
Automatic Detection of Implicit and Typical Implementation of Singleton
Pattern Based on Supervised Machine Learning

Abir Nacef1, Sahbi Bahroun2, Adel Khalfallah1 and Samir Ben Ahmed1

1Faculty of Mathematical, Physical and Natural Sciences of Tunis (FST), Computer Laboratory for Industrial Systems,
Tunis El Manar University, Tunisia

2Higher Institute of Computer Science (ISI), Limtic Laboratory, Tunis El Manar University, Tunisia

Keywords: Supervised ML, Reverse engineering, Refactoring, Singleton Design Pattern.

Abstract: Reverse engineering, based on design pattern recognition and software architecture refactoring, allows prac-
titioners to focus on the overall architecture of the system without worrying about the programming details
used to implement it. In this paper, we focus on the automatization of these tasks working on Singleton design
Pattern (SP). The first task is the detection of the SP in its standard form, we named the detected structure
as Singleton Typical implementation (ST). The second task consists of detecting structures which need the
injection of the SP (Refactoring), these structures are named Singleton Implicit implementations (SI). All SP
detection methods can only recover the typical form, even if they support different variants. However, in this
work, we propose an approach based on supervised Machine Learning (ML) to extract different variants of SP
in both ST and SI implementations and filter out structures which are incoherent with the SP intent. Our work
consists of three phases; the first phase includes SP analysis, identifying implementation variants (ST and SI),
and defining features for identifying them. In the second phase, we will extract feature values from the Java
program using the LSTM classifier based on structural and semantic analysis. LSTM is trained on specific
created data named SFD for a classification task. The third phase is SP detection, we create an ML classifier
based on different algorithms, the classifier is named SPD. For training the SPD we create a new structured
data named SDD constructed from features combination values that identify each variant. The SPD reaches
97% in terms of standard measures and outperforms the state-of-the-art approaches on the DPB corpus.

1 INTRODUCTION

Design Patterns (DPs) (Gamma et al., 1994) are of-
ten reusable solutions to common software design
problems. The information about intent, applicabil-
ity, and motivation extracted from the pattern seman-
tic is the key to the development and redevelopment
of a system to solve a specific problem. However,
several factors can lead to the absence of documenta-
tion. More than that, developers may not have much
experience to understand patterns well, and this can
lead to the possibility of introducing coding errors
that break the DP intent or bad solution to resolve the
problem. Hence, needed information about a deci-
sion, intent, and pattern implementation used is lost.
Extracting this information can improve the quality
of source code and help to develop, and maintain,
the system. So, automatically identifying the adopted
pattern (DPD) is the solution to solve these limits.

Our work is the first to identify not only different

variants of the ST, but also SP in incorrect structures
and different variants of SI. However, the identifica-
tion process is still considered a difficult task due to
the informal structure of the source code and a large
number of implementations. Only the structural anal-
ysis of the source code cannot capture the pattern in-
tent, and semantic analysis is required. Furthermore,
directly processing the source code or even one of its
representations (such as AST, graph, or another form)
shows poor performance compared to methods using
well-defined features. The use of features reduces the
search space, and false positive rate, and improves ac-
curacy.

For better results and to simplify the SP detection,
we propose a based-feature approach using structural
and semantic analysis of the Java program with ML
techniques. First, we analyze the program with LSTM
classifiers, to extract features value. LSTM classi-
fiers are trained by a specific created dataset named
SFD. Second, by analyzing the SP variant’s struc-

202
Nacef, A., Bahroun, S., Khalfallah, A. and Ben Ahmed, S.
Automatic Detection of Implicit and Typical Implementation of Singleton Pattern Based on Supervised Machine Learning.
DOI: 10.5220/0011634000003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 202-210
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ture and based on extracted feature’s values, we con-
struct a new dataset named SDD to train an SPD. The
SDD is rule-based data guided by specific code prop-
erties of various implementations that can exist for
ST and SI. For building the SPD we have used dif-
ferent ML algorithms the most used for DPD, evalu-
ated and compared them based on collected data from
public Java corpus SED. Finally, we compare our pro-
posed approach with state-of-the-art approaches on
DPB (Fontana et al., 2012) repository. Empirical re-
sults have proven that our proposed method performs
others methods in SP detection. The main contribu-
tions of this paper consist on:

• Analyzing the SP intent, identifying variants, and
proposing a set of features defining each one.

