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Abstract: Contextual information has been widely used in many computer vision tasks. However, existing approaches
design specific contextual information mechanisms for different tasks. In this work, we propose a general
context learning and reasoning framework for object detection tasks with three components: local contextual
labeling, contextual graph generation and spatial contextual reasoning. With simple user defined parameters,
local contextual labeling automatically enlarge the small object labels to include more local contextual in-
formation. A Graph Convolutional Network learns over the generated contextual graph to build a semantic
space. A general spatial relation is used in spatial contextual reasoning to optimize the detection results. All
three components can be easily added and removed from a standard object detector. In addition, our approach
also automates the training process to find the optimal combinations of user defined parameters. The general
framework can be easily adapted to different tasks. In this paper we compare our framework with a previous
multistage context learning framework specifically designed for storefront accessibility detection and a state
of the art detector for pedestrian detection. Experimental results on two urban scene datasets demonstrate
that our proposed general framework can achieve same performance as the specifically designed multistage
framework on storefront accessibility detection, and with improved performance on pedestrian detection over
the state of art detector.

1 INTRODUCTION

Contextual information has been widely used in many
computer vision tasks. Context refers to any informa-
tion that is related to the visual appearance of a target
(an object or an event). Context can be in the form
of visual or non-visual information. In object recog-
nition task, recognizing a single object may be chal-
lenging sometimes when the object is out of context.
But contextual information can provide crucial cues
for the target. An example is shown in Fig 1, show-
ing a mouse on a desk. In video based tasks, such as
video action recognition and video event recognition,
temporal context can help predict what will happen
in the future. A walking person is visible in previous
frame in a video, but he or she may become partially
occluded in current frame because of a car or a tele-
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graph pole is in front of the target person. When this
happens, contextual information from nearby frames
(previous or next) can help locate and detect the oc-
cluded target person in current frame. In object de-
tection tasks, other objects can influence the presence
of a target object in the same scene. These contextual
information can indicate the co-occurrence of the ob-
jects and the location of the objects. For example, a
painting should be on the wall, not on the ground. If
we know there is a desktop on a table, there is higher
probability that there are a keyboard and a mouse next
to the desktop. Other contextual information, such as
locations, dates and environments, etc. could poten-
tially increase the likelihood of the presence of an ob-
ject or an event. In this work, we propose a general
framework that employs different contextual informa-
tion such as local context, semantic context and spa-
tial context among different objects in an urban scene
for object detection tasks.

In object detection, a bounding box is the stan-
dard way to describe the spatial location of an ob-
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Figure 1: An example on the importance of contextual in-
formation for small object - A mouse next to a keyboard.
From left to right: an isolated object, the object with a local
context, and the object with a more global context.

ject. Large datasets, like MSCOCO (Lin et al., 2014)
and ImageNet (Deng et al., 2009), use workers on
Amazon’s Mechanical Turk (AMT) for crowdsourc-
ing tasks. The quality of the labels is heavily relied
on humans. Human labelers need to label the bound-
ing box for an object by hand. Usually tight bounding
boxes are fit to the target objects in order to main-
tain the label consistency. However, when an object
is small, the tight bounding box may not provide suf-
ficient local contextual information for recognition,
sometimes even human observers cannot recognize
the object because of the small size of the object. An
example is shown in Fig. 1, we can barely recog-
nize the object (a mouse), which is isolated from its
context. When the local context (the area surround-
ing the mouse) is included, we can recognize the ob-
ject as a mouse with less uncertainty. Furthermore,
when we see the whole scene, we can easily recog-
nize it is a mouse with a more global context even
it is a small object in the image. A few pieces of
work (Lim et al., 2021; Leng et al., 2021) show the
contextual information from the surrounding areas of
small objects provides critical clues for successful de-
tection results. However, these researches utilize deep
learning model training to extract and refine features
from these small objects (Lim et al., 2021; Leng et al.,
2021), which could increase computational cost po-
tentially. In fact, one of the simplest ways to em-
ploy local context for small objects is to directly in-
clude their surrounding areas in the images that ap-
pear in, which directly provides contextual informa-
tion for small objects. In this work, we apply an auto-
matic local contextual labeling approach to enhance
the original bounding boxes for small objects in or-
der to employ local context before the model training
step, by using the two most used definitions of small
object in computer vision tasks.

