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Keywords: Incremental Learning, Semi-Supervised Learning, Co-Training, Random Forest, Emotion Recognition.

Abstract: In this work, we propose to adapt a generic emotion recognizer to a set of individuals in order to improve
its accuracy. As this adaptation is weakly supervised, we propose a hybrid framework, the so-called co-
incremental learning that combines semi-supervised co-training and incremental learning. The classifier we
use is a specific random forest whose internal nodes are nearest class mean classifiers. It has the ability to learn
incrementally data covariate shift. We use it in a co-training process by combining multiple view of the data
to handle unlabeled data and iteratively learn the model. We performed several personalization and provided a
comparative study between these models and their influence on the co-incrementation process. Finally, an in-
depth study of the behavior of the models before, during and after the co-incrementation process was carried
out. The results, presented on a benchmark dataset, show this hybrid process increases the robustness of the
model, with only a few labeled data.

1 INTRODUCTION

These last decades, the field of automated emotion
recognition has dramatically grown. New solutions,
mainly based on machine learning algorithms, have
been developed. New data sets have been shared
within the research community and many emerging
applications are starting to mature in various fields
like video gaming, education, health, medical diagno-
sis, etc. Nevertheless, many challenges remain, like
face lightning or face pose (Sariyanidi et al., 2014).

In this paper, we address the challenge of identity
bias. The individual variability between people has
a direct consequence on the recognition of emotions
(Senechal et al., 2010). On the morphological level,
the shape and ”texture” (skin, wrinkles) of the face
differ according to different factors (gender, age, etc.).
On the behavioral level, each subject has his own way
of expressing emotion, depending on his introverted
or extroverted personality.

It is well known that building accurate classifiers
involves gathering labeled data. Due to time and cost
constraints, it seems irrational to expect labeling hun-
dreds or even thousands of data that would be nec-
essary to train today’s models in a supervised way.
Moreover, labeling (potentially many) new affective
data corresponding to new subjects seems too costly.

To solve this issue, one solution is to personal-

ize generic classifiers. In detail, these classifiers are
trained on large-scale datasets containing many sub-
jects. Obviously, regardless of the dataset size, it is
highly unlikely to capture all of the inter-subject vari-
ability in terms of morphology and behavior. Con-
sequently, these generic “omni-subjects” classifiers
will perform the best they can, given the biases de-
scribed above. The idea behind personalization is
to adapt these classifiers to a given set of subjects
(multi-subjects approach), or even to one particular
subject (mono-subject approach). Researchers in ar-
eas like handwriting recognition (Oudot et al., 2004)
and speech recognition (Meng et al., 2019) got to
work on this ”variability problem”. To overcome this
challenge, they built self-adaptation (incremental) al-
gorithms. The general idea of these algorithms is
to continuously adapt a generic (”world”) model to
personalize it on one single user, by using language
constraints, for example. Unfortunately, for emotion
recognition in images, such rules do not exist. That is
why we need to turn to other solutions.

In the field of semi-supervised learning, the co-
training algorithm (detailed in the next section) uses
several models, trained on labeled data, to predict
the class (also called pseudo-label) of unlabeled data.
Then, it add these data to labeled set and retrain the
models on this augmented dataset. This process has a
high cost in terms of computational time.
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The main proposal of this work is to combine co-
training with incremental learning in order to avoid
this issue. Initial models are generic ones, trained on
a large set of subjects. They are used to predict the
pseudo-label of new data, corresponding to new sub-
jects. After pseudo-labeling these new samples, we
apply incremental learning technics to adapt the mod-
els. Therefore, these models are no more generic, but
personalized to new subjects. We called this process
co-incrementation learning. One of its main advan-
tage is to reduce drastically the computing time while
improving the recognition accuracy on new subjects,
thus reducing the identity bias.

The rest of the article is as follows. Next section
will present the incremental learning field with a par-
ticular focus on random forest (RF)-based algorithms
and detail the co-training process. Section 3 is de-
voted to the data and the feature extraction process.
Section 4 presents in detail the nearest-class mean for-
est (NCMF), how it differs from classical RF and the
way it can learn incrementally. In section 5, we detail
the original co-incrementation algorithm that com-
bines incremental NCMF with co-training. Then, we
present in section 6 results obtained on generic mod-
els (before adaptation) and after co-incrementation on
specific chunks. Finally, we conclude in section 7.