• Analyzing Java program with LSTM Classifier to
extract feature values.

• Creating three datasets; SFD with 5000 snippets
of code used to train the LSTM. SDD with 12000
samples to train the SPD. SED containing 312
Java files to evaluate the SPD.

• Demonstrating that our SPD outperforms a state-
of-the-art approaches with a substantial margin in
terms of standard measures.

The rest of the paper is organized as follows; In sec-
tion 2 we present the related work and the contribu-
tion made to them. In section 3, we define the dif-
ferent declarations of the SP, we indicate variants re-
ported by the SPD and the proposed features. In sec-
tion 4, we present the method process and the related
used technologies. In section 5, details about the cre-
ated data are presented, and the obtained results in
both phases are illustrated and discussed. In the end,
a comparison with the state of the art is made. Fi-
nally, in Section 6 a conclusion and future work is
presented.

2 RELATED WORKS

Working on source code, several approaches are pro-
posed. In this section, we will discuss relevant stud-
ies, giving special attention to those using features
based on ML.

Many techniques are based on similarity scoring
by using graphs to represent structural information.
The method proposed by (Yu et al., 2015) search a set
of substructures to identifying DP implementations.
Then, to optimize the result, the method signature is
compared against a set of predefined templates corre-
sponding to the DP. As an improving work, authors
in (Mayvan et al., 2017) ameliorate the performance

of substructures search process by conveniently parti-
tioning the project graph.

Visual language is also used (Lucia et al., 2009)
as a method to represent relations between structural
properties of DPs and source code.

Features have been used in previous work to ex-
press DPs. Different work like (Rasool and Mäder,
2011) recorded it with annotations for building au-
tomated analyzers. Working with features depends
enormously on the authors’ acknowledgment and pat-
tern analysis.

Given its power to automatically detect DP, ML
has been used in different works. In (Chihada et al.,
2015), a DP classifier is created based on a Support
Vector Machine (SVM). The input data is a labeled
set of manually identified implementations and a set
of associated metrics. However, the method used in
MARPLE (Zanoni et al., 2015) doesn’t take software
metrics as input, but a set of structural and behavioral
properties (e.g., abstract class, abstract method invo-
cation, and extended inheritance). These structures
is used to find correlations among code elements and
roles or relations within DP.

More recent work proposed by (Thaller et al.,
2019) applies convolutional neural networks and ran-
dom forest to learn from feature maps. The definition
of these elements is based on the occurrences of cer-
tain microstructures in the code. (Nazar et al., 2022)
use code features represented as code2vec purports to
achieve a semantic understanding of source code. The
code2vec uses paths along a method’s AST to make
DPs predictions.

Many approaches detect SP variants. However,
we are the first to recognize not only the different vari-
ants, but also their possible combinations with their
respective names and incoherent structures that de-
stroy the pattern intent. Our approach is the first to
create dataset specific to the SP (taking in consid-
eration different forms (Typical/ Implicit), different
variants, different combinations, incoherent structure,
variant’s name).

3 SINGLETON VARIANTS AND
FEATURES

In this section, we will define SP and specify the dif-
ference between its type of implementation (typical
and implicit). Next, we’re going to represent the re-
ported variants and highlight features that better de-
scribe each variant.

Automatic Detection of Implicit and Typical Implementation of Singleton Pattern Based on Supervised Machine Learning

203

3.1 ST and SI Implementation

Using the SP or other structure that avoids it, is ulti-
mately a design decision that needs to be made, and
the consequences of that need to be understood and
documented. We named all used structures to create
an application with only one instance, as the SP. The
formal structure is named Singleton’s typical imple-
mentation, and the other structure is named Single-
ton’s implicit implementation.

3.1.1 Definition of ST

The ST consists of creating a class that has only
one instance and provides a global point to access it.
There are two forms of implementing that. The ea-
ger instantiation allows the creation of an instance at
loading time, and the lazy instantiation enables the
creation when an instance is required. Using a global
access point allows access to the instance of the class
from anywhere in the application. More than that, to
be a self-owner, the client application does not need
to perform additional steps in the object creation, con-
figuration, or destruction. To prevent other classes
from instantiating it, the constructor is meant to be
private, and the instance will be accessed with static
properties or methods to get the preconfigured object.
Listings 1 and 2 show examples of eager and lazy in-
stantiation.