Semantic context can also provide important in-
formation for detecting objects successfully. Without
any visual cues, if we know the scene is at an ur-
ban street environment, we can easily guess there are
higher chance we shall detect pedestrians, bicycles,

riders and cars, etc. The labels in the scene could pro-
vide prior knowledge of the co-occurrence relation-
ship between labels. Several papers (Li et al., 2014;
Li et al., 2016; Lee et al., 2018) show that a graph
was proven to be very effective in modeling label cor-
relation. Chen et al. (Chen et al., 2019) propose a
framework to model the label dependencies for multi-
label image recognition. Inspired by (Chen et al.,
2019), we introduce a mechanism to allow an easy
user configuration to automate the process for gener-
ating a contextual graph and searching the word em-
beddings from pretrained language model, for adapt-
ing the context learning model to various object detec-
tion/recognition tasks. A Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2016) learns over the
contextual graph in our framework, to build a seman-
tic space by using the word embeddings, and project
the visual features extracted from the object detector
into the semantic space for final classification.

Objects appear together, and they usually have
spatial relations between each other in a real-world
scene. For example, a keyboard and a mouse usually
appear together and a mouse is probably appeared on
the right side of the keyboard. Yang et al. (Yang et al.,
2015) propose a Faceness-Net for face detection us-
ing spatial relation between face parts, such as the hair
should appear above the eyes, and the nose should ap-
pear below the eyes, etc. Another work (Yang et al.,
2019) proposes a spatial-aware network to model the
relative location among different objects in a scene to
boost the object detection performance. A few recent
papers (Wang et al., 2022; Chacra and Zelek, 2022)
uses specific spatial relations for storefront accessi-
bility detection and scene graph generation. However,
all these methods use specific, hard-coded spatial re-
lations for their specific tasks, and these approaches
cannot be easily generalized to other tasks without
significant re-coding. In order to provide the gen-
erality of the spatial reasoning, topological relation-
ships could be beneficial for modeling relations be-
tween different objects. In this work, we propose a
more general approach to model the spatial relation
between objects for object detection that can be used
for different tasks. We utilize the user configuration
mechanism to maximize the flexibility for object rela-
tion definition, without the modification of the code.

Different contextual information has been used
in specific computer tasks, such as data augmenta-
tion (Dvornik et al., 2018), semantic reasoning during
training (Zhu et al., 2021; Chen et al., 2019; Wang
et al., 2022) and post processing (Fang et al., 2017;
Wang et al., 2022), but there are lack of research on
a general framework that can guide the context learn-
ing from data labeling, model training and post pro-
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cessing. In our previous work (Wang et al., 2022),
we proposed a context learning framework for store-
front accessibility detection through all these stages.
However, the framework was designed with specific
context learning mechanisms for storefront accessi-
bility detection, and if we want to use it for a different
task, we have to make significant changes in the code.
In this work, we propose a general context learning
and reasoning framework for various object detection
tasks.

In summary, we propose a general context learn-
ing and reasoning framework for object detection of
various tasks, which has three components: local con-
textual labeling (LCL), contextual graph generation
(CGG) and spatial contextual reasoning (SCR). Local
contextual labeling is applied to the objects that sat-
isfy the definition of small objects. Contextual graph
generation is applied to model the semantic relations
of objects during training. Spatial contextual reason-
ing provides general spatial relations that could be
used in different object detection tasks. The main con-
tributions of this paper are:

• A general context learning and reasoning frame-
work is proposed from data labeling, model train-
ing and spatial reasoning.

• An automated process is implemented for each
component with simple user defined parameters.

• Each component can be applied individually and
in combination, and it is easy to add and remove
from a standard object detector.

• Our approach enables training automation to find
the optimal user defined parameter combination.

The paper is organized as follows. Section 2 dis-
cusses related work. Section 3 proposes our general
context learning and reasoning framework and de-
scribes each component in detail. Section 4 presents
our experiments, including experimental setting (Sec-
tion 4.1), dataset description (Section 4.2), experi-
mental results (Section 4.3) and the ablation studies
of our framework (Section 4.4). Section 5 provides a
few concluding remarks.

2 RELATED WORK

2.1 Context Learning in Computer
Vision

Context information has been widely used in many
computer vision tasks. Many tasks, such as image
classification (Mac Aodha et al., 2019), object de-
tection (Du et al., 2012; Fang et al., 2017; Sun and

