1.25
1.25*a

± 1.12
1.00*c

± 1.12
1.62*a 
± 1.25 

2.12*b 
± 1.00 

1.75*a 
± 0.75 

1.88*c

± 1.12

Amplitude of 
responses (µS) 
(median ± iqr) 

0.02 
± 0.09 

0.00*a 
± 0.02 

0.01*b 
± 0.04 

0.01*a

± 0.03
0.01*a 
± 0.03

0.00*a

± 0.01
0.24*b

± 0.23
0.01*a

± 0.07
0.10*a

± 0.24
0.03*a 
± 0.11 

0.15*b 
± 0.18 

0.08*a 
± 0.17 

0.15*a

± 0.18

*: Significant with p < 0.05 (Kruskal-Wallis), a: A, B, C, b: A ↔ C, B, c: C ↔ A, B (post-hoc Dunn) 

identified responses (~3.5µS). The trends for the 
incorrect category are less generalizable. Taylor et al. 
detects only a few incorrect responses (23), which did 
not differ significantly from the correctly detected 
responses (450) for all response characteristics. 
Ledalab and Kim et al., on the contrary, detect larger 
amounts of incorrect responses, which are 
significantly different from both the missed and 
correctly detected responses for all response 
characteristics and have significantly shorter rise 
times. However, in Ledalab, the incorrect responses 
are further characterized by low amplitudes (0.00µS) 
and an intermediate baseline (2.62µS), whereas in 
Kim et al., they are characterized by intermediate 
amplitudes (0.01µS) and low baselines (1.25µS). 
Lastly, the incorrect responses of Healey et al. have 
high baselines comparable (4.88µS) to the correct 
responses (4.41µS), short rise times (1s) comparable 
to the missed responses (1.38s), and intermediate 
amplitudes (0.10µS), different from both the missed 
(0.01µS) and the correct responses (0.15µS). 

4 DISCUSSION 

In this study, the performance of several open-source 
or well-described state-of-the-art SQIs and response 
detectors on EDA was evaluated using manually 
annotated data from 28 persons (final sample size 
defined as explained at the end of section 2.3). 
Generally, poor performances were found. Several 
possible explanations and implications for future 
pipelines will be discussed below. 

The average Cohen’s kappa between quality 
annotations of the three annotators (0.45) is lower 

than reported in Taylor et al. (0.55, 2 annotators, 
questionable epochs as third class, annotators were 
allowed to skip epochs, 17% of epochs skipped), 
Gashi et al. (0.84, 2 annotators, questionable epochs 
relabelled as mutually agreed), and Kleckner et al. 
(0.87, 5 annotators, the confidence level was ignored 
when making ground-truth). The agreement between 
the annotators (88%) is higher than in Taylor et al. 
(81%) but lower than in Gashi et al. (97%), and 
Kleckner et al. (98%). In this work, questionable or 
low confidence epochs were not reannotated, ignored, 
or skipped, which may contribute to the relatively low 
Cohen’s kappa. Annotations of responses resulted in 
an overall moderate Cohen’s kappa of 0.55 and a 
good agreement of 99.1%. The used state-of-the-art 
response detectors do not report any measures 
regarding validation against (manual) annotations. 

The low observed performance for all the SQIs, 
all trained on dry electrode wrist EDA, differs 
substantially from the originally reported ones 
(Kleckner et al.: 92% accuracy, Gashi et al.: F1 of 
97%, Taylor et al. 96% accuracy). There are multiple 
possible explanations for this discrepancy. First, any 
distortion of the signal was annotated independently 
from the length or range, which resulted in a lot of 
short and small artifacts (Table 2). On the contrary, 
Gashi et al. and Taylor et al. worked with 5-second 
epochs (of which the reason is not explained). 
Second, there was a high imbalance between clean 
(366 mins) and artifact annotations (21 mins, 5%), 
which is partially caused by the seated set-up of the 
trial (in Taylor et al.: 39%, Kleckner et al.: 21%, 
Gashi et al.: unknown). Kleckner et al. reported 
results for the clean class as the positive case which 
positively affects their accuracy, in contrary to this 
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work. Finally, the state-of-the-art algorithms were not 
optimized or retrained for the dataset or the device 
because the goal was to compare the performance of 
the original algorithms on new independent data. 
Gashi et al. did retrain Taylor et al. on their own data, 
which increased the F1 score from 25% to 93% and 
the accuracy from 46% to 95%. This poor 
generalizability was explained by Gashi et al. by the 
lack of ambulatory data in the training phase of 
Taylor et al. Nevertheless, Gashi et al. did not test the 
transferability of their own model to other datasets 
(controlled nor ambulatory). In this study, we show 
that even models trained on ambulatory data can 
show poor performance. Possible reasons for this, 
besides the original set-up, might be the large effect 
of personal variables (e.g., age, gender), contextual 
variables (e.g., humidity), and the used device 
(Boucsein et al., 2012). The high variability within 
EDA precludes the use of fixed thresholds, e.g., on 
the maximum or minimum slope, which are present 
in all the state-of-the-art SQIs. Possible solutions 
involve retraining the algorithm for the specific 
dataset or the formulation of specific restrictions on 
compatible devices, EDA ranges, or environmental 
conditions for using the SQIs. Only Kleckner et al. 
(2018) report that their algorithm should be adjusted 
when applied to another study design or device.  