Listing 1: Example of Singleton Eager instantiation.

public class C1 {
private static C1 instance = new C1();
private C1(){}
public static C1 getInstance(){

return instance;}}

Listing 2: Example of Singleton Lazy instantiation.

class C2{
private static C2 obj;
private C2() {}
public static C2 getInstance()
{ if (obj==null)

obj = new C2();
return obj; } }

3.1.2 Definition of SI

The SI is all used structure to create one instance of
a class without using the formal and complete ST so-
lution. Simply, it’s a specification of a set of classes
and methods that work together to ensure that only
a single instance of a class should be created, and a
single object can be used by all other classes. To en-
sure that, different structures can exist. At first, the
class can be stateless, no global object is needed, just

provide helper functions that don’t require more in-
formation than parameters. Second, the use of static
aspects (Mono state, static class) can be a way to en-
sure the creation of only one instance of a class. Also,
the control of instantiation by using a Boolean vari-
able, or a counter variable can be considered as SI as
well as the use of class Enum. For sub-classing, it’s
possible to use a base class that represents an abstract
sandbox method. Finally, developers can provide all
needed services inside an interface. This interface has
the goal to provide global access to the object. The
implemented structure is called Service Locator.

3.2 ST and SI Reported Variants

Different variant of SP are defined and presented in
(Stencel and Wegrzynowicz, 2008), (Gamma et al.,
1994) and (Nacef et al., 2022). In this work, reported
variants are shown in table 1.

The use of the SP is very useful to allow only one
instance of a class, but a common mistake can lead to
the accidental creation of multiple instances, the case
of listing 3. So, we should verify that the structure
preserves the SP purpose. If any error exists, the im-
plemented structure must be analyzed and detected to
eliminate inconsistency between design structure and
intent.

Listing 3: Example of Singleton incorrect implementation.

class C3{
private static C3 obj;
private C3() {}
public static C3 getInstance() {

if (obj==null)
obj = new C3();

return obj; }
public static C3 getInstance2()
{ return(new C3());}}

There are different ways to implement the SI, but we
try to report the most often used by Java program-
mers. Table 1 represent ST and SI-reported variants
with ST that have incoherent structure.

3.3 Used Features

Relevant features can strongly affect the ability of the
model to recognize each variant in its different repre-
sentations. These features also have an impact on the
prediction rate and can reduce the number of false-
positive candidates. We are based on the detailed
analysis of the SP realized by (Nacef et al., 2022),
in which they propose 33 features for identifying ST
variants with correct and incorrect structures. We pro-
pose 9 other features which seem relevant to the SI

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

204

Table 1: Reported SP variants.

Singleton Variants
-Eager -Eager Incorrect structure
-Lazy -Lazy Incorrect structure
-Subclassed -Subclassed Incorrect structure
-Replaceable In-
stance

-Replaceable Instance Incorrect
structure

-Base Class -Different Access Point

-Service Locator -Different Access Point Incor-
rect structure

-Limiton -Delegated Construction

-Enum Class -Delegated Construction Incor-
rect structure

-Social Singleton -Different Placeholder
-Generic Single-
ton

-Different Placeholder Incorrect
structure

-Static data -Object parameter in Function
-Control Instanti-
ation

definition. Furthermore, we try to describe SI with
features that have an elementary structure to facilitate
as much as possible their extraction from the source
code.

Adopting the SP has the purpose to control the
creation of objects and limiting the number to one. To
verify the consistency between structure and intent,
we must be sure that only one instance of a class is
declared and created. These two features are the key
to a true candidate for SP listing 3.
Table 2 represents all used features for the SP identi-
fication.

4 SUPERVISED ML FOR THE SP
DETECTION

In this section, we describe our proposed method
and related techniques used in SP detection. The
SP recognition problem is solved in three phases, as
shown in fig. 1. The first phase (P1) is dedicated to
analyzing the SP intent, structure, and configuration,
this analysis has the goal to highlight the pattern char-
acteristic. The second phase (P2), consists of extract
values of the proposed features from the source code
by structural and semantic analysis. These features’
values lead to the third phase (P3) where SP recogni-
tion is taking place. The three phases are discussed
below.

Table 2: Proposed Features.