Jacobs, 2017; Zhu et al., 2016; Zhu et al., 2021;
Wang et al., 2022), data augmentation (Dvornik et al.,
2018), video event recognition (Wang and Ji, 2015;
Wang and Ji, 2017) and video action detection (Yang
et al., 2019), have employed different forms of con-
textual information. These context information in-
cludes local context (Dvornik et al., 2018; Du et al.,
2012), global context (Zhu et al., 2016), semantic
context (Wang and Ji, 2015; Wang and Ji, 2017), spa-
tial context (Sun and Jacobs, 2017; Yang et al., 2019)
and temporal context (Wang and Ji, 2015; Wang and
Ji, 2017; Yang et al., 2019). Dvornik et al. (Dvornik
et al., 2018) show that the environment surrounding
the object provides crucial information about the cor-
rect location in order to augment useful dataset for
minor object category. A serial work (Wang and Ji,
2015; Wang and Ji, 2017) use both semantic context
and temporal context to build a hierarchical model to
recognize events in videos. Fang et al. (Fang et al.,
2017) use a knowledge graph to improve object de-
tection performance. Sun et al.(Sun and Jacobs, 2017)
use the spatial co-occurrence of curb ramps at inter-
section to detect missing curb ramps in urban envi-
ronments. Although different context has been used
widely in various computer vision tasks, to our best
knowledge, there is no general framework available to
guide context learning and reasoning over the whole
deep learning process (data labeling, model training
and post processing), and across different tasks. Our
proposed framework employs different forms of con-
text information through the entire deep learning pro-
cess, and each component is easy to add and remove
from an object detector.

2.2 Object Detection in Urban Scene

Many methods have been proposed for object detec-
tion in urban scene. These includes text detection and
recognition (Du et al., 2012; Zhu et al., 2016), zebra
crossing detection (Ahmetovic et al., 2015), curb de-
tection (Cheng et al., 2018; Sun and Jacobs, 2017) and
storefront accessibility detection (Wang et al., 2022).
Du et al. (Du et al., 2012) and Zhu et al. (Zhu et al.,
2016) focus on detecting text in a street environment.
Cheng et al. (Cheng et al., 2018) propose a frame-
work to detect road and sidewalk using stereo vision
in the urban regions. Another work (Sun and Jacobs,
2017) aims to find missing curb ramps at street in-
tersection in the city by using the pair-wise existence
of the curb ramps. Our recent work (Wang et al.,
2022) proposes a multi-stage context learning frame-
work for storefront accessibility detection, by using
the specific relations between categories. All these
researches are either lack of employing context infor-
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mation or using specifically designed context learning
mechanisms. In this paper we propose a general con-
text learning and reasoning framework which could
be adapted to various object detection tasks.

Pedestrian detection is a special form of object de-
tection task. Several papers (Cai et al., 2016; Zhang
et al., 2017; Zhou and Yuan, 2018; Wu et al., 2020)
are focused on pedestrian detection in urban scene.
Convolutional Neural Networks(CNNs) have become
the dominant approaches not only in object detec-
tion, but also in pedestrian detection. Although CNNs
based pedestrian detectors have shown considerable
progress, it is still challenging for detecting small-
scale pedestrians and occluded pedestrians. A recent
work (Wu et al., 2020) aims to improve the detec-
tion of small-scale pedestrians by enhancing the rep-
resentations of small-scale pedestrians using the rep-
resentation from large-scale pedestrians. To our best
knowledge, none of these methods are employing lo-
cal context for small-scale pedestrian detection and
occluded pedestrian detection. Among these meth-
ods, Faster R-CNN (Ren et al., 2015) became the
most popular framework that is deployed for pedes-
trian detection (Cai et al., 2016; Zhang et al., 2017;
Zhou and Yuan, 2018; Wu et al., 2020). In this pa-
per, we compare our proposed general context learn-
ing and reasoning framework with a baseline Faster
R-CNN, which shows that our framework not only
benefits the detection of small-scale pedestrians and
occluded pedestrians by using contextual labeling,
our proposed contextual components can also benefit
each other and further improve the detection results.

3 PROPOSED FRAMEWORK

Our proposed general context learning framework is
shown in Fig.2. The overall framework includes three
main components: local contextual labeling (LCL),
contextual graph generation (CGG) and spatial con-
textual reasoning (SCR). Each component can be ap-
plied individually and in combinations to an object
detector. We first utilize the local context for small
objects in the local contextual labeling component
(Section 3.1). In contextual graph generation compo-
nent (Section 3.2), we automatically build the contex-
tual co-occurrence graph using the prior label pres-
ence knowledge from training data, to describe ob-
ject relations between different categories. Object cat-
egories are represented using word embeddings ex-
tracted from a pretrained language model (Penning-
ton et al., 2014). Then the word embeddings are fed
into a Graph Convolutional Network (GCN) (Kipf
and Welling, 2016) by learning the relations using

contextual co-occurrence graph. Then we project the
extracted region features from object detector into the
semantic space built by the GCN. We further pro-
pose a spatial contextual reasoning component (Sec-
tion 3.3) to optimize the detected candidates by using
the general spatial relations between detected objects.
Finally, we introduce a training automation mecha-
nism (Section 3.4) for finding the optimal user defined
parameter combinations. In the following, we will de-
tail each component of our proposed general context
learning and reasoning framework.

