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Abstract: Reductions transform binary pictures only by changing sbtaek points to white ones. Topology preserva-
tion is a major concern of thinning algorithms that are cosgubof reductions. Fail8,12) binary pictures
on the 3D face-centered cubic (FCC) grid, we propose fodicgifit conditions for topology-preserving par-
allel reductions that can change a set of black points sanatiusly. The first two conditions examine some
configurations of changed points, and they provide methéd®rifying that formerly constructed parallel
reductions preserve the topology. The further two conditifocus on individual points, directly provide dele-
tion rules of topology-preserving parallel reductionsgd amake us possible to establish topologically correct
parallel thinning algorithms.

1 INTRODUCTION white points remain unchanged (Hall, 199Bjrallel
reductiors can delete a set of points simultaneously,
It is the common practice that 3D digital pictures are while sequential reductiatraverse the black points
sampled on theubic gridZ3, since itis the only regu-  of a picture, and focus on the actually visited single
lar grid in 3D, it has a fairly simple structure, and digi- point for possible deletion (Hall, 1996).
tal pictures on the cubic grid can be naturally stored in Thinning algorithns iteratively apply reductions
usual 3D arrays. Among non-standard grids our atten- (Saha et al., 2016), and a crucial issue in thinning
tion is focused on théace-centered cubic (FCC) grid  is to ensurgopology preservatiofkong and Rosen-
(Kong and Rosenfeld, 1989). The poifitsy, z) € Z3 feld, 1989). The problems of verifying that ex-
such thatx+y+ zis even are the grid points of the isting 3D parallel thinning algorithms always pre-
FCC grid denoted b¥. serve the topology (Kong, 1995) and how to con-
Herman touched upon some disadvantages of thestruct such topologically correct algorithms (Palagyi
cubic grid (Herman, 1998), Gau and Kong reported et al., 2012) have been solved for pictures on the
three advantages of the FCC grid over the cubic traditional cubic grid. Since it cannot be abso-
grid (Gau and Kong, 1999), and Edelsbrunner et al. lutely said in the case of the FCC grid, this paper
showed that the FCC grid provides the densest sphereestablishes four sufficient conditions for topology-
packing (Edelsbrunner et al., 2015). That is why the preserving parallel reductions acting on this uncon-
importance of the FCC grid shows an upward ten- ventional 3D grid. The first two conditions focus
dency Comic and Magillo, 2020Comi¢ and Nagy, = on some configurations of deleted points. Thus they
2016; Gastineau and Togni, 2021; Koshti et al., 2018; stateconfiguration-basedesults, and they are suit-
Racz and Csébfalvi, 2018; Strand and Stelldinger, able for verifying that a formerly constructed 3D re-
2007). duction is topology-preserving for all possible pic-
A binary digital picture(or picture, for short) on tures on the FCC grid. Since the remaining two con-
a discrete grid is composed bfack or white points ditions examine the deletability of individual points,
(Kong and Rosenfeld, 1989)Reductionoperators  they are said to bgoint-basedsufficient conditions
transform a picture by changing some black points for topology-preserving reductions on the FCC grid.

to white ones that is referred to dsletion while all They directly provide deletion rules of parallel reduc-
tions, and make us possible to generate various topo-
https://orcid.org/0000-0001-9609-8628 logically correct parallel thinning _algorithms.
b https://orcid.org/0000-0001-8857-4102 _ The _rest of this paperis organlze_d as f_ollows: Sec-
o https://orcid.org/0000-0002-3274-7315 tion 2 gives an overview of the basic notions and re-
254

Karai, G., Kardos, P. and Palagyi, K.

Topology-Preserving Reductions on (18,12) Pictures of the Face-Centered Cubic Grid.

DOI: 10.5220/0011633500003411

In Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2023), pages 254-261
ISBN: 978-989-758-626-2; ISSN: 2184-4313

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



Topology-Preserving Reductions on (18,12) Pictures of the Face-Centered Cubic Grid

sults. Then, in Section 3 the two configuration-based

sufficient condition for topology-preserving parallel
reductions on the FCC are proposed.