2 RELATED WORKS

Automatic Facial Emotion Recognition (FER) has re-
ceived wide interest in a variety of contexts, espe-
cially for the recognition of action units, basic (or
compound) emotions and affective states. Although
considerable effort has been made, several questions
remain about which cues are important for interpret-
ing facial expressions and how to encode them. Af-
fect recognition systems most often aim to recognize
the appearance of facial actions, or the emotions con-
veyed by those actions (Sariyanidi et al., 2014). The
former are generally based on the Facial Action Cod-
ing System (FACS)(Ekman, 1997). The production
of a facial action unit has a temporal evolution, which
is typically modeled by four temporal segments: neu-
tral, onset, apex, and offset (Ekman, 1997). Among
them, the neutral is the phase with no expression and
no sign of muscle activity; the apex is a plateau where
the maximum intensity usually reaches a stable level.

As seen before, identity bias results in perfor-
mance losses on generic learning models. Strategies
for grouping individuals by common traits such as
gender, weight, or age and personalizing models on
these groups have already shown promising results
in a wide range of areas such as activity recognition

(Chu et al., 2013) (Kollia, 2016) (Yang and Bhanu,
2011). However, quite often the strategy used con-
sists in personalizing one model per user since it en-
sures better results. This can quickly become complex
when the number of subjects increases or when the
number of collected data per subjects keeps small. In
the field of emotion recognition, different solutions to
this challenge have been considered, personalization
methods being the most promising (Chu et al., 2013)
(Yang and Bhanu, 2011).

One of the main characteristics of incremental
techniques is the ability to update models using only
recent data. This is often the only practical solution
when it comes to learning data ”on the fly” as it would
be impossible to keep in memory and re-learn from
scratch every time new information becomes avail-
able. This type of technique holds promise for per-
sonalizing models to individuals. It has been demon-
strated that Random forests (RF) (Breiman, 2001), in
addition to their multi-class nature and ability to gen-
eralize, have also the ability to increment in data and
classes (Denil et al., 2013) (Hu et al., 2018) (Lak-
shminarayanan et al., 2014) . Besides, Random for-
est models have been used successfully for personal-
ization (Chu et al., 2013) (Kollia, 2016) (Yang and
Bhanu, 2011). Nearest class mean forests derived
from RF, have demonstrated to be able to outperform
RF performance and allow an easy way to perform in-
crementation (Ristin et al., 2014), even in the emotion
recognition field (Gonzalez and Prevost, 2021).

In the era of big data, with the increase in the
size of databases, the field of machine learning faces
a challenge, the creation of ground truth, which can
be costly in time and effort. We are therefore in-
creasingly finding ourselves in contexts of incom-
plete supervision, where we are given a small amount
of labeled data, which is insufficient to train a good
learner, while unlabeled data is available in abun-
dance. To this end, different learning techniques have
been proposed (Zhou, 2018) with human intervention
such as active learning (Settles, 2009) or without hu-
man intervention such as semi-supervised methods.
One of these last ones is based on disagreement meth-
ods (Zhou and Li, 2010), co-training being one of its
most famous representations.

Co-training is a learning technique proposed in
1998 by Blum and Mitchell (Blum and Mitchell,
1998) which is traditionally based on the use of two
machine learning models. The main idea is that they
complement each other: one helps the other to cor-
rect the mistakes it does not make, and vice versa.
A second idea is to exploit data that are not labeled
(present in large quantities), rather than processing
only labeled data (present in small quantities). For
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this to work, the dataset must be described according
to two independent views, i.e., two different represen-
tation spaces for this same dataset. Otherwise, their
potential to provide each other with relevant informa-
tion is limited. Although, this assumption is difficult
to achieve in practice, as Wang and Zhou explain in
2010 in their study on co-training (Wang and Zhou,
2010).

During co-training, estimations of probabilities
are mainly needed (see Sec.5.1) and act as confidence
levels. For a decision tree (DT), this is deduced from
the statistics stored in the leaves during the learning
process. Unfortunately, DTs are considered as poor
estimators of these probabilities and suggestions have
been made to compute the posterior probabilities dif-
ferently, one of them being to apply a Laplace cor-
rection (Provost and Domingos, 2003)(Tanha et al.,
2017). Semi-supervised learning was first proposed
in 2003 to effectively use unlabeled data for facial
expression recognition with the Cohn-Kanade dataset
(Cohen et al., 2003). It consists in switching models
during co-training when performance collapses. In-
deed, one of the drawbacks of co-training is the label-
ing error that can occur during co-training iterations.
This effect can then be tackled either by placing less
confidence in the model, by setting a higher threshold,
or by looking for strategies to correct these errors on
the fly (Zhang et al., 2016).