3.1 Local Contextual Labeling

First, we utilize surroundings of small objects as their
local context in the Local Contextual Labeling com-
ponent. In computer vision tasks, ”small” objects are
not very clearly defined. An small object, such as a
spoon, can be a large object in the image because of
the shooting angle, shooting environment, etc. (Fig.
3). In COCO dataset (Lin et al., 2014), small objects
are defined as less than or equal to 32×32 pixels with
a fixed image size of 640× 480. Another definition
(Chen et al., 2017) of a small object is that objects
are small when the overlap area between ground truth
bounding box and the image is less than 0.58%. Be-
cause of the reliability and acceptance by other re-
searchers, we use these two definitions of small ob-
jects as the standard for labeling automation. We ex-
tend the bounding box B of an object O in image I
if the object satisfies with the COCO standard for a
small object:

B′
O =

{
(1+α)BO, if BO < 32×32
BO, otherwise

(1)

If the small object satisfies with the second standard
- the Small Object Dataset (SOD) Standard (Chen
et al., 2017), we extend the bounding box B of the
object O in image I by:

B′
O =

{
(1+β)BO, if BO

RI
< 0.58%

BO, otherwise
(2)

In the two equations above, BO and B′
O denote the

original and the updated bounding boxes, respec-
tively, of the ground truth label for the small object.
The parameters α and β are the extending factors (in
percentage) from the original bounding boxes for the
COCO standard and SOD standard, respectively. RI is
the resolution of the input image I. We provide flex-
ibility for users to select a contextual labeling stan-
dard if the small objects satisfy with both definitions.
We keep both the original bounding boxes and the en-
larged bounding boxes for all the small objects that

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

94



Figure 2: The overview of our general context learning and reasoning framework. Three contextual components: local
contextual labeling (LCL), contextual graph generation (CGG) and spatial contextual reasoning (SCR). We design a user
configuration mechanism for automating the process for various recognition tasks. Our contextual components can be applied
individually and in combination. ”⊗”: dot product. ”FC”: Fully-connected layer.

Figure 3: An example of a spoon in a image. The spoon is
relatively large in left image but it is small in right image.

satisfy with the user selected standard, in order to in-
clude local contextual information and improve the
robustness of the detection. We will provide experi-
mental settings in detail in Section 4.1.

3.2 Contextual Graph Generation

Graph Convolutional Network (GCN) (Kipf and
Welling, 2016) has been used to model the semantic
relationship between objects to solve different com-
puter vision tasks, such as scene graph generation
(Yang et al., 2018; Johnson et al., 2018) and image
classification (Chen et al., 2019). A GCN takes fea-
ture description H of all nodes n and a contextual
graph A to describe the relation between all nodes n.
When a convolutional operation is applied, the func-
tion can be written as:

f (H,A) = σ(AHW ) (3)

where W and σ denote the weight and the non-linear
activation function, respectively.

Figure 4: The visualization of CGG component.

Our Context Graph Generation component is
shown in Fig 4. When our framework reads the cat-
egory information from the user configuration, it first
searches the word embeddings Hlabels ∈ Rn×d from a
pretrained language model (Pennington et al., 2014)
as the input of the GCN network, where n is the num-
ber of label categories and d is the dimension of the
word embeddings. Then the contextual graph is au-
tomatically generated. The GCN learns a semantic
relation over the contextual graph to build the seman-
tic space. The generated semantic space from label
feature representation is H ′

labels ∈ Rn×D, where D is
the dimension of the extracted region features from
the object detector. As shown in Fig 2, we project
the region features fregions ∈ RD×N into the semantic
spaces H ′

labels. The final output is:

Pregions = so f tmax(H ′
labels fregions) (4)
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where Pregions represents the classification probability
distribution for each proposed region, and Pregions ∈
Rn×N .

In order to describe object relations between dif-
ferent categories, we use the label occurrence de-
pendency in the form of conditional probability in-
spired by (Chen et al., 2019). P(L j|Li) denotes the
probability of occurrence of label L j when label Li
appears. We automatically generate the contextual
graph A ∈ Rnxn between different categories by using
the prior label occurrence knowledge from the train-
ing data, where n is the number of label categories.
Note that a background label is also included to rep-
resent regions that do not belong to any of the cate-
gories.

3.3 Spatial Contextual Reasoning

Figure 5: The visualization of common used topological
relationships from (Clementini et al., 1993) and (Egenhofer
and Franzosa, 1991).