Abb. Features
IRE Extend inheritance
IRI Implements inheritance
CA Class accessibility
GOD Global class attribute declaration
AA Class attribute accessibility
SR Static class attribute
ON Have only one class attribute
COA Constructor accessibility
HC Hidden Constructor
ILC Instantiate when loading class
GAM Global accessor method
PSI Public Static accessor method
GSM Global setter method
PST Public static setter method
INC Use of Inner class
EC Use External Class
RINIC Returning instance in inner class
RINEC Returning instance in External class
CS Control instantiation
HGM One method to generate instance
DC Double check locking
RR Return reference of the SP
CNI Variable to count instance number
CII Internal static read-only instance
DM Use delegated method
GMS Global synchronized method
IGO Initialize global class attributes
LNI Limit the number of instances
SCI Use string to create instance
SB Static Block
AFL Allowed Friend List
CAFB Control access to friend behavior
UR Type for generic instantiation
EC Enum Class
CSA Class with Static attributes
CFA Class with Final attributes
CSM Class with Static Methods
COP Constructor with Object Parameter
MOP Method with Object Parameter
BV Boolean Variable to Instantiate
MSR Create Map for serves references
AMDP Abstract method with data parameter

4.1 P1: SP Analysing and ST, SI
Variants Identification

The goal of SP analysis is to define SP variants in
both typical and implicit implementation. The pur-
pose in this context is to identify features that hold
information about each variant. In our case, we are
based on the work of (Nacef et al., 2022), in which

Automatic Detection of Implicit and Typical Implementation of Singleton Pattern Based on Supervised Machine Learning

205

Figure 1: The SP detection process.

they analyze different variants of ST for identifying
features. Based on their analysis and different public
Java project analysis, we define variants for SI, and
we propose additional features for their extraction.

4.2 P2: Feature’s Value Extraction

To extract feature values from source code, we use
the same method proposed by (Nacef et al., 2022). In
their work, they create a set of data containing snip-
pets of code. Specific data corresponding to each fea-
ture is created and used to train an LSTM classifier.
For newly proposed features, we also create specific
data for their extraction from the Java program. Re-
sulting feature values extracted from the P2 are used
for creating data containing the feature’s combination
identifying each variant.

4.3 P3: SP Detection

With the detailed analysis of different implementa-
tions realized by (Nacef et al., 2022), we construct a
data named SDD based on SP properties rules. Rules
in general serve as an established mechanism for en-
coding human knowledge, and we used them to char-
acterize SP instances. It represents a simple and un-
derstandable way to define implementation variants.

Thereafter, we built an SPD with the use of dif-
ferent ML classifiers. We have selected four ML al-
gorithms the most used on DPD (KNN, SVM, Ran-
dom Forest, and Naive Bayes). The SPD is trained
by the SDD data to identify candidates for ST and
SI instances. The ML algorithms are created sepa-
rately by training and testing each one exclusively on
specific data. By learning from labeled samples, the
SPD learns new rules and discovers more information
defining each class.

5 EXPERIMENTAL SETUP

In this section, we will represent at first the user
data to train and evaluate LSTM and SPD Classifiers.
Next, we show, compare, and discuss the obtained re-
sults.

5.1 Dataset Details and Preparation

The data is the essence of ML, the better the data is
constructed, the better the learning process will be.
So that, to have a good model, we should carefully
construct the training data. The ideal way to prepare
a training dataset is to manually analyze open-source
applications to discover a wide range of SP imple-
mentations. Whereas this method is time-consuming
as it requires careful study and in-depth understand-
ing, we have realized it as the first step in our method
process. We have constructed three datasets for train-
ing and evaluating the used classifiers: the SFD, the
SDD, and the SED, which the details are below and
listed in table 3.

Table 3: Data details.

Data Size
SFD 5000
SDD 12000
DPB 58 Correct ST, 58 Incorrect ST, 96 No SP
SEDC 100 Correct SI

5.1.1 SFD Data

The SFD is a set of data used for training the
LSTM classifier to extract values for the newly
added features. The SFD has a global size of 5000
samples, and it’s composed of 9 data. Each data
is created according to the specific properties of
one of the features. We have collected a variety of
implementations that can satisfy the feature property
on a true/false basis. Each implementation represents
snippets of code that are labeled according to the
checked information. Listings 4 and 5 show examples
of snippets of code that are labeled as true/false in
Boolean variable for instantiating feature’s data.