An (m,n) picture on the FCC grid is a quadru-
ple (F,m,n,B) (Kong and Rosenfeld, 1989), where

Section 4 B C F denotes the set dblack poins; each point

presents our point-based sufficient conditions, and wein F\ B is said to be awhite point adjacency rela-

generate directly two topology-preserving parallel re-

ductions in Section 5. Finally, we round off this work
with some concluding remarks.

2 BASIC NOTIONS AND
EXISTING RESULTS

tions m and n are assigned t® andF \ B, respec-
tively. In their seminal work, Gau and Kong exam-
ined three types of pictures on the FCC g, n) =
(18,12),(12,18) and(12,12) (Gau and Kong, 1999).
Since our attention is focused on 18, 12) pictures,
in the rest of this papeB denotes the set of black
points in the picturéF, 18,12 B).

Since both of the studied relations are symmetric,
their transitive closures form equivalence relations,

Next, we define the key concepts of digital topology and their equivalence classes are cattlechponers.
as reviewed in (Kong and Rosenfeld, 1989), and recall o pjack componentr anobjectis an 18-component

the previously stated results that we need later on.
The Voronoi neighborhoodf a pointp € F is

the set of all points in the 3D Euclidean space that

are at least as close tp as to any other point in
the FCC grid (Kong and Rosenfeld, 1989). It is the
rhombic dodecahedrowith twelve faces centered on
p, and it is called arFCC-voxel(voxe| for short).
As it is illustrated by Fig. 1, there are exactly two
Voronoi adjacency relatiosm on the FCC grid: 12-
adjacencyand 18adjacency The selNj2(p) contains
the twelve grid points that are at a distance/@from

p. The setNig(p) is formed of the six grid points
that are at a distance of 2 fromtogether with the
twelve grid points ifN12(p). Elements ofNj»(p) and
Nis(p) are 12adjacentand 18adjacentto p, respec-

tively. Note that each voxel meets eighteen others, see

Fig. 1. The voxel associated withshares a face with
the twelve voxels corresponding to the grid points in
Ni2(p), and it shares just a vertex with the six voxels
of Nig(p) \ Ni2(p).
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Figure 1: The studied adjacency relationskorThe twelve
points marked ¢’ form the setN;2(p), andNig(p) con-
tains six more points marked)’ (top). (Note that un-
marked elements &3 are not grid points iffi.) The voxel-
representations df12(p) (bottom left) andN1g(p) \ N12(p)
(bottom right), where each voxel is a rhombic dodecahe-
dron.

of B, while awhite componeris a 12-component of
the set of white point§ \ B.

A point p € B is aborder pointif Ni2(p) N (F\

B) # 0 (i.e., p is 12-adjacent to at least one white
point), it is aninterior point if Ni2(p) C B (i.e., is
not a border point), and it is aisolated pointif
Nig(p)NB =0 (i.e., p forms a singleton object).

Gau and Kong introduced a further concept (Gau
and Kong, 1999): A set of mutually 18-adjacent
points is called asmall set It can be readily seen
that a small set may consist of at most six points, see
Fig. 2. Note that a small set is an 18-component, but
it does not need to be a 12-component.

o [

Figure 2: The three possible maximal small sets. All small
sets are (nonempty) subsets of them.

A crucial issue in thinning algorithms, composed
of reductions, is to ensure topology preservation
(Kong and Rosenfeld, 1989; Kong, 1995). A 2D re-
duction is topology-preserving if and only if any ob-
jectin the input picture contains exactly one object in
the output picture, and any white component in the
output picture contains exactly one white component
in the input picture. There is an additional concept
calledhole (or tunne) in 3D pictures. A hole (which
donuts have) is formed from white points, but it is not
a white component (Kong and Rosenfeld, 1989). To
preserve topology, a 3D reduction must not create nor
eliminate any hole.