Spatial relations between different objects, such as the
object position and co-occurrence of the objects, have
been encapsulated in spatial context. In order to pro-
vide the generality of the spatial reasoning, we use
topological relationships to model relations between
different objects. The topological relations can reveal
the general relationship between a subject and object
pair by using certain predicate, such as above, under
and within, etc. The visualization of topological rela-
tionship is shown in Fig 5.

We use a predicate pred to describe the directional
relation between a subject and object pair [S, O] along
with the topological relationship t. The general rela-
tion R can be described as:

R[S,O] = pred[t(S,O)] (5)

For example, in urban settings, a stair usually is lo-
cated under a door. There might be overlaps or have
spatial misalignment between the door and the stair.
Examples are shown in Fig. 6. The general relation-
ship for a door and a stair can be described using Eq.
5 as:

R[door,stair] = under[overlap(door,stair)] (6)

Figure 6: Visualization for stair-door relations in urban set-
tings. Left: The label of stair is overlapped with the label of
the door. Right: The stair has a spatial misalignment with
the door.

Note that the general spatial relation is inversable
between a subject-and-object pair, such as a door is
above the stair and a stair is under a door. We fur-
ther define a search area to search the detected object
centroid with it if the object satisfies the condition in
Eq. 5 with the detected subject. Then if the object
is detected within the search area, we propose the de-
tected object as a detection and send for evaluation.
If multiple objects are detected in the search area, we
propose the max score prediction to the evaluation.
We provide the flexibility for users to configure the
general spatial relation for the categories in their own
dataset. The user-defined parameters are summarized
in Table 1.

3.4 Training Automation

As mentioned in Section 3.1 and Section 3.3, we pro-
vide the capability for users to define contextual label-
ing thresholds and contextual spatial reasoning search
areas. Although the deep learning network cannot au-
tomatically train these parameters, we enable an it-
erative training process in order to find the optimal
user defined parameter combinations. The training
pipeline is shown in Fig 7. Users can provide a thresh-
old range for each parameter (i.e., labeling extension
and search area), and set the number of training itera-
tions for finding the optimal parameter combinations.

4 EXPERIMENTS

In this section, we present our experiment results. We
first describe the experimental settings (Section 4.1)
in detail. We apply our framework on two datesets in
urban scenes (Section 4.2), the Storefront Accessibil-
ity Image (SAI) Dataset, and the CityPersons Dataset,
without any changes of the code. We compare the
performance with a baseline object detector Faster R-
CNN (Ren et al., 2015) and our previous multiCLU
(Wang et al., 2022) framework for storefront accessi-
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Table 1: Summary of the provided user-defined parameters for the spatial contextual reasoning component.

Parameters Definition
[SSSuuubbb jjjeeecccttt,,,OOObbb jjjeeecccttt] Subject and object pair
ppprrreeeddd(optional) Directional relationships between subject and object
ttt Topological relationship between subject and object
OOOvvveeerrrlllaaappp ttthhhrrreeessshhhooolllddd(optional) The threshold of overlap percentage between subject and object
SSSeeeaaarrrccchhhhhheeeiiiggghhhttt (optional) The height of search area for object
SSSeeeaaarrrccchhhwwwiiidddttthhh(optional) The width of search area for object
LLLaaabbbeeellliiinnnggg ssstttaaannndddaaarrrddd The standard for small object label enlargement
EEEnnnlllaaarrrgggeee pppeeerrrccceeennntttaaagggeee The enlarging percentage for small object labels
RRReeelllaaatttiiiooonnn dddeeessscccrrriiippptttooorrr The contextual graph generation method

Figure 7: The training automation pipeline. We randomized the user defined parameter combinations and retrain the models.

bility detection. In experimental results (Section 4.3),
we first compare the mean average precision (mAP)
overall categories. We then compare the precision (%)
and recall (%) for each category in the dataset. Fur-
thermore, we provide results of our training automa-
tion for finding the optimal user defined parameters.
Finally, we provide ablation analysis (Section 4.4)
of each component based on the results of our con-
textual components individually and in combination
for storefront accessibility detection. And we also
demonstrate the generality of our framework by com-
paring the performance with baseline detector Faster
R-CNN(Ren et al., 2015) for pedestrian detection, by
using a urban scene pedestrian dataset (Zhang et al.,
2017).