Listing 4: Example of correct implementation of the BV
feature.

private static C1 instance1;
private Boolean noInstance = true;
public static C1 getInstance(){
if(noInstance)
{instance1 = new C1();
return instance1;}

else{System.out.println("Instance exist");}}

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

206

Listing 5: Example of incorrect implementation of the BV
feature.

private static C1 instance1;
private Boolean noInstance = true;
public static C1 getInstance(){
if (noInstance)
{System.out.println("Nonexistent instance");}
instance1 = new C1();
return instance1;}

5.1.2 SDD Data

The SDD is structured labeled data with 12000 sam-
ples. Each sample contains a combination of feature
values to satisfy an SP variant. The data has 42 cate-
gorical features and 4 classes (ST / SI / ST incorrect
structure/ No SP). Table 4, 5 and 6 present an extract
from the SDD dataset.
Eager implementation is characterized by a bloc that
instantiates the instance when loading a class (ILC),
with global static reference (GOD, AA) and private
constructor (CA). However, if there are different ref-
erences (ON) to the instance or their exit more than a
block or method for generating this instance (HGM)
the structure will be incoherent with the pattern in-
tent. For Lazy implementation (table 5), we must

Table 4: Eager variant (correct /incorrect structure).

Features Eager Eager Incorrect
CA public / final Public / final
GOD True True
AA Private / Final Private / Final
SR True True
COA private private
ILC True True
GAM True True
PSI True True
RR True True
ON True False
HGM True False

verify that exists only one method to generate an in-
stance (HGM) that is static (GAM, PSI, RR) and con-
tains a block for controlling instantiation (CS). Other-
wise, the implementation will be incorrect. For static
classes (table 6), attributes and methods (COP, CSA)
must be static and can use any type of access modifier
(private, protected, public, or default). A static class
is implemented is through an inner class or a nested
class (SIC) otherwise it is considered an incorrect im-
plementation.

Table 5: Lazy variant (correct /incorrect structure).

Features Lazy Thread safe Lazy Incorrect
CA public / final Public / final

GOD True True
AA Private / Final Private / Final
SR True True

COA private private
ILC False False

GAM True True
PSI True True
RR True True
CS True False
DC True False

GMS True True
ON True False

HGM True False

Table 6: Static class (correct /incorrect structure).

Class Features
COP CSA SIC CSM

True SII True True True True
False SII True True False True

5.1.3 SED Data

The SED is a combination of two public collected
data with a global size of 312. More specifically,
we conduct our experiments with implementations
from two repositories, namely DPB and SEDC. DPB
(Fontana et al., 2012) is a peer-validated repository
frequently used in DPD studies because it includes
both positive and negative samples of a variety of
DPs. We focus in this work on SP detection, so we
have used only samples corresponding to this pattern
as listed in table 3 Since the DPB repository is not
claimed to be complete and doesn’t contain all con-
sidered variants, we have created another data named
SEDC containing files collected from GitHub public
Java projects 1. Furthermore, to test the effectiveness
of our method in detecting ST instances whose struc-
ture does not match the pattern intent, we modify the
correct instance at the DPB level.

1https://github.com/topics/service-locator?l=java /
https://github.com/topics/service-locator?o=asc&s=forks /
https://github.com/topics/singleton?o=desc&s=updated
/ https://github.com/topics/enum?l=java /
https://github.com/topics/singleton?l=java /
https://github.com/topics/static-class?l=java /
https://github.com/topics/static-variables

Automatic Detection of Implicit and Typical Implementation of Singleton Pattern Based on Supervised Machine Learning

207

5.2 Results and Evaluations

5.2.1 Validation of the Detection

The first phase of our method is to analyze the source
code to extract feature values. We have built 9 LSTM
classifiers and trained them by the feature’s corre-
sponding data. After the training phase using the
SFD, we pass the evaluation process. We evaluate the
newly created LSTM classifiers and those previously
created by (Nacef et al., 2022) with the SED data. The
obtained result is illustrated in table 7.
All results for the LSTM classifiers and the SPD clas-
sifier are then reported according to the following
standard classification measures: Precision it’s the
exact measure of how many Singleton instances were
positively identified as positive, Recall corresponds
to the amount of SP classes retrieved over the total
number of samples within the data; and the F1 score,
which is considered as the harmonic mean between
precision and recall.