There is a key concept in digital topology called
asimple point A simple point in a picture is a black
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point whose deletion is a topology-preserving reduc- (i = 2,...,k). Such a sequence is calledsenple se-
tion (Kong and Rosenfeld, 1989). Gau and Kong quence (And let the empty set be simple.)

gave the fo!lowing characterization of simple points pgfinition 2. (Ronse, 1988 set of black points is
in (18,12) pictures: aminimal non-simple (MNS) séh an arbitrary pic-
Theorem 1. (Gau and Kong, 1999 point pe B is ture if it is not simple, but any of its proper subsets is
simplefor B if and only if the following conditions  simple.

hold: ) Figure 4 presents examples of simple, non-simple,
1. Ns(p) N B contains exactly ong8-component. and MNS sets in afil8,12) picture.
2. Ni2(p) \ B contains exactly ong2-component. o

Theorem 1 implies that only non-isolated border >
points may be simple, and simple points can be lo- \ o
cally characterized (i.e., the simpleness of a pgint Coe iy ?
can be decided by examining the pointsNig(p)). ol ((

Figure 3 gives four illustrative examples of simple and T Heds e R
non-simple points. Con EEERHT T o ©
° o O _ O ’;—?lrwo O 4
o5 ——%0 oo 3 ok
o o p [ e, o5 (\ftj;)ioﬂﬂ’ o © B
. \" o o540 ©
[ O
Figure 4: Examples of simple and non-simple sets. The set
o 5 of black points{a,b,c,d} is simple since the 16 sequences
(of the possible 24 onegp, b,c,d), (a,b,d,c), (a,c,b,d),
=i (a,c,d,b), (a,d,b,c), (a,d,cb), (bacd), (bad,c),
° o | .O. <b7d7a7c>l <C7a7b7d>i <C7a7d7b>x <C7d7a7b>1 <d7a7b7c>x
T (d,a,c,b), (d,b,a,c), (d,c,a b) are simple. The sefb,c}
= is minimal non-simple, since both sequendésc) and
(c,b) are non-simple and both proper subsgt$ and{c}

O

of {b,c} are simple. The sefth, c,d} is non-simple but not
Figure 3: Examples of simple and non-simple points in minimal non-simple, sinc¢b,c} is its proper non-simple
(18,12) pictures. The positions denoted by and ‘o’ refer subset. Note that points b, d, e, and f are all 18-adjacent

to black and white points, respectively. Black pgiris sim- to pointc.
ple only in the top left configuration. In the top right cape, ] - ]
is an isolated black point, while in the bottom left example, We state the following proposition that is a

Nig(p) N B contains two 18-components, hence both cases straightforward consequence of Definition 1:

violate condition 1 of Theorem 1. In the bottom right figure, . .
there are two 12-components Wi2(p) \ B, thus condition Proposition 1. Let QC B be a simple set for B. |f

2 of Theorem 1 does not hold. pe (B\Q)is asimple pointfor B Q, QU{p} is also
a simple set for B.

ning algorithm composed of sequential reductions) gnq palagyi:
preserves the topology if and only if it deletes only
simple points. Unlike the sequential case, paralle
reductions can delete a set of points simultaneously.
Thus we need to consider what is meant by topology
preservation when more than one point is deleted at a

| Lemma 1. (Kardos and Palagyi, 201%et p and g
be two black simple points in an arbitrary picture. If
p remains simple after the deletion of q, g remains
simple after the deletion of p.

time. In other words, the simpleness of a set of two sim-
We are to define the concepts of a simple set, a ple points can be decided by examining just one se-
simple sequence, and a minimal non-simple set. guence of its elements.

The following theorem gives a universal sufficient

Definition 1. (Kong, 1995)etP be an arbitrary pic- - i -
condition for topology-preserving parallel reductions:

ture. A set of k black points Q issimple sein P if it
is possible to arrange the elements of Q in a sequenceTheorem 2. (Ronse, 1988 reduction preserves the
(a1,...,0) such that g is simple inP and each qgis topology for an arbitrary picture if it does not delete
simple after the set of poin{g);,...,q—1} is deleted any MNS set.
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Gau and Kong stated the following specific prop- . o L
erty of MNS sets fof18,12) pictures: | e - | ®
Proposition 2. (Gau and Kong, 19995 Q C B is an S ! S
MNS set, Q is a small set. . . .