4.1 Experimental Settings

We use Faster R-CNN (Ren et al., 2015) as the un-
derling detector for both storefront accessibility de-
tection and pedestrian detection. We adopt ResNet-50
(He et al., 2016) and Feature Pyramid Network (FPN)
(Lin et al., 2017) as the backbone feature extractor,
which is pretrained on the COCO dataset. Our GCN
model for contextual graph generation consists of two
layers with the output dimension of 1024. LeakyReLu
(Maas et al., 2013) is used as the activation function
for GCN. We use 300-dim word embeddings from
GloVe (Pennington et al., 2014) as the input label fea-
ture vector for GCN model. Stochastic Gradient De-
scent (SGD) is used as the optimizer during training.
The momentum is set to 0.95 and the weight decay is

set to 1e-4, respectively. The initial learning rate is set
to 0.005, and it drops by 0.25 for every 8 epochs. The
total training epochs is 40 in total for storefront acces-
sibility detection and 60 for pedestrian detection. In
order to compare the performance between our pro-
posed framework with our previously designed Mul-
tiCLU (Wang et al., 2022), we initially use the same
settings as described in (Wang et al., 2022). We use
the Small Object Dataset(SOD) standard to enlarge
the labels for small objects in the SAI dataset. The
enlarge percentage is set to 15 percent (i.e., β=0.15).
we use the same small object standard for CityPer-
sons dataset and the enlarge percentage is set to 10
percent (i.e., β=0.10). The configurations of general
spatial contextual reasoning for both tasks are shown
in Table 2.

4.2 Dataset Description

Storefront Accessibility Image Dataset. We use the
SAI dataset described in (Wang et al., 2022), which
consists of 3 main categories (doors, knobs, stairs)
for storefront accessibility in an urban environment.
The dataset is collected from Google Street View
of New York city using Google Street View API.
The final dataset is central cropped images from the
panorama images in which the storefronts are clearly
seen. Overview of the SAI dataset is shown in Table
4. There are 1102 images in total, with 992 images in
the training set and 110 images in the testing set. An
example of labeled storefront objects is shown in Fig
8.
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Table 2: Default user parameter settings for our experiments on the SAI Dataset(Wang et al., 2022) and the CityPersons
Dataset (Zhang et al., 2017). O T: Overlap threshold.

Task [Subject, Object] Predicate Topology O T Search area height Search area width

SAI [door, knob] - within - - -
[door, stair] under overlap 0.2 0.2heightdoor + heightstair widthdoor + widthstair

CityPersons [person, bicycle] under overlap 0.4 0.5heightperson widthbicycle

Table 3: Results on recall(%), precision(%) and F1 score (%) per category for various combinations of the three general
contextual components, compared with a baseline and a previous methods on the SAI dataset. The best results are in bold and
the second best underlined.

Model Precision ↑ Recall ↑ mAP ↑ Recall ↑ F1 Score ↑Door Knob Stair Door Knob Stair
Faster R-CNN(Ren et al., 2015) 75.6 17.7 66.0 87.5 47.6 73.1 53.1 69.4 60.2
MultiCLU (Wang et al., 2022) 75.6 51.2 70.0 92.3 80.4 83.0 66.4 85.2 74.6

+LCL 78.1 41.3 66.8 88.9 77.7 74.5 62.1 80.4 70.1
+CGG 78.0 19.0 68.5 90.1 53.0 79.4 55.2 74.2 63.3
+SCR 77.8 18.6 67.2 88.8 52.4 74.5 54.5 71.9 62.0

+LCL+CGG 78.4 50.0 69.2 90.8 75.0 79.4 65.9 81.7 73.0
+CGG+SCR 78.2 21.2 69.6 90.3 55.8 80.8 56.3 75.6 64.5
+LCL+SCR 79.2 41.2 67.8 89.2 77.8 74.5 62.7 80.5 70.5

Proposed Framework (C3) 78.2 52.3 69.6 92.0 79.9 82.3 66.7 84.7 74.6

Figure 8: The label example from SAI dataset(Wang et al.,
2022). Red: Ground truth label of the door. Cyan: Ground
truth label of the knob. Green: Ground truth label of the
stair.

Table 4: Overview of two urban scene datasets: SAI Dataset
and CityPersons Dataset. #C: Number of Categories; #T:
Number of Samples in the Training Set; #V: Number of
Samples in the Validation Set.

Datasets #C #T #V
SAI (Wang et al., 2022) 3 992 110
CityPersons (Zhang et al., 2017) 4 2975 500

CityPersons Dataset. The CityPersons dataset is a
subset of Cityscapes (Cordts et al., 2016), which only
consists of person annotations. The dataset has four
categories: pedestrian, rider, sitting person and per-
son(other). Overview of the dataset is shown in Table
4 as well. An example of labeled pedestrians is shown
in Fig 9.

Figure 9: The label example from CityPersons Dataset
(Zhang et al., 2017). Red: Pedestrian. Blue: Rider. Yel-
low: Sitting person.