An observable limitation in the co-training pro-
cedure is that the classifier retains multiple training
sessions on the same set of data. We could take ad-
vantage of the progress in incremental learning to
make only one pass and update the tree while pseudo-
labeling the data without re-training from scratch at
each iteration.

3 DATASETS AND FEATURE
EXTRACTION

3.1 Datasets

3.1.1 Compound Facial Expressions of Emotion
(CFEE)

The CFEE dataset contains 230 subjects with one im-
age for each of the 22 categories present in the dataset:
6 basic emotions (anger, surprise, sad, happy, fear,
disgust), 15 compound emotions (i.e. a combination
of two basic emotions), and the neutral expression
(Du et al., 2014). For each subject, we selected 7
images with the six basic emotions and the neutral
face (the dataset doesn’t have the contempt emotion).

Thus, 1285 images are retained to train the NCMF
baseline classifier and 322 for evaluation.

3.1.2 Extended Cohn-Kanade CK+

The CK+ dataset is the most popular database in the
field of emotion recognition. It contains 327 labeled
sequences of deliberate and spontaneous facial ex-
pressions from 123 subjects, 85 females and 38 males
(Lucey et al., 2010). A sequence lasts approximately
20 frames in average (from 4 to about 60), and always
begins with a neutral expression, then progresses to
a specific expression until a peak in intensity (apex)
that is labeled using the Facial Action Coding Sys-
tem (FACS) (Ekman, 1997). By collecting the labeled
images (without including the emotion of contempt),
and by focusing on neutrals and apexes we collect
1802 images labeled among the 6 basic emotions (590
for men, and 1202 for women).

3.2 Feature Extraction

The OpenFace library developed by (Baltrušaitis
et al., 2016) was used to extract 68 facial land-
marks and high level features, namely, facial Action
Units (AUs). We then extracted Local Binary Pat-
terns (LBP) and Histograms of oriented Gradients
(HoG) features with the scikit-image library from the
cropped faces registered by OpenFace.

4 NEAREST CLASS MEAN
FOREST

4.1 Original Algorithm

Nearest Class Mean Forest (NCMF) (Ristin et al.,
2014) is a Random Forest (RF) (Breiman, 2001)
whose nodes are Nearest Class Mean (NCM) (Hastie
et al., 2009) classifiers. In these nodes, two class cen-
troids (called ci and c j) are computed. They are used
to direct samples x (given a distance measure) to the
left child of the node (if x is closer to ci than c j) or its
right child (otherwise). A class bagging occurs during
training: only a random subset of available classes is
considered in each node. The splitting decision func-
tion is also modified. Among the data available in the
current node n, we can compute all the possible pairs
of centroids. The optimal pair is the one that maxi-
mizes the Information Gain I (Quinlan, 1986).

The main advantage of NCM forests is their abil-
ity to learn new data and classes incrementally. Two
incremental strategies, namely, Update Leaf Statis-
tics (ULS) and Incremental Growing Tree (IGT) have
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been introduced in (Ristin et al., 2014). The incre-
mental data is propagated, as in a prediction phase,
in each tree of the forest; then, the occurrences at
the level of the predicting leaves are updated (ULS).
Since the ULS strategy only updates the distributions
in the leaves of the tree, when incremental data ap-
pear, the distributions evolve and thus the predictions
are likely to change. With the IGT strategy, we first
proceed as with ULS; then, right after the update of
the class distributions of the leaf, we check if the in-
crement satisfies a condition that could locally lead to
the construction of a subtree, e.g. majority label mod-
ification. If this is the case, the leaf is transformed
into a node, which triggers the recursive construction
of the subtree from this position. The data consid-
ered by the subtree are all those that were present in
this leaf, either during the learning or during the in-
crementation.

4.2 Probabilistic Decision Criterion

Classically, for decision trees, a test sample is propa-
gated from the root node to a terminal leaf. Then, the
decision is made by the majority class present in this
leaf. For tree forests, a majority vote is applied on tree
decisions.

As explained above, co-training needs to evaluate
the confidence we have in each view for a given sam-
ple. So, we need to compute a posterior probability
vector. Then, using the maximum a posteriori rule,
we take the highest probability and use a confidence
threshold to decide whether x will be used for incre-
mental training or not.

Given a sample x, let φµ : Rm 7→ Rl be the predic-
tion function associated with the model µ and return-
ing a vector containing the class conditional posterior
probabilities:

∀x ∈ Rm,φµ(x) = [P(k1|x), ...,P(kl |x)], (1)

where
• K = {k1, ...,kl} is the set of l labels,
• x is an observation to be classified,
• P(ki|x) the conditional (posterior) probability that

x belongs to the class ki, for 1≤ i≤ l.
The class assigned to the observation x, li+(x), is

then determined by the rule of the maximum a poste-
riori:

li+(x) = argmax
ki∈K

[P(k1|x), ...,P(kl |x)]. (2)

We establish a confidence criterion, consisting in
attributing a threshold θ such that:

max [P(k1|x), ...,P(kl |x)]≥ θ. (3)

If the forest is composed of t trees, we have t pre-
diction vectors for a test sample. It is thus necessary
to define an operator to combine optimally these vec-
tors.

Consider, for an observation x and a decision
tree t, the vector St(x) = [St(k1|x), ...,St(kl |x)], where
St(ki|x) corresponds to the number of occurrences of
the class ki in each leaf of t. The vector φµ is then
computed as follows:

φµ(x) =
1

R(x) ∑
t∈T

St(x). (4)

with,

R(x) = ∑
t∈T

l

∑
i=1

St(ki|x). (5)

We first aggregate the values of all the predictor
leaves and then, calculate the global probability at the
forest level (4). Thus, a leaf with a smaller number of
class members than another leaf will have less impact
in the final calculation of the φµ(x) probabilities.

5 CO-INCREMENTATION
ALGORITHM

5.1 Original Co-Training Algorithm

Co-training (Blum and Mitchell, 1998) is a semi-
supervised learning technique that can be used
when a dataset is partially labeled. It involves the
collaboration between two machine learning models.
Let V1 and V2 be two families of features, also
called ”views”, fully describing each observation of
the dataset x = (V1(x),V2(x)). The corresponding
datasets are denoted L[V1],L[V2] for labeled data
and U [V1],U [V2] for unlabeled data. Each model is
trained on a view and both models must satisfy the
independence assumption.

1. Pre-Training: each model initially trains on
its own set labeled L[V1] or L[V2].

Co-training is an iterative process. For each ob-
servation of U , the following 2 steps are performed:
2. Labeled Set Extension: each model predicts a

pseudo-label for the observation; the most reliable
prediction (given a confidence criterion) is used to
add the observation and its most reliable pseudo-
label to the labeled set of the other view, L[V2] if
model 1 was the most reliable and vice versa ;

3. Self-Training: the model whose pseudo-label was
the least reliable is re-trained on the new labeled
set.
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We can notice that single-view classifiers require
a complete re-learning at each iteration. This pro-
cess can become expensive in terms of computational
time, especially if the size of U is large.

5.2 Incremental Co-Training Algorithm
(EBSICO)

In this research work, we propose a co-training
method that differs from the classical method (see
Sec.5.1) by using a hybrid method, combining
semi-supervised learning and incremental learning
paradigms. Our aim is not to build generic classi-
fiers but to personalize generic classifiers to a sub-
set of subjects. Thus, we use a first dataset G to
build these generic single-view classifiers. Then, the
second dataset I is used to personalize these classi-
fiers incrementally by using a co-training based al-
gorithm. The main advantage of this process is to
avoid re-training from scratch the single-view classi-
fiers through co-training iterations. Fig. 1 shows the
different steps of our method that are described be-
low:

1. Pre-Training: At step 1, generic single-view clas-
sifiers are trained respectively on their own views
G[V1] and G[V2]. These are the reference models,
and will be referred to by the name of their view.

2. Error-Based Self-Incrementation (EBSI): At
step 2, the model associated to the view Vi pre-
dicts a class for each of the observations of L[Vi].
If this predicted class is different from the ground
truth (the dataset L[Vi] is labeled), the model incre-
ments on this example, with a INCR() function.
This error-based incremental strategy is possible
since we work on generic models that are already
trained. This step is described in the algorithm 1.

3. Error-Based CO-incrementation (EBCO): For
each unlabeled x observation of U [Vi],

(A) We identify the most reliable model, using the
posterior probabilities p1+(x) and p2+(x):

p1+(x) = maxφµ1(x). (6)

p2+(x) = maxφµ2(x). (7)
The largest posterior probability thus informs
us about the most reliable model for predicting
the pseudo-label of x. We use the predictions of
the models l1+(x) and l2+(x) (see Eq.2) as the
pseudo-label.

(B) Then, the less reliable model is incremented
in a supervised manner from the unlabeled ob-
servation using the pseudo-label provided by

the more reliable model. The algorithm 2 de-
scribes more precisely the co-incrementation
procedure.

Contrary to the classical co-training algorithm,
with our approach EBCO, for each iteration, when
the maximum probability of belonging to a class ex-
ceeds the confidence threshold EBCO, the least reli-
able model does not restart its learning from the be-
ginning. It only increments on the observation of the
considered iteration. Moreover, it increments only if
its pseudo-label differs from the one delivered by the
most reliable model.

Algorithm 1: Error-based Self-incrementation (EBSI).

Require: generic model µi pretrained on G[Vi]

for all (x,y) ∈ L[Vi] do
The model uses the function φ(x) to obtain the
probability vector of class membership:
p(i)← φ(x[Vi])
The predicted label is thereby determined as:
li+← argmax(p(i))
if li+ ̸= y then

µi← INCR(µi,x,y)
end if

end for

Algorithm 2: Error-Based Co-Incrementation (EBCO).

Require: models µ1 and µ2 incremented following
EBSI method, θ≥ 0
for all u ∈U do

Each model uses the function φµ(u) to obtain the
probability vectors of class membership:
p(1)← φµ1(u

[V 1])

p(2)← φµ2(u
[V 2])

The pseudo-labels are then:
l1+← argmax(p(1))
l2+← argmax(p(2))
The probabilities associated are then:
p1+← max(p(1))
p2+← max(p(2))
if p1+ > p2+ and p1+ ≥ θ then

if l2+ ̸= l1+ then
µ2← INCR(µ2,u[V 2], l1+)

end if
else if p2+ > p1+ and p2+ ≥ θ then

if l1+ ̸= l2+ then
µ1← INCR(µ1,u[V 1], l2+)

end if
end if

end for
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Figure 1: Diagram describing the entire proposed EBSICO
process - (1): pre-training on the first dataset, (2): incre-
menting on labeled samples from the second dataset (EBSI),
(3) incrementing on unlabeled samples from the second
dataset (EBCO), using for each sample the prediction of the
most reliable model as a pseudo-label (A) and increment-
ing the least reliable model with this pseudo labeled sample
(B).

6 EXPERIMENTAL PIPELINE
AND RESULTS

6.1 Data Preparation

To carry out our experiments, in a first stage we per-
formed data partitioning. The CFEE dataset is used
to train the generic single view classifiers. Thus, it
corresponds to the dataset G. The CK+ database was
divided into two subsets named I and E, used respec-
tively for incremental learning and evaluation. Next,
we split I into L and U subsets corresponding to the
labeled and unlabeled sets, such that L∪U = I. For
each sequence of n images (e.g. see Figure 2), we
noted i0 and i1 the first and second image correspond-
ing to the neutral emotion and in−1 and in the two last
images of the sequence, corresponding to the maxi-
mum intensity emotion (apex). We aim to evaluate
the ability of co-incrementation to recognize forced
expression after learning subtle ones. For this pur-
pose, the images were assigned to the subsets E and I
as follows:

• E contains the set of images i0 and in
• I contains the set of images i1 and in−1

6.2 Reference Model Training

As described in section 3.2, we extracted low-level
texture features and high-level facial Action Units.
So, each sample x is described by two views: x =

Figure 2: Example of a video sequence from CK+ for the
surprise.

(AU,T X) where AU corresponds to the Action Units
vector and T X to the concatenation of LBP and HoG
vectors.

The NCMFs models were first trained in a super-
vised manner on fully labeled CFEE using AU and
T X views. These models, corresponding to step 1 of
the EBSICO procedure, are generic ones. They will
be used as reference models regardless of the person-
alization strategy. For each clustering criterion, we
refer to these models respectively by the names AU [Θ]

and T X [Θ] (see below).

6.3 Personalization Chunking

The purpose of the second stage is to apply data per-
sonalization, which consists in performing data clus-
tering. We are going to separate the data into slots
by grouping them, according to a criterion called per-
sonalization. For each of these criteria where Θ is
the acronym of personalization, we name these mod-
els respectively by AU [Θ] and T X [Θ]. The proposed
customizations are as follow:

ALL: No customization is an approach that serves
as a baseline and consists of applying the co-
incrementation algorithm directly on all the data
in I, as one would do for a generic model. It uses
only one group containing all the observations of
I. In the following, we refer to this strategy as
ALL.

GENDER: The gender personalization approach
performs a clustering of the data according to the
perceived gender. We obtain two groups of data
named M (man) and W (woman) corresponding
to men and women data respectively. The gender
information has been assigned manually. In the
following, we refer to this strategy as GENDER.

MORPHO: The morphological personalization ap-
proach performs a clustering of the data accord-
ing to the face morphology. To do so, we used
the landmarks (see Sec.3.2) detected on the neu-
tral face of each subject. Then, the K-means al-
gorithm was used on these data to identify several
clusters based on morphological features.
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We decided to divide the subjects of the dataset
into 8 slots which we considered as a good com-
promise in terms of number of images per slot and
number of models; figure 3 illustrates the varia-
tion of the total intra-class variance for a number
k of clusters and confirms us in this choice. In the
following, we refer to this strategy as MORPHO.

Figure 3: Evolution of the intra-class variance according to
the number of clusters (elbow plot).

Note that each group (cluster) is said to be subject-
independent. On the one hand, these data have not
been seen during the training of the generic models.
On the other hand, all images of the same subject be-
long to the same cluster and the same cluster can con-
tain data of several subjects. For a given cluster, the
associated sets I and E contain the same individuals
but different images (in terms of emotional intensity),
in order to evaluate the impact of personalization on
the reference models after co-incrementation.

6.4 Chunk Specialization

In the third stage of the proposed pipeline, the EB-
SICO process is executed within each chunk as fol-
lows. In our experiments we considered a θ value
of 0.8 and used NCM forests of 50 trees with the
IGT strategy as the incrementation INCR() function
(Ristin et al., 2014).

We decide to use a ratio of 5% of labeled data, so,
in the following, |L|= 0,05∗ |I| and |U |= 0,95∗ |I|.

Then, we execute sequentially and for each single-
view classifiers:

• EBSI on L

• EBCO on U

6.5 Model Evaluation per Chunk

The last step of the pipeline consists in evaluating
each model per chunk at different stages of the EB-
SICO procedure, in order to follow its evolution in

terms of personalization. Thus, per view, and per
chunk, we obtain a performance score that we mea-
sure when the model is in the baseline state, at the end
of the EBSI procedure, and at the end of the EBCO
procedure.

To carry out our experiments, we used the accu-
racy metric to evaluate the model performance indi-
vidually:

acc =
∑x∈X I(y = li+(x))

|Y |
(8)

where y is the class (ground-truth) of x, the expres-
sion ∑x∈X I(y = li+(x)) corresponds to the number of
correct predictions and |Y | to the total number of ob-
servations to be labeled.

Likewise, to evaluate the contribution of a specific
personalization criterion Θ which may contain several
chunks, we used:

acc[Θ] =
∑c∈C acc(c)×|c|

|C|
(9)

where C represents the set of chunks and c corre-
sponds to the samples belonging to a chunk.

6.6 Experimental Results

6.6.1 Impact of Co-Incrementation

The purpose of this analysis is to evaluate the con-
tribution provided by the whole co-incrementation
process (EBSICO). Tables 1 and 2 describe the
results obtained for the single-view models trained
respectively on the AU and T X views. The first
column reports the baseline accuracy (before co-
incrementation). The second and third columns re-
port the accuracy after applying sequentially EBSI
and EBCO processes.

We can observe that for low labeling rates, the
EBSI process does not influence and in some cases
decreased the prediction performance. Thus, per-
forming self incremental learning with only 5% of la-
beled data is not sufficient to improve the model per-
formance.

On the other hand, we observe that the EBCO pro-
cess improves the performance compared to the base-
line and the EBSI process regardless of the person-
alization method chosen. Hence, co-incrementation
is robust enough regardless of the little amount of la-
beled data.

For a deeper analysis, we also studied the evolu-
tion of the disagreement measure proposed by (Shipp
and Kuncheva, 2002). This is the rate of non-common
errors when one model makes the right prediction
and not the other. In other words, it is a measure
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of conflict between both models. The results ob-
tained by the model (AU [ALL],T X [ALL]), according to
different labeled data rates, are shown in Fig. 4.
First, we can observe that the disagreement measure
for the baseline models is 0.2. In other words, be-
fore co-incrementation, our models satisfy quite well
the independence assumption, necessary condition for
the co-training to work. The figure also shows that
the EBCO procedure drastically reduced the non-
common error rate converging almost to 0. Thus, co-
incrementation also helped to reduce the common er-
ror rate between models. Consequently, both models
were able to improve their performance and the pro-
cess helped the best model to increase its initial accu-
racy.

Figure 4: Evolution of the non-common error rate through
the different stages of the EBSICO framework, according to
the rate of labeled data.

Table 1: Accuracy measures at different stages of the EB-
SICO framework with 5% of labeled samples - Action
Units.

Model baseline EBSI EBCO

AU [ALL] 0.946 0.947 0.948

AU [M] 0.946 0.949 0.953

AU [W ] 0.946 0.939 0.947

AU [C1] 0.950 0.950 0.962

AU [C2] 0.931 0.954 0.931

AU [C3] 0.974 0.974 0.962

AU [C4] 0.875 0.917 0.958

AU [C5] 0.950 0.950 0.966

AU [C6] 0.933 0.933 0.958

AU [C7] 0.967 0.963 0.949

AU [C8] 0.911 0.931 0.960

Table 2: Accuracy measures at different stages of the EB-
SICO framework with 5% of labeled samples - Textures.

Model baseline EBSI EBCO

T X [ALL] 0.811 0.866 0.943

T X [M] 0.766 0.847 0.939

T X [W ] 0.833 0.894 0.936

T X [C1] 0.843 0.824 0.931

T X [C2] 0.713 0.701 0.885

T X [C3] 0.821 0.833 0.974

T X [C4] 0.625 0.625 0.958

T X [C5] 0.891 0.950 0.950

T X [C6] 0.849 0.840 0.941

T X [C7] 0.808 0.869 0.944

T X [C8] 0.752 0.832 0.921

Moreover, our models were overall able to im-
prove their performance on a new distribution of data
by using only a small amount of labeled data. This
is typically a problem of domain adaptation (Csurka,
2017) where distributions of the training and test sets
do not match, as we have here with datasets CFEE
and CK+. In such a configuration the performance at
test time can be significantly degraded. However, this
problem is beyond the scope of this paper.

6.6.2 Impact of Personalization

The purpose of this analysis is to evaluate the con-
tribution provided by the personalization solution we
have proposed.

Results showed that AU [MORPHO] obtained the
highest accuracy rate compared to AU [GENDER] and
AU [ALL] (see Table 3). This can be due to the fact that
clustering images according to the morphological cri-
terion allowed subjects with common characteristics
to be optimally isolated into groups. Thus, it allowed
each model to specialize on a group of subjects with
common traits. Indeed, landmark position showed it-
self to be a more robust criterion for data separation
than gender criterion.

On the other hand, comparing AU [ALL] with
AU [GENDER] and AU [MORPHO], AU [ALL] presented the
lowest performance rate, for 5% and 10% of labeled
samples, and the second lowest for 0% and 1%. This
leads to the conclusion that the customization process
increased the robustness of the model.

For further analysis, we also computed the mean
samples numbers per model. AU [ALL] contained the
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largest amount of labeled data since it did not use
data clustering. Considering a label rate of 1%, 5%
and 10%, we computed an average of 4, 22 and 45
labeled samples per chunk for AU [GENDER] and an av-
erage of 1, 5 and 11 labeled samples per chunk for
AU [MORPHO] (see Table 4). Regardless of the little
amount of labeled data per chunk, AU [MORPHO] was
capable of obtaining better performance compared to
AU [GENDER] and AU [ALL]. As a consequence, we can
deduce that a rationalized clustering strategy provides
robustness during the co-incrementation process, re-
gardless of the number of labeled samples. Therefore,
a rationalized way for the data clustering process is
crucial for models improvements.

The table also shows that thanks to personaliza-
tion, we allow the labelling of fewer images on aver-
age than the generalized AU [ALL] model.

Furthermore in Table 1, it was observed that both
AU and T X benefited from co-incrementation. This
confirms our hypothesis that knowledge sharing be-
tween different models leads to improvement of the
prediction rate, regardless of the view and the chosen
clustering criterion.

When several subjects produce the same emotion
differently, as a direct consequence of the identity
bias, this results in a greater intra-class variance. We
observed the evolution of this variance, according to
the separation of the slots according to the personal-
ization criteria that we have presented in the previ-
ous section. The number of slots created depends on
the chosen personalization criteria. In order to make
a fair comparison, we have therefore carried out for
each criterion, except for ALL, a random separation
with the same number of slots. This has been car-
ried out over 100 folds, and the final result is the aver-
age of the slot intra-class variances with their standard
deviations. In this way, we distinguish a separation
made on a random criterion from a separation made
on a rational criterion. Moreover, because of the great
number of neutrals, this one was downsampled to 50
to correspond to the distributions of the other labels.
The separation criteria with their associated number
of slots are the following:

Table 3: average accuracy per chunk - EBSICO with Action
Unit view.

% AU [ALL] AU [GENDER] AU [MORPHO]

0 0.947 0.946 ± 0.0 0.952 ± 0.013

1 0.948 0.946 ± 0.0 0.952 ± 0.013

5 0.948 0.949 ± 0.003 0.956 ± 0.01

10 0.951 0.954 ± 0.001 0.956 ± 0.01

Table 4: Chunk sizes - EBSICO - Action Unit view.

% |LALL| |LGENDER| |LMORPHO|

0 0 0 0

1 9 4 ± 2 1.0 ±1

5 45 22 ± 8 5 ±3

10 90 45±15 11 ± 6

Table 5: Impact of chunking on intra-class variances.

ALL 4.719

RANDOM 2 4.623 ± 0.167

GENDER 2 4.466 ± 0.624

RANDOM 5 4.327 ± 0.353

MORPHO 5 4.211 ± 0.304

RANDOM 8 4.035 ± 0.488

MORPHO 8 3.935 ± 0.483

ALL: 1 slot (whole CK+incr, AUs only),

RANDOM 2: 2 slots, random separation, (average
over 100 folds),

GENDER 2: 2 slots,

RANDOM 5: 5 slots, random separation, (average
over 100 folds),

MORPHO 5: 5 slots,

RANDOM 8: 8 slots, random separation, (average
over 100 folds),

MORPHO 8: 8 slots.

The results are available in the table 5. We can
notice that, the more slots there are, the more the
intra-class variance decreases. In an extreme case
like putting only one subject per slot, the intra-class
variance will tend towards 0. We can thus observe
in the table that the average intra-class variance de-
creases when we constitute more slots with a differ-
ent criterion. These results suggest that as the intra-
class variance decreases, the identity bias is reduced.
Moreover, when comparing the same number of slots,
we observe that the rational separation criterion offers
a slightly lower intra-class variance than the random
criterion. This result confirms, on the one hand, the
quality of these personalization criteria, and on the
other hand, motivates the search for even more refined
rational separation criteria for future experiments.
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Table 6: Comparison of the classical co-training algorithm with our co-incrementation algorithm.

Methods \Metrics acc after L (90) acc after U (811) execution time
classical co-training (0.957,0.888) (0.91,0.909) 245 min
co-incrementation (0.96,0.897) (0.954, 0.933) 3 min

6.6.3 Comparison of Co-Training and
Co-Incrementation

Finally, we compared our EBSICO algorithm with the
classical co-training algorithm. We used the follow-
ing learning process:

1. training of µ1 and µ2 respectively on CFEE [AU ]
A

and CFEE [T X ]
A ,

2. the incrementation of the models is done from
CK+I which has been divided to 10% of labels,
so that the numbers are: 90 data for L and 811
data for U , without slots,

3. first evaluation of the models after incrementing
on L,

4. then co-train incrementing, with the classical
method (re-training from zero at each iteration)
and our co-incrementing method,

5. second evaluation on CK+E after incrementing on
U.
The accuracies are given in pairs: the first one cor-

responds to the AU model, and the second to the T X
model. The confidence threshold has been set at 0.8.
Finally, we compute the total execution time of the se-
quence, in order to compare the classical method and
the incremental method.

The results, comparing the classical co-training
procedure and the one we propose, are presented in
the table 6. We can observe that when a significant
number of data in U is present, the classical model
sees its performances decrease drastically, while the
incremental model stagnates, or even improves the µ2
model. Finally, the EBSICO procedure that we pro-
pose has a major interest in terms of speed of execu-
tion, nearly 80 times faster in this experiment.

7 CONCLUSION

In this paper, we propose a hybrid method, which
combines two algorithms, namely co-training and in-
cremental learning, allowing two models to collab-
orate and share their knowledge. Compared to the
classical co-training method that performs re-training
from scratch, our approach performs model incremen-
tation continuously on new samples, saving signif-
icant execution time. Another advantage of using

incremental learning over re-training a model from
scratch, in addition to the execution time, is to avoid
”catastrophic forgetting”. NCMFs provide robust re-
sistance to models trained several steps earlier.

Second, in this paper we provide an in-depth anal-
ysis of model personalization for emotion recogni-
tion. Models taking into account morphological fea-
tures have shown better performance versus cluster-
ing by gender. Indeed, a rationalized technique for
feature clustering is crucial for co-training model per-
formance.

Finally, our third contribution concerns the field
of semi-supervised learning, more specifically, on the
ability of models to increase their performance with
only 5% of labeled samples, as demonstrated in our
experiments. Our experiments have been conducted
with small datasets, but we could imagine in fu-
ture research work using this technique with larger
databases.
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