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Abstract: Reductions transform binary pictures only by changing someblack points to white ones. Topology preserva-
tion is a major concern of thinning algorithms that are composed of reductions. For(18,12) binary pictures
on the 3D face-centered cubic (FCC) grid, we propose four sufficient conditions for topology-preserving par-
allel reductions that can change a set of black points simultaneously. The first two conditions examine some
configurations of changed points, and they provide methods of verifying that formerly constructed parallel
reductions preserve the topology. The further two conditions focus on individual points, directly provide dele-
tion rules of topology-preserving parallel reductions, and make us possible to establish topologically correct
parallel thinning algorithms.

1 INTRODUCTION

It is the common practice that 3D digital pictures are
sampled on thecubic gridZ3, since it is the only regu-
lar grid in 3D, it has a fairly simple structure, and digi-
tal pictures on the cubic grid can be naturally stored in
usual 3D arrays. Among non-standard grids our atten-
tion is focused on theface-centered cubic (FCC) grid
(Kong and Rosenfeld, 1989). The points(x,y,z) ∈ Z

3

such thatx+ y+ z is even are the grid points of the
FCC grid denoted byF.

Herman touched upon some disadvantages of the
cubic grid (Herman, 1998), Gau and Kong reported
three advantages of the FCC grid over the cubic
grid (Gau and Kong, 1999), and Edelsbrunner et al.
showed that the FCC grid provides the densest sphere
packing (Edelsbrunner et al., 2015). That is why the
importance of the FCC grid shows an upward ten-
dency (̌Comić and Magillo, 2020;̌Comić and Nagy,
2016; Gastineau and Togni, 2021; Koshti et al., 2018;
Rácz and Csébfalvi, 2018; Strand and Stelldinger,
2007).

A binary digital picture(or picture, for short) on
a discrete grid is composed ofblack or white points
(Kong and Rosenfeld, 1989).Reductionoperators
transform a picture by changing some black points
to white ones that is referred to asdeletion, while all
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white points remain unchanged (Hall, 1996).Parallel
reductions can delete a set of points simultaneously,
while sequential reductions traverse the black points
of a picture, and focus on the actually visited single
point for possible deletion (Hall, 1996).

Thinning algorithms iteratively apply reductions
(Saha et al., 2016), and a crucial issue in thinning
is to ensuretopology preservation(Kong and Rosen-
feld, 1989). The problems of verifying that ex-
isting 3D parallel thinning algorithms always pre-
serve the topology (Kong, 1995) and how to con-
struct such topologically correct algorithms (Palágyi
et al., 2012) have been solved for pictures on the
traditional cubic grid. Since it cannot be abso-
lutely said in the case of the FCC grid, this paper
establishes four sufficient conditions for topology-
preserving parallel reductions acting on this uncon-
ventional 3D grid. The first two conditions focus
on some configurations of deleted points. Thus they
stateconfiguration-basedresults, and they are suit-
able for verifying that a formerly constructed 3D re-
duction is topology-preserving for all possible pic-
tures on the FCC grid. Since the remaining two con-
ditions examine the deletability of individual points,
they are said to bepoint-basedsufficient conditions
for topology-preserving reductions on the FCC grid.
They directly provide deletion rules of parallel reduc-
tions, and make us possible to generate various topo-
logically correct parallel thinning algorithms.

The rest of this paper is organized as follows: Sec-
tion 2 gives an overview of the basic notions and re-
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sults. Then, in Section 3 the two configuration-based
sufficient condition for topology-preserving parallel
reductions on the FCC are proposed. Section 4
presents our point-based sufficient conditions, and we
generate directly two topology-preserving parallel re-
ductions in Section 5. Finally, we round off this work
with some concluding remarks.

2 BASIC NOTIONS AND
EXISTING RESULTS

Next, we define the key concepts of digital topology
as reviewed in (Kong and Rosenfeld, 1989), and recall
the previously stated results that we need later on.

The Voronoi neighborhoodof a point p ∈ F is
the set of all points in the 3D Euclidean space that
are at least as close top as to any other point in
the FCC grid (Kong and Rosenfeld, 1989). It is the
rhombic dodecahedronwith twelve faces centered on
p, and it is called anFCC-voxel(voxel, for short).
As it is illustrated by Fig. 1, there are exactly two
Voronoi adjacency relations on the FCC grid: 12-
adjacencyand 18-adjacency. The setN12(p) contains
the twelve grid points that are at a distance of

√
2 from

p. The setN18(p) is formed of the six grid points
that are at a distance of 2 fromp together with the
twelve grid points inN12(p). Elements ofN12(p) and
N18(p) are 12-adjacentand 18-adjacentto p, respec-
tively. Note that each voxel meets eighteen others, see
Fig. 1. The voxel associated withp shares a face with
the twelve voxels corresponding to the grid points in
N12(p), and it shares just a vertex with the six voxels
of N18(p)\N12(p).