4.3 Experimental Results

Comparison with Baseline Faster R-CNN(Ren
et al., 2015) and MultiCLU(Wang et al., 2022). We
first compare our proposed general context learning
framework with the baseline detector Faster R-CNN
(Ren et al., 2015) and the previous proposed Mul-
tiCLU (Wang et al., 2022) on the SAI dataset. We
measure the mean average precision (mAP) and re-
call over standard 0.5 IoU threshold. The results
(Table 3) show that our proposed framework gain
great improvement over Faster R-CNN on both mAP
(+13.6%) and recall (+15.3%). Our general context
framework also achieves slight better performance on
mAP (+0.3%) but a slightly lower performance on
recall (-0.5%) comparing with the MultiCLU frame-
work with specially designed context mechanisms.
Overall, our general context framework achieves the
same performance as the specifically designed Multi-
CLU on F1 score, which is a 14.4% increase from the
baseline model Faster R-CNN.
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Comparison Between Various Contextual Compo-
nents. We further compare the performance between
the different combination of three contextual com-
ponents. We measure the small objects in the SAI
dataset using the same approach in (Wang et al.,
2022). If local contextual labeling is enabled, we use
both original labels and enlarged labels for small ob-
jects that satisfy the standard. If both labels are de-
tected for same small object, we only count one to
avoid duplicated detection. The results are shown in
Table 3. When only apply a single contextual compo-
nent, The recall is improved over baseline from 2.8%
to 11%, and mAP is improved from 1.4% to 9%. We
can also observe that when applying a single contex-
tual component, local contextual labeling has greater
impact than the other two components.

When combinations of two contextual compo-
nents are applied, all combinations surpass the per-
formance over the baseline detector, from +3.2% to
12.8% on mAP and 6.2% to 12.3% on recall. When
the combinations have the Local Context Labeling
(LCL) component, they outperform the other combi-
nations with large margins on both mAP (+6.4% to
9.6%) and recall (+4.9% to 6.1%). The results in-
dicates that including the contextual information sur-
round the small objects can aid the successful detec-
tion of the small objects, the important doorknobs in
this example. Furthermore, when comparing with the
single LCL component, both Context Graph Gener-
ation (CGG) and Spatial Context Reasoning (SCR)
have positive impact, and they further improve the re-
sults over a single LCL component on both mAP and
recall. When comparing between applying both CGG
and SCR and applying them individually, the com-
bination slightly improves both mAP and recall over
the single CGG and single SCR component. When
all three components (C3) are applied, our proposed
framework achieves the best result, with 13.6% im-
provement on mAP and 15.3% improvement on re-
call. We can also observe that our general frame-
work improves mAP on all categories over Multi-
CLU(Wang et al., 2022), but with only very slightly
decreased recall. This indicate that the specific de-
signed MultiCLU could introduce more false posi-
tives than correct predictions, hence our framework
achieves better precision and slightly worse recall.
Results on Finding Optimal Combination of User
Defined Parameters. We further use iterative train-
ing to find the optimal combinations of user defined
parameters. As described in MultiCLU(Wang et al.,
2022), the default enlarge percentage for the small ob-
ject label is 15%, the overlap between door and stair
is 20% and the search area height is 20% height of
detected door plus the height of detected stair. We

Table 5: Result comparison on training automation to find
the optimal user defined parameters combination on SAI
dataset.

(Enlarge/Overlap/heightS) mAP ↑ Recall ↑
Default(0.15, 0.2, 0.2) 66.7 84.7

(0.16, 0.17, 0.16) 68.4 85.7
(0.08, 0.12, 0.18) 66.3 83.4
(0.09, 0.06, 0.17) 65.9 83.9
(0.14, 0.11, 0.13) 66.5 83.1
(0.19, 0.13, 0.11) 66.1 83.6

further random select the combinations by setting a
threshold range for each parameter. We set [0.05,0.2]
as the threshold for both enlarge percentage and over-
lap percentage. [0.1,0.2] is set as the threshold for
the height of subject (door). We keep 2 decimals
for the random selection and iterate the training for
6 times. The results (Table 5) show that when enlarge
percentage is below 15 percent, both mAP and recall
decrease comparing with default settings. The results
also show that it is possible to find a better combina-
tion of user defined parameters comparing with de-
fault parameter settings.
Comparison on Pedestrian Detection with Various
Combinations Of Contextual Components. We fur-
ther evaluate our general context learning and reason-
ing framework on pedestrian detection, by comparing
with the baseline detector Faster R-CNN(Ren et al.,
2015), without any change in coding. We first com-
pare the evaluation results on reasonable and heavy
subsets of the data with the baseline using the stan-
dard evaluation metric in pedestrian detection MR−2