All LSTM classifiers performed good results
(more than 80% on F1 Score). Many features are eas-
ily extracted (+ 99%) by the model because they have
a simple structure. Elementary features like IRE,
IRI, CA, and many others, have a non-complex struc-
ture, which facilitates the creation of the correspond-
ing training dataset, and makes the LSTM classifier
more able to correctly extract them from the source
code. In contrarily, features like AFL, CAFB, HGM,
etc... with more complex structure are more difficult
to extract and need extra effort in constructing train-
ing data. In the second phase, the SPD classifier is
trained to identify candidates for all SP roles. Fea-
tures values reported from the LSTM classifier are
fed to the SPD for the evaluation process. The re-
ported results of different algorithms are illustrated in
table 8. Training the SPD classifier by specifically
creating data with relevant features makes it perfectly
able to recognize candidate classes that are potentially
playing a particular role in SP implementation. The
obtained results presented in table 8 prove that the
SPD is correctly trained to detect any implementa-
tion of the SP pattern. All ML algorithms perform
good results (+ 90% of F1 Score), and the best result
is reached by the SVM (+ 99% of precision, recall,
and F1 Score).

5.2.2 Performance Comparison and Discussion

The DPB corpus is a repository created by the oth-
ers of MARPLE (Fontana et al., 2012) to evaluate
their approach. The MARPLE method is frequently
used for comparative studies in DPD, also GEML is
a recent work on DPD that achieves excellent results,

Table 7: Precision, Recall and F1 Score results of the
LSTM.

Abb. Precision% Recall% F1%
IRE 100 100 100
IRI 100 100 100
CA 99.5 98.3 98.89
GOD 98.2 98.6 98.39
AA 97.5 98.73 98.11
SR 97.23 99.12 98.16
ON 82.6 85.96 84.24
COA 92.56 96.45 94.46
HC 96.86 94.36 95.59
ILC 98.56 97.85 98.2
GAM 92.33 94.15 93.24
PSI 96.28 91.85 94
GSM 93.79 89.24 91.45
PST 92.6 90.45 91.51
INC 87.36 94.26 90.67
EC 95.69 90.25 92.89
RINIC 89.69 86.26 87.94
RINEC 92.32 87.69 89.95
CS 96.2 98.78 97.47
HGM 82.6 88.65 85.51
DC 96.32 91.63 93.91
RR 97.56 94.59 96.05
CNI 93.5 89.56 91.48
CII 90.23 95.36 92.72
DM 92.56 88.56 90.51
GMS 96.23 93.56 94.87
IGO 99.23 98.36 98.79
LNI 98.36 93.26 95.74
SCI 91.23 89.26 90.23
SB 98.69 95.26 96.94
AFL 82.36 80.63 81.48
CAFB 88.63 82.56 85.48
UR 95.36 92.63 93.97
EC 100 98.36 99.44
CSA 88.36 95.36 91.72
CFA 89.23 92.56 90.86
CSM 93.26 87.67 90.37
COP 96.29 98.24 97.25
MOP 92.65 89.19 90.88
BV 98.36 94.76 96.52
MSR 89.39 94.58 91.91
AMDP 93.2 84.26 88.5

Table 8: SPD Classifiers results.

SPD Classifiers Measures
Pre.(%) Re.(%) F1(%)

Random Forest 99.24 96.7 97.95
Naive Bayes 95.85 88.5 92.02
KNN 92.3 87.95 90.7
SVM 99 99.62 99.30

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

208

so we decide to compare our proposed method with
these two studies. We use the original results reported
by authors (Zanoni et al., 2015) and (Barbudo et al.,
2021) to compare it with the SPD results. Given that
the results in their works are obtained based on the
total DPB repository size, we also use all samples in
this corpus (we label all existing patterns other than
SP as none). As the general purpose configuration for
MARPLE corresponds to Random Forest, we use the
same algorithm for the test. Comparative results can
be found in Table 9.

Table 9: Comparing SPD with MARPLE and GEML re-
sults.

Classifiers SP Corpus: Labelled DPB
Accuracy(%) F1-score (%)

MARPLE 93 90
GEML 95.61 94.11
SPD 99.86 99.63

As can be observed, and even if it is just a test
for recovering only ST implementation, the SPD out-
performs GEML with a percentage of improvements
equal to 4.35%, 5.52% and MARPLE with 6.86%,
9.63 in terms of accuracy and F1 Score. The use
of specific and more complete data for training the
model makes the SPD better performed in recovering
any instance. MARPLE and GEML use limited data
to train their classifiers, and their ability to recover
SP instances depends heavily on those present in the
training dataset. Furthermore, the detailed analysis of
the SP and the use of relevant features make the classi-
fier more able to identify any implementation variants
even if it is in a combination form.