They also identified the set of points that can be o . Se L
MNS sets: . o o

Theorem 3. (Gau and Kong, 1999)et QC B be "?‘ . Figure 5: Six of the possible 37 small objects in which the
nonempty small set of black points. Then Q satisfies ysints are not mutually 12-adjacent (see condition 3 of The-

exactly one of the following conditions: orem 4). The remaining ones are rotated and reflected ver-

1. Qis a subset of three mutuallp-adjacent points. ~ Sions of these six base objects.

2. Qis a set of four mutually2-adjacent points. algorithm) preserves the topology for all possible pic-

3. The points in Q are not mutually 12-adjacent tyres. That is why, with the help of Proposition 1 and
(i.e., there are two points,p € Q such that g7 Lemma 1 we propose a simplified version of the very
Ni2(p)). first configuration-based sufficient condition:

If_Q satisfigs conditipn 1 then Q may be an MNS set Theorem 5. A parallel reduction®_ is topology-
without being an object. If condition 2 or condition preserving for BC I if the following conditions hold:

3 holds then Q is an MNS set if and only if Q isan 4 Only simple points for B are deleted By.

object. 2. If two 12-adjacent points p and g are deleted by
R, pis simple for B {q}.
3. If three mutuallyl2-adjacent points p, g, and r
3 CONFIGURATION-BASED TR Bcent points p. d
SUFFICIENT CONDITIONS p is simple for B, {q,r}, or
g is simple for B, {p,r}, or
As a consequence of Theorem 3, we derived the fol-  ris simple for B\ {p,q}.
lowing sufficient condition for topology-preserving 4. R does not delete completely any object of B com-
parallel reductions: posed of four mutuall§2-adjacent points.
Theorem 4. A parallel reduction®_ is topology- 5. K does not delete completely any small object in
preserving for BC F if the following conditions hold: which the points are not mutually2-adjacent.
1. Any set of at most three mutualyz-adjacent Proof. Since the last two conditions of this theorem
points QC B deleted byR is simple. are the same as conditions 2 and 3 of Theorem 4, itis

2. R does not delete completely any object of B com- sufficient to show that the first three conditions of this

posed of four mutuallg2-adjacent points (see the theorem together imply condition 1 of Theorem 4.
last two small objects in Fig. 2). Let us suppose thak satisfies all conditions of

3. ® does not delete completely any small object in this theorem, and it deletes the set of poibts B.

which the points are not mutualhp-adjacent (see L€t Q < D be a set of at most three mutually 12-
Fig. 5). adjacent black points. Then the following three points

are to be investigated:

Proof. To prove this theorem, we must show ti#t « Q={pk:

does not delete any MNS set (as it is required by The- By condition 1 of this theorem, poin is simple
orem 2). Note that all possible MNS sets are charac- (5. B Thus the singleton s€ is a simple set.
terized by Theorem 3.

It can be readily seen that if conditioi = 1,2, 3) * Q={p.a}: _ _
of this theorem holds®_does not delete any MNS set By conqmon 1 of this theorem, both pm_nnmnd
that is specified by conditionof Theorem3. [ q are simple forB. By condition 2 of this theo-

We can state that Theorem 4 takes some configu-  rem, p is simple forB\ {q}. Consequently the
rations of at most six points into consideration. Thus et of two pointQ is a simple set. (Note that, by
our theorem states eonfiguration-basedufficient Lemma 1,q is also simple foB\ {p}. That is
condition for topology-preserving parallel reductions ~ Why we do not need to distinguighandg.)

(acting on(18,12) pictures of the FCC grid). Notice * Q={p,qr}:
that, by condition 1 of Theorem 4, it is difficult to By condition 1 of this theorem, all the three points
verify that an existing parallel reduction (or thinning p, g, andr are simple forB. By condition 2 of
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this theorem and Lemma 1, all the three sets of
two points{p,q}, {p,r}, and{q,r} are simple
sets, and all the six sequendgsa), (q, p), (p,r),
{r,p), (g,r), and(r,q) are simple sequences. By
condition 3 of this theorem and Proposition 1, at
least two of the six sequencép,q,r), (q,p,r),
(p.r, ), {r,p,q), (a,r, p), and(r,q, p) are simple.
Thus the set of three poin@@is a simple set.

Since any set of at most three mutually 12-adjacent

deleted points is a simple set, condition 1 of Theorem

4 also holds. O

4 POINT-BASED SUFFICIENT
CONDITIONS

The configuration-based sufficient conditions stated
in Theorems 4 and 5 are capable of verifying the
topological correctness of existing parallel reduc-
tions, however, they do not serve as a methodology
for designing topology-preserving parallel reductions.
For this reason, here we propogeint-basedsuffi-
cient conditions that directly yield deletion rules of
topology-preserving parallel reductions. The follow-
ing two theorems examine the deletability of individ-
ual points:

Theorem 6. A parallel reduction is topology-
preserving for B if each point g B deleted by this
reduction satisfies the following conditions:

1. Point p is simple for B.

2. For any point ge Ni2(p) NB if q is simple for B

then p is simple for B {q}.

For any two points ¢ Ni2(p) "B and re

N12(p) N"N12(q) NB if g and r are simple for B,

and q is simple for B {r} then p is simple for

B\ {a.r}.

. Point p is not an element of an object consisting
of four mutuallyl2-adjacent points.

. Point p is not an element of a small object in
which the points are not mutually?-adjacent.

3.

Proof. Let us suppose that a parallel reduction satis-
fies all conditions of this theorem, it deletes the set of
pointsD C B, and a black poinp is in D. To prove
this theorem, we must show that all conditions of The-
orem 5 hold.

* Let Q C D be a set of at most three mutually 12-
adjacent black points. Then the following three
points need to be investigated:

- Q={p}:
By condition 1 of this theorem, poirg is sim-
ple forB. Thus condition 1 of Theorem 5 holds.
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- Q = {pvq}
By condition 1 of this theorem is a simple
point for B. By condition 2 of this theorem,
p is simple forB\ {q}. Thus condition 2 of
Theorem 5 is satisfied.

- Q={p.a.r}.
By condition 1 of this theoreng andr are both
simple points foB. By condition 2 of this the-
orem,q is simple forB\ {r}. By condition 3 of
this theoremp is simple forB\ {q,r}. Hence
condition 3 of Theorem 5 holds.

By condition 4 of this theorem, none of the el-
ements of an object consisting of four mutually
12-adjacent points may be deleted. Since such an
object cannot be deleted completely, condition 4
of Theorem 5 is satisfied.

By condition 5 of this theorem, none of the ele-
ments of a small object in which the points are not
mutually 12-adjacent may be deleted. Since such
objects cannot be deleted completely, condition 5
of Theorem 5 is also satisfied.

Since all the five conditions of Theorem 5 hold, this
theorem is true. O

Conditions of Theorem 6 may be viewedssn-
metricsince elements in the examined sets points are
not distinguished.

Let us focus on the addressing scheme shown in
Fig. 6, which maps every point ifi to a triplet of in-
teger coordinates. THexicographical orderrelation
‘<" between two distinct point® = (px, py, pz) and
q= (Ox, Gy, ) is defined as follows:

(Pz<Uz) V(Pz=0zA Py < Q) V
(Pz=0zA Py =0y A Px < Ox)

pP=<q <

Figure 6: The considered coordinate system (left) and the
ordering scheme for the FCC grid (right). The elements
of the set of nine point§ g | q € Nig(p), p < q} are
marked ¢, and the remaining nine points in the gat| r €
Nis(p), r < p} are marked$'.

Let Q C F be a finite set of points. Poirge Q
is the smallest elememf Q if for any g € Q\ {p},
p=<a.

With the help of the proposed ordering (see
Fig. 6), we state the followingasymmetric point-
based conditiorfor topology-preserving parallel re-
ductions:
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Theorem 7. A parallel reduction is topology-
preserving for B if each point g B deleted by that
reduction satisfies the following conditions:

1. Point p is simple for B.

2. For any point ge Ni2(p) NB if q is simple for B

then p is simple for B{q}, or g < p.

For any two points ¢ Ni2(p) "B and re

N12(p) "N12(q) NB if g and r are simple for B,

and q is simple for B {r} then p is simple for

B\ {qg,r}, or p is not the smallest element of

{p.q.r}.

. Point p is not the smallest element of an object
consisting of four mutuallg2-adjacent points.

. Point p is not the smallest element of a small
object in which the points are not mutually 12-
adjacent.

3.

Proof. Let us suppose that a parallel reduction satis-
fies all conditions of this theorem, and it deletes the
set of pointsD C B. To prove this theorem, we must
show that all the five conditions of Theorem 5 hold.

» Let Q C D be a set of at most three mutually 12-
adjacent black points. Then the following three
points need to be investigated:

- Q={uk:
By condition 1 of this theorem, pointis sim-
ple forB. Thus condition 1 of Theorem 5 holds.
Q= {t,u}, wheret < u.

By condition 1 of this theorem, both points
andu are simple foB. Sincet < u, by condi-
tion 2 of this theoremt is simple forB\ {u}.
Thus condition 2 of Theorem 5 is satisfied.
Q={st,u}, wheres<t < u.

By condition 1 of this theorens, t, andu are
simple points foB. By condition 2 of this the-
orem,t is simple forB\ {u}. Sinces is the
smallest element ofs,t,u}, by condition 3 of
this theorems is simple forB\ {t,u}. Hence
condition 3 of Theorem 5 holds.

By condition 4 of this theorem, the smallest el-
ement of an object formed of four mutually 12-
adjacent points cannot be deleted. Thus that ob-
ject cannot be deleted completely, and condition 4
of Theorem 5 is satisfied.

By condition 5 of this theorem, the smallest el-
ement of a small object in which the points are
not mutually 12-adjacent cannot be deleted. Thus
that object cannot be deleted completely, and con-
dition 5 of Theorem 5 also holds.

Since all the five conditions of Theorem 5 are satis-
fied, the proof is completed.

5 TWO GENERATED
TOPOLOGY-PRESERVING
PARALLEL REDUCTIONS

In this section we show that our point-based sulffi-
cient conditions (see Theorems 6 and 7) allow us to
construct directly topology-preserving parallel reduc-
tions.

Definition 3. A black point is deleted by the parallel
reductions if it satisfies all conditions of Theorem 6
(i.e., symmetric point-based condition for topology-
preserving parallel reductions).

Definition 4. A black point is deleted by the parallel
reduction4 if it satisfies all conditions of Theorem 7
(i.e., asymmetric point-based condition for topology-
preserving parallel reductions).

Thesupportof an image operatap is the minimal
set of points whose values determine whether a point
is changed by (Hall, 1996). The support of the par-
allel reductions contains 84 points (see Fig. 7), and
the count of points is 64 in the support of the parallel
reduction4s (see Fig. 8).

* oo
“k
o=k
***”n*T\T\ *
| Lk
* T e
* D***Eujl*tu*
Fae T T |
T e LT b et e |
e & * & *
b e e T e e e
ko Dok T*“*‘; *
* lu**u\uli‘(*LL*
**n[**n *
*
*
**DE**,‘(DD*

Figure 7: The 84 points markedgk” are in the symmetric
support of reductiors. Note that elements of thid;g(p)
are colored cyan, and points denoted are not elements
of the FCC grid.

By Theorems 6 and 7, it is obvious that both
derived parallel reductions and A4S are topology-
preserving. It can be readily seen that reductibf
can delete more points from a picture than reduction
S does. Figure 9 illustrates the difference between the
two derived reductions.

Figures 10-12 give three illustrative examples of
the otherness of and A4S, in which these reductions
are repeated until no voxels are deleted. Numbers in
parentheses are the counts of voxels in the original
objects and the produced residues.

We can state that the iterated asymmetric reduc-
tion 4$ could extract theopological kernefrom all
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original object (996)

Figure 8: The 64 points in the asymmetric support of re-
duction A4S marked %’. The elements of the sefsq | g €
Nig(p), p=<q}and{r |r e Nyg(p), r < p} are colored
cyan and red, respectively. Note that grid points marked *
are just taken into consideration by the symmetric redactio
S (see Fig. 7), and the points denotedare not in the FCC

grid. Figure 10: A 26x 25x 7 image of a torus and its shrunk
versions produced by the two iterated reductions.

shrunk bys (52) shrunk by4.s (36)

original object

original object (1505)
reduced bys reduced by4.s

Figure 9: A 9x 9 x 9 cube containing 365 voxels and its
reduced versions produced by the two derived reductions.
The symmetric reductios and the asymmetric reduction
A4S deleted 122 and 154 voxels, respectively. Note that red
voxels are not deleted hy, while 4S5 managed to remove
them.

the three test objects (see Figs. 10-12). A topological
kernel of an object is a minimal set of points that is
topologically equivalent (Kong and Rosenfeld, 1989)
to the original object. It can be readily seen that there shrunk bys (48) shrunk by4s