(the lower, the better). These subsets are defined
as: Reasonable: h ∈ [50,∞], v ∈ [0.65,1]; Heavy:
h ∈ [50,∞], v ∈ [0,0.65], where h and v denote the
height and visible ratio of pedestrians, respectively.
When only apply the single LCL component, the per-
formance improve 1.1% on the reasonable subset and
1.7% on the heavy subset (Table 6). We further add
in the fine-grained category (rider) in CityPersons
dataset during training in order to enable the CGG
and SCR components. Similar to the SAI detection
results, when the combinations have the LCL compo-
nent, the result is better than the other combinations.
Both CGG and SCR have minor impact on pedestrian
detection,. It might because the low correlation be-
tween pedestrians and other objects in urban scene.
Overall, our proposed framework with all the three
components achieves the best performance on both
the reasonable subset (-1.4%) and the heavy subset (-
1.7%), comparing with the baseline detector and other
combinations.
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Table 6: Comparisons with the baseline detector on the CityPersons validation set.

Model LCL CGG SCR Reasonable ↓ Heavy ↓
Faster R-CNN (Ren et al., 2015) - - - 13.4 36.9

Single Component

√
- - 12.3 35.6

-
√

- 13.3 37.1
- -

√
13.0 36.5

Two Components

√ √
- 12.2 35.2

-
√ √

13.2 36.5√
-

√
12.0 36.0

Proposed framework (C3)
√ √ √

12.0 35.2

4.4 Ablation Studies

We further studied the contribution of each general
contextual component. As we applied various com-
binations of three contextual components, We can
clearly see the impact of each component from Table
3 and Table 6, for both storefront accessibility detec-
tion and pedestrian detection.

Before sending an image into the detector, local
contextual labeling uses selected standard definitions
of small objects to automatically expand the ground
truth label, in order to include local contextual infor-
mation for small objects for the network to learn. Our
evaluation results show that enough local contextual
information has great impact on small objects. We
can observe that when LCL is applied, the framework
gain great improvement on both mAP (12.8%) and re-
call (12.3%) for the SAI dataset. Although there is no
great improvement for pedestrian detection, LCL also
shows greater impact than the other two components.

We apply contextual graph generation during the
network training. We use word embeddings from pre-
trained language model and the contextual graph gen-
erated from prior knowledge from the training set as
the input of Graph Convolutional Network. The GCN
learned over the word embeddings and the contextual
graph to build a semantic space. We then project the
region features extracted from object detector into the
semantic space for final prediction of each region. As
the result shown in Table 3 and Table 6. The CGG
component does not have the same impact as the LCL
component for the SAI dataset, and even smaller for
pedestrian detection. This might because the contex-
tual graph is using the prior co-occurrence knowledge
from the training set between categories, where SAI
dataset has higher correlated categories compare to
CityPersons dataset.

We further propose a spatial contextual reasoning
(SCR) component, using general topological relation-
ships to model the relations between subject and ob-
ject pairs. As shown in Table 3, although the per-
formance has slight improvement when applying to
the baseline detector, the SCR component can benefit
the other two components when apply in combina-

tions. The SCR also has a minor impact on pedes-
trian detection task. It might because the general spa-
tial reasoning have minor impact on the pedestrians
even when the fine-grained category is added for spa-
tial reasoning. It could also because the lack of data
on fine-grained categories for CityPersons dataset.
Our proposed framework exhibited improvement over
any other combinations, The result also shows that
contextual components can benefit from each other,
hence maximize the performance over the baseline.

5 CONCLUSION

In this work, we proposed a general context learn-
ing and reasoning framework. We compared our
framework for the storefront accessibility detection
task and the pedestrian detection task, with a base-
line detector Faster R-CNN (Ren et al., 2015) and
our previously proposed context learning framework
particularly designed for storefront accessibility de-
tection(Wang et al., 2022). Our new general frame-
work can apply to various visual tasks without any
changes, and in a general manner, guide context learn-
ing from data labeling, contextual graph during train-
ing and general spatial reasoning during post process-
ing. Our results show that our proposed framework
applied to the same storefront data can achieve same
performance as the previous context learning frame-
work specifically designed for storefront accessibility
detection. The results also show that the framework,
when applying to a different dataset CityPersons, can
achieve better performance over the baseline detec-
tor for pedestrian detection. We demonstrate that
our contextual components can be applied individu-
ally and in combinations, and easily add and remove
from the object detector. In future works, the effec-
tiveness of the contextual components in various vi-
sual detection tasks will be investigated, which could
be more generalized and adaptive for other different
visual detection tasks. We will also investigate how
to better model relations between visual context and
non-visual context. We hope our work could provide
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a generalized approach on guiding context learning in
real world applications so adapting to different tasks
would be more efficient.
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