Figure 1: The studied adjacency relations onF. The twelve
points marked ‘�’ form the setN12(p), and N18(p) con-
tains six more points marked ‘♦’ (top). (Note that un-
marked elements ofZ3 are not grid points inF.) The voxel-
representations ofN12(p) (bottom left) andN18(p)\N12(p)
(bottom right), where each voxel is a rhombic dodecahe-
dron.

An (m,n) picture on the FCC grid is a quadru-
ple (F,m,n,B) (Kong and Rosenfeld, 1989), where
B ⊆ F denotes the set ofblack points; each point
in F \B is said to be awhite point; adjacency rela-
tions m and n are assigned toB andF \ B, respec-
tively. In their seminal work, Gau and Kong exam-
ined three types of pictures on the FCC grid:(m,n) =
(18,12),(12,18) and(12,12) (Gau and Kong, 1999).
Since our attention is focused on the(18,12) pictures,
in the rest of this paper,B denotes the set of black
points in the picture(F,18,12,B).

Since both of the studied relations are symmetric,
their transitive closures form equivalence relations,
and their equivalence classes are calledcomponents.
A black componentor anobject is an 18-component
of B, while awhite componentis a 12-component of
the set of white pointsF\B.

A point p ∈ B is a border point if N12(p)∩ (F \
B) 6= /0 (i.e., p is 12-adjacent to at least one white
point), it is an interior point if N12(p) ⊂ B (i.e., is
not a border point), and it is anisolated point if
N18(p)∩B= /0 (i.e., p forms a singleton object).

Gau and Kong introduced a further concept (Gau
and Kong, 1999): A set of mutually 18-adjacent
points is called asmall set. It can be readily seen
that a small set may consist of at most six points, see
Fig. 2. Note that a small set is an 18-component, but
it does not need to be a 12-component.

Figure 2: The three possible maximal small sets. All small
sets are (nonempty) subsets of them.

A crucial issue in thinning algorithms, composed
of reductions, is to ensure topology preservation
(Kong and Rosenfeld, 1989; Kong, 1995). A 2D re-
duction is topology-preserving if and only if any ob-
ject in the input picture contains exactly one object in
the output picture, and any white component in the
output picture contains exactly one white component
in the input picture. There is an additional concept
calledhole(or tunnel) in 3D pictures. A hole (which
donuts have) is formed from white points, but it is not
a white component (Kong and Rosenfeld, 1989). To
preserve topology, a 3D reduction must not create nor
eliminate any hole.

There is a key concept in digital topology called
a simple point. A simple point in a picture is a black
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point whose deletion is a topology-preserving reduc-
tion (Kong and Rosenfeld, 1989). Gau and Kong
gave the following characterization of simple points
in (18,12) pictures:

Theorem 1. (Gau and Kong, 1999)A point p∈ B is
simple for B if and only if the following conditions
hold:

1. N18(p)∩B contains exactly one18-component.
2. N12(p)\B contains exactly one12-component.

Theorem 1 implies that only non-isolated border
points may be simple, and simple points can be lo-
cally characterized (i.e., the simpleness of a pointp
can be decided by examining the points inN18(p)).
Figure 3 gives four illustrative examples of simple and
non-simple points.

Figure 3: Examples of simple and non-simple points in
(18,12) pictures. The positions denoted by ‘•’ and ‘◦’ refer
to black and white points, respectively. Black pointp is sim-
ple only in the top left configuration. In the top right case,p
is an isolated black point, while in the bottom left example,
N18(p)∩B contains two 18-components, hence both cases
violate condition 1 of Theorem 1. In the bottom right figure,
there are two 12-components inN12(p) \B, thus condition
2 of Theorem 1 does not hold.

It is obvious that a sequential reduction (or a thin-
ning algorithm composed of sequential reductions)
preserves the topology if and only if it deletes only
simple points. Unlike the sequential case, parallel
reductions can delete a set of points simultaneously.
Thus we need to consider what is meant by topology
preservation when more than one point is deleted at a
time.

We are to define the concepts of a simple set, a
simple sequence, and a minimal non-simple set.

Definition 1. (Kong, 1995)LetP be an arbitrary pic-
ture. A set of k black points Q is asimple setin P if it
is possible to arrange the elements of Q in a sequence
〈q1, . . . ,qk〉 such that q1 is simple inP and each qi is
simple after the set of points{q1, . . . ,qi−1} is deleted

(i = 2, . . . ,k). Such a sequence is called asimple se-
quence. (And let the empty set be simple.)

Definition 2. (Ronse, 1988)A set of black points is
a minimal non-simple (MNS) setin an arbitrary pic-
ture if it is not simple, but any of its proper subsets is
simple.

Figure 4 presents examples of simple, non-simple,
and MNS sets in an(18,12) picture.

Figure 4: Examples of simple and non-simple sets. The set
of black points{a,b,c,d} is simple since the 16 sequences
(of the possible 24 ones)〈a,b,c,d〉, 〈a,b,d,c〉, 〈a,c,b,d〉,
〈a,c,d,b〉, 〈a,d,b,c〉, 〈a,d,c,b〉, 〈b,a,c,d〉, 〈b,a,d,c〉,
〈b,d,a,c〉, 〈c,a,b,d〉, 〈c,a,d,b〉, 〈c,d,a,b〉, 〈d,a,b,c〉,
〈d,a,c,b〉, 〈d,b,a,c〉, 〈d,c,a,b〉 are simple. The set{b,c}
is minimal non-simple, since both sequences〈b,c〉 and
〈c,b〉 are non-simple and both proper subsets{b} and{c}
of {b,c} are simple. The set{b,c,d} is non-simple but not
minimal non-simple, since{b,c} is its proper non-simple
subset. Note that pointsa, b, d, e, and f are all 18-adjacent
to pointc.

We state the following proposition that is a
straightforward consequence of Definition 1:

Proposition 1. Let Q⊂ B be a simple set for B. If
p∈ (B\Q) is a simple point for B\Q, Q∪{p} is also
a simple set for B.

Here, we recall a general lemma stated by Kardos
and Palágyi:

Lemma 1. (Kardos and Palágyi, 2015)Let p and q
be two black simple points in an arbitrary picture. If
p remains simple after the deletion of q, q remains
simple after the deletion of p.

In other words, the simpleness of a set of two sim-
ple points can be decided by examining just one se-
quence of its elements.

The following theorem gives a universal sufficient
condition for topology-preserving parallel reductions:

Theorem 2. (Ronse, 1988)A reduction preserves the
topology for an arbitrary picture if it does not delete
any MNS set.
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Gau and Kong stated the following specific prop-
erty of MNS sets for(18,12) pictures:

Proposition 2. (Gau and Kong, 1999)If Q ⊆ B is an
MNS set, Q is a small set.

They also identified the set of points that can be
MNS sets:

Theorem 3. (Gau and Kong, 1999)Let Q⊆ B be a
nonempty small set of black points. Then Q satisfies
exactly one of the following conditions:

1. Q is a subset of three mutually12-adjacent points.
2. Q is a set of four mutually12-adjacent points.
3. The points in Q are not mutually 12-adjacent

(i.e., there are two points p,q ∈ Q such that q6∈
N12(p)).

If Q satisfies condition 1 then Q may be an MNS set
without being an object. If condition 2 or condition
3 holds then Q is an MNS set if and only if Q is an
object.

3 CONFIGURATION-BASED
SUFFICIENT CONDITIONS

As a consequence of Theorem 3, we derived the fol-
lowing sufficient condition for topology-preserving
parallel reductions:

Theorem 4. A parallel reductionR is topology-
preserving for B⊂ F if the following conditions hold:

1. Any set of at most three mutually12-adjacent
points Q⊆ B deleted byR is simple.

2. R does not delete completely any object of B com-
posed of four mutually12-adjacent points (see the
last two small objects in Fig. 2).

3. R does not delete completely any small object in
which the points are not mutually12-adjacent (see
Fig. 5).

Proof. To prove this theorem, we must show thatR

does not delete any MNS set (as it is required by The-
orem 2). Note that all possible MNS sets are charac-
terized by Theorem 3.

It can be readily seen that if conditioni (i = 1,2,3)
of this theorem holds,R does not delete any MNS set
that is specified by conditioni of Theorem 3.

We can state that Theorem 4 takes some configu-
rations of at most six points into consideration. Thus
our theorem states aconfiguration-basedsufficient
condition for topology-preserving parallel reductions
(acting on(18,12) pictures of the FCC grid). Notice
that, by condition 1 of Theorem 4, it is difficult to
verify that an existing parallel reduction (or thinning

Figure 5: Six of the possible 37 small objects in which the
points are not mutually 12-adjacent (see condition 3 of The-
orem 4). The remaining ones are rotated and reflected ver-
sions of these six base objects.

algorithm) preserves the topology for all possible pic-
tures. That is why, with the help of Proposition 1 and
Lemma 1 we propose a simplified version of the very
first configuration-based sufficient condition:

Theorem 5. A parallel reductionR is topology-
preserving for B⊂ F if the following conditions hold:

1. Only simple points for B are deleted byR .
2. If two 12-adjacent points p and q are deleted by

R , p is simple for B\ {q}.
3. If three mutually12-adjacent points p, q, and r

are deleted byR ,
p is simple for B\ {q, r}, or
q is simple for B\ {p, r}, or
r is simple for B\ {p,q}.

4. R does not delete completely any object of B com-
posed of four mutually12-adjacent points.

5. R does not delete completely any small object in
which the points are not mutually12-adjacent.

Proof. Since the last two conditions of this theorem
are the same as conditions 2 and 3 of Theorem 4, it is
sufficient to show that the first three conditions of this
theorem together imply condition 1 of Theorem 4.

Let us suppose thatR satisfies all conditions of
this theorem, and it deletes the set of pointsD ⊂ B.
Let Q ⊆ D be a set of at most three mutually 12-
adjacent black points. Then the following three points
are to be investigated:

• Q= {p}:
By condition 1 of this theorem, pointp is simple
for B. Thus the singleton setQ is a simple set.

• Q= {p,q}:
By condition 1 of this theorem, both pointsp and
q are simple forB. By condition 2 of this theo-
rem, p is simple forB\ {q}. Consequently the
set of two pointsQ is a simple set. (Note that, by
Lemma 1,q is also simple forB\ {p}. That is
why we do not need to distinguishp andq.)

• Q= {p,q, r}:
By condition 1 of this theorem, all the three points
p, q, and r are simple forB. By condition 2 of
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this theorem and Lemma 1, all the three sets of
two points{p,q}, {p, r}, and{q, r} are simple
sets, and all the six sequences〈p,q〉, 〈q, p〉, 〈p, r〉,
〈r, p〉, 〈q, r〉, and〈r,q〉 are simple sequences. By
condition 3 of this theorem and Proposition 1, at
least two of the six sequences〈p,q, r〉, 〈q, p, r〉,
〈p, r,q〉, 〈r, p,q〉, 〈q, r, p〉, and〈r,q, p〉 are simple.
Thus the set of three pointsQ is a simple set.

Since any set of at most three mutually 12-adjacent
deleted points is a simple set, condition 1 of Theorem
4 also holds.

4 POINT-BASED SUFFICIENT
CONDITIONS

The configuration-based sufficient conditions stated
in Theorems 4 and 5 are capable of verifying the
topological correctness of existing parallel reduc-
tions, however, they do not serve as a methodology
for designing topology-preservingparallel reductions.
For this reason, here we proposepoint-basedsuffi-
cient conditions that directly yield deletion rules of
topology-preserving parallel reductions. The follow-
ing two theorems examine the deletability of individ-
ual points:

Theorem 6. A parallel reduction is topology-
preserving for B if each point p∈ B deleted by this
reduction satisfies the following conditions:

1. Point p is simple for B.
2. For any point q∈ N12(p)∩B if q is simple for B

then p is simple for B\ {q}.
3. For any two points q∈ N12(p) ∩ B and r ∈

N12(p)∩N12(q)∩B if q and r are simple for B,
and q is simple for B\ {r} then p is simple for
B\ {q, r}.

4. Point p is not an element of an object consisting
of four mutually12-adjacent points.

5. Point p is not an element of a small object in
which the points are not mutually12-adjacent.

Proof. Let us suppose that a parallel reduction satis-
fies all conditions of this theorem, it deletes the set of
pointsD ⊂ B, and a black pointp is in D. To prove
this theorem, we must show that all conditions of The-
orem 5 hold.

• Let Q⊆ D be a set of at most three mutually 12-
adjacent black points. Then the following three
points need to be investigated:

– Q= {p}:
By condition 1 of this theorem, pointp is sim-
ple forB. Thus condition 1 of Theorem 5 holds.

– Q= {p,q}.
By condition 1 of this theorem,q is a simple
point for B. By condition 2 of this theorem,
p is simple forB\ {q}. Thus condition 2 of
Theorem 5 is satisfied.

– Q= {p,q, r}.
By condition 1 of this theorem,q andr are both
simple points forB. By condition 2 of this the-
orem,q is simple forB\{r}. By condition 3 of
this theorem,p is simple forB\ {q, r}. Hence
condition 3 of Theorem 5 holds.

• By condition 4 of this theorem, none of the el-
ements of an object consisting of four mutually
12-adjacent points may be deleted. Since such an
object cannot be deleted completely, condition 4
of Theorem 5 is satisfied.

• By condition 5 of this theorem, none of the ele-
ments of a small object in which the points are not
mutually 12-adjacent may be deleted. Since such
objects cannot be deleted completely, condition 5
of Theorem 5 is also satisfied.

Since all the five conditions of Theorem 5 hold, this
theorem is true.

Conditions of Theorem 6 may be viewed assym-
metricsince elements in the examined sets points are
not distinguished.

Let us focus on the addressing scheme shown in
Fig. 6, which maps every point inF to a triplet of in-
teger coordinates. Thelexicographical orderrelation
‘≺’ between two distinct pointsp = (px, py, pz) and
q= (qx,qy,qz) is defined as follows:

p≺ q ⇔ (pz < qz)∨ (pz = qz∧ py < qy)∨
(pz = qz∧ py = qy∧ px < qx)

Figure 6: The considered coordinate system (left) and the
ordering scheme for the FCC grid (right). The elements
of the set of nine points{ q | q ∈ N18(p), p ≺ q} are
marked ‘�’, and the remaining nine points in the set{ r | r ∈
N18(p), r ≺ p} are marked ‘♦’.

Let Q ⊂ F be a finite set of points. Pointp ∈ Q
is thesmallest elementof Q if for any q ∈ Q\{p},
p≺ q.

With the help of the proposed ordering (see
Fig. 6), we state the followingasymmetric point-
based conditionfor topology-preserving parallel re-
ductions:
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Theorem 7. A parallel reduction is topology-
preserving for B if each point p∈ B deleted by that
reduction satisfies the following conditions:

1. Point p is simple for B.
2. For any point q∈ N12(p)∩B if q is simple for B

then p is simple for B\ {q}, or q≺ p.
3. For any two points q∈ N12(p) ∩ B and r ∈

N12(p)∩N12(q)∩B if q and r are simple for B,
and q is simple for B\ {r} then p is simple for
B \ {q, r}, or p is not the smallest element of
{p,q, r}.

4. Point p is not the smallest element of an object
consisting of four mutually12-adjacent points.

5. Point p is not the smallest element of a small
object in which the points are not mutually 12-
adjacent.

Proof. Let us suppose that a parallel reduction satis-
fies all conditions of this theorem, and it deletes the
set of pointsD ⊂ B. To prove this theorem, we must
show that all the five conditions of Theorem 5 hold.

• Let Q⊆ D be a set of at most three mutually 12-
adjacent black points. Then the following three
points need to be investigated:

– Q= {u}:
By condition 1 of this theorem, pointu is sim-
ple forB. Thus condition 1 of Theorem 5 holds.

– Q= {t,u}, wheret ≺ u.
By condition 1 of this theorem, both pointst
andu are simple forB. Sincet ≺ u, by condi-
tion 2 of this theorem,t is simple forB\ {u}.
Thus condition 2 of Theorem 5 is satisfied.

– Q= {s, t,u}, wheres≺ t ≺ u.
By condition 1 of this theorem,s, t, andu are
simple points forB. By condition 2 of this the-
orem, t is simple forB\ {u}. Sinces is the
smallest element of{s, t,u}, by condition 3 of
this theorem,s is simple forB\ {t,u}. Hence
condition 3 of Theorem 5 holds.

• By condition 4 of this theorem, the smallest el-
ement of an object formed of four mutually 12-
adjacent points cannot be deleted. Thus that ob-
ject cannot be deleted completely, and condition 4
of Theorem 5 is satisfied.

• By condition 5 of this theorem, the smallest el-
ement of a small object in which the points are
not mutually 12-adjacent cannot be deleted. Thus
that object cannot be deleted completely, and con-
dition 5 of Theorem 5 also holds.

Since all the five conditions of Theorem 5 are satis-
fied, the proof is completed.

5 TWO GENERATED
TOPOLOGY-PRESERVING
PARALLEL REDUCTIONS

In this section we show that our point-based suffi-
cient conditions (see Theorems 6 and 7) allow us to
construct directly topology-preserving parallel reduc-
tions.
Definition 3. A black point is deleted by the parallel
reductionS if it satisfies all conditions of Theorem 6
(i.e., symmetric point-based condition for topology-
preserving parallel reductions).
Definition 4. A black point is deleted by the parallel
reductionAS if it satisfies all conditions of Theorem 7
(i.e., asymmetric point-based condition for topology-
preserving parallel reductions).

Thesupportof an image operatorO is the minimal
set of points whose values determine whether a point
is changed byO (Hall, 1996). The support of the par-
allel reductionS contains 84 points (see Fig. 7), and
the count of points is 64 in the support of the parallel
reductionAS (see Fig. 8).

Figure 7: The 84 points marked ‘⋆’ are in the symmetric
support of reductionS . Note that elements of theN18(p)
are colored cyan, and points denoted ‘�’ are not elements
of the FCC grid.

By Theorems 6 and 7, it is obvious that both
derived parallel reductionsS and AS are topology-
preserving. It can be readily seen that reductionAS

can delete more points from a picture than reduction
S does. Figure 9 illustrates the difference between the
two derived reductions.

Figures 10–12 give three illustrative examples of
the otherness ofS andAS , in which these reductions
are repeated until no voxels are deleted. Numbers in
parentheses are the counts of voxels in the original
objects and the produced residues.

We can state that the iterated asymmetric reduc-
tion AS could extract thetopological kernelfrom all
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Figure 8: The 64 points in the asymmetric support of re-
ductionAS marked ‘⋆’. The elements of the sets{ q | q∈
N18(p), p ≺ q} and{ r | r ∈ N18(p), r ≺ p} are colored
cyan and red, respectively. Note that grid points marked ‘�’
are just taken into consideration by the symmetric reduction
S (see Fig. 7), and the points denoted ‘�’ are not in the FCC
grid.

original object

reduced byS reduced byAS

Figure 9: A 9× 9× 9 cube containing 365 voxels and its
reduced versions produced by the two derived reductions.
The symmetric reductionS and the asymmetric reduction
AS deleted 122 and 154 voxels, respectively. Note that red
voxels are not deleted byS , while AS managed to remove
them.

the three test objects (see Figs. 10–12). A topological
kernel of an object is a minimal set of points that is
topologically equivalent (Kong and Rosenfeld, 1989)
to the original object. It can be readily seen that there
is no simple point in a topological kernel.

Due to the conditions of Theorem 6 the iterated
symmetric reductionAS may produce 2-voxel wide
line segments with a number or simple points in them.
Thus the iterated symmetric reductionAS cannot ex-
tract topological kernels.

It is worthy of note that since the 9× 9× 9 cube
(see Fig. 9) is symmetric, and it is free from holes and
cavities (i.e., internal bubbles), both iterated reduc-

original object (996)

shrunk byS (52) shrunk byAS (36)

Figure 10: A 26× 25× 7 image of a torus and its shrunk
versions produced by the two iterated reductions.

original object (1505)

shrunk byS (48) shrunk byAS (33)

Figure 11: A 23×27×9 image of a letter “A” and its shrunk
versions produced by the two iterated reductions.

tions can shrink that object to an isolated black point
(i.e., a singleton object).
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original object (37124)

shrunk byS (316) shrunk byAS (188)

Figure 12: A 45×45×45 image of a cube with two holes
and its shrunk versions produced by the two iterated reduc-
tions.

6 CONCLUSIONS

In this paper, we gave two configuration-based and
two point-based sufficient conditions for topology-
preserving parallel reductions acting on(18,12) pic-
tures of the FCC grid. The configuration-based con-
ditions provide methods of verifying that formerly
constructed parallel reductions preserve the topology.
Our point-based conditions directly provide deletion
rules of topology-preserving parallel reductions, and
allow us to construct topologically correct parallel
thinning algorithms.

As a future work we intend to combine our
point-based conditions with parallel thinning strate-
gies and geometric constraints to generate a family of
topology-preserving parallel thinning algorithms on
the FCC grid.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the national project TKP2021-NVA-
09. Project no. TKP2021-NVA-09 has been imple-
mented with the support provided by the Ministry of
Innovation and Technology of Hungary from the Na-
tional Research, Development and Innovation Fund,
financed under the TKP2021-NVA funding scheme.

REFERENCES
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