Generally, all response detection algorithms 
perform poorly in comparison to the annotations. 
Taylor et al. and Healey et al. show good agreement, 
but low recall compared to the annotations. Both 
methods struggle with the detection of low amplitude 
peaks within low baseline signals. An explanation 
might be the default restrictions on the peak 
amplitude of these methods. In literature, the minimal 
amplitude for a response is defined as 0.1 µS 
(Dawson et al., 2017) or 0.05 µS (Boucsein, 2012), 
mostly based on the finger or palmar EDA, though 
wrist EDA is known to give smaller responses up to 
0.01µS (van Dooren et al., 2012). Ledalab is the only 
method that detected more responses than were 
annotated. This tendency to over-detect has been 
reported before (Lutin et al., 2021). The incorrect 
responses are especially characterized by their low 
amplitude which suggests that the performance could 
be improved by applying an additional restriction. 
The different response detection algorithms were 
trained on EDA measured on the wrist (Taylor et al.), 
on two fingers (Benedek & Kaernbach and Kim et al.), 
on the palm (Healey et al.), or the foot (Healey et al.). 
Although no threshold adaptations were implemented 
to adapt the algorithms to wrist EDA, the response 
detectors of Kim et al. and Benedek & Kaernbach 
performed better than the one of Taylor et al. 

This study was limited in terms of the relatively 
small sample size of the used database and the 
homogeneous resting conditions during the trial. In 
future work, researchers should include clear 
guidelines regarding algorithm transfer. Also, the 
combination of SQIs with a response detector should 
be investigated. 

5 CONCLUSIONS 

The performance scores of several open-source state-
of-the-art EDA SQIs and response detectors were 
investigated using manually annotated data as ground 
truth. Generally, low performance was observed for 
the quality indicators and response detectors. The 
quality indicator of Gashi et al. gave the highest F1 
score of 16% for QasB whereas the one by Taylor et 
al. gave the highest F1 score of 12% for QasG. The 
response detectors gave slightly higher performance 
on the phasic signal than on the EDA, with Kim et al. 
having the highest F1 score of 32%. Retraining the 
algorithms will most likely resolve the low-
performance scores and is advised when applying 
state-of-the-art SQIs to a new set-up or device. 
Generally, it is noted that the applied open-source 
response detectors lack validation, therefore manual 
validation or retraining of these algorithms is advised. 
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APPENDIX 

 
Figure A.1: Plot of EDA from participant s_320. 
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Table A.1: Overview of the trial procedure.  

Trial procedure Description 

1. Collection of 
demographics 

Age, sex, weight, length, and skin 

colour 

2. Collection of 
questionnaires 

Ten Item Personality index, Personal 
Stress Scale 

3. Application 
of sensors 

Chill+1,w (EDA, ACC, PPG, Temp, 
Gyro), Biopac MP160 (ECGc, PPGf, 
EDAf, Temp. w), EOG1,e, and EMG2,e

4. Completion 
of tests 

Math, auditive stress, and cold water 
(0°C) pain task in random order with 

rest periods in between and VAS score 
reporting at fixed moments

1: both left and right, 2: randomly left or right 
   Attached to w: wrist, c: chest, f: finger, e: eye 
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