6 CONCLUSION

In this work, we propose a novel approach to SP de-
tection based on features and ML techniques. This
work is the first to recover non solely the typical im-
plementation but also the incorrect structure that in-
hibits the SP intent, and the implicit structure of this
pattern. The goal of this detection is to improve the
quality of source code, correct incoherent structure,
and give the possibility to automatically inject the SP
by discovering the corresponding context.

Based on a detailed analysis of the SP, we iden-
tify implementation variants of SI. Thereafter, we pro-
pose 9 features for their definition, and then we cre-
ate specific data for each one, containing snippets
of code. We added the newly proposed features to
those proposed by (Nacef et al., 2022), and we use
the same method to extract their values from the Java
program. In the next step, and based on a differ-

ent combination of feature values, we try to create
data that contains the greatest number of implemen-
tations. The data is named SDD and used to train the
SPD. The SPD is built based on different ML tech-
niques. Evaluating the SPD on collected and labeled
data from GitHub Java corpus named SED and DPB
corpus, prove the performance of all used techniques
and achieved +99% in terms of precision, recall, and
F1 Score with SVM. The proposed approach outper-
forms MARPLE and GEML by + 4% in terms of ac-
curacy and F1 Score..

In this work, we have focused on the SP with a de-
tailed analysis, and we have taken the first step toward
refactoring. In future work, we try to apply the same
method to recover other DPs, and as the next step, we
are going to attempt the injection of them.

REFERENCES

Barbudo, R., Ramı́rez, A., Servant, F., and Romero, J. R.
(2021). GEML: A grammar-based evolutionary ma-
chine learning approach for design-pattern detection.
J. Syst. Softw., 175:110919.

Chihada, A., Jalili, S., Hasheminejad, S. M. H., and Zan-
gooei, M. H. (2015). Source code and design confor-
mance, design pattern detection from source code by
classification approach. Appl. Soft Comput., 26:357–
367.

Fontana, F. A., Caracciolo, A., and Zanoni, M. (2012).
DPB: A benchmark for design pattern detection tools.
In 16th European Conference on Software Mainte-
nance and Reengineering, CSMR 2012, Szeged, Hun-
gary, March 27-30, 2012, pages 235–244. IEEE Com-
puter Society.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional, 1 edition.

Lucia, A. D., Deufemia, V., Gravino, C., and Risi, M.
(2009). Design pattern recovery through visual lan-
guage parsing and source code analysis. J. Syst. Softw.,
82(7):1177–1193.

Mayvan, B. B., Rasoolzadegan, A., and Yazdi, Z. G. (2017).
The state of the art on design patterns: A systematic
mapping of the literature. J. Syst. Softw., 125:93–118.

Nacef, A., Khalfallah, A., Bahroun, S., and Ben Ahmed, S.
(2022). Defining and extracting singleton design pat-
tern information from object-oriented software pro-
gram. In Advances in Computational Collective Intel-
ligence, pages 713–726, Cham. Springer International
Publishing.

Nazar, N., Aleti, A., and Zheng, Y. (2022). Feature-based
software design pattern detection. J. Syst. Softw.,
185:111179.

Rasool, G. and Mäder, P. (2011). Flexible design pattern
detection based on feature types. In 26th IEEE/ACM

Automatic Detection of Implicit and Typical Implementation of Singleton Pattern Based on Supervised Machine Learning

209

International Conference on Automated Software En-
gineering, pages 243–252. IEEE Computer Society.

Stencel, K. and Wegrzynowicz, P. (2008). Implementation
variants of the singleton design pattern. In On the
Move to Meaningful Internet Systems, volume 5333 of
Lecture Notes in Computer Science, pages 396–406.
Springer.

Thaller, H., Linsbauer, L., and Egyed, A. (2019). Feature
maps: A comprehensible software representation for
design pattern detection. In 26th International Con-
ference on Software Analysis, Evolution and Reengi-
neering, pages 207–217. IEEE.

Yu, D., Zhang, Y., and Chen, Z. (2015). A comprehensive
approach to the recovery of design pattern instances
based on sub-patterns and method signatures. J. Syst.
Softw., 103:1–16.

Zanoni, M., Fontana, F. A., and Stella, F. (2015). On ap-
plying machine learning techniques for design pattern
detection. J. Syst. Softw., 103:102–117.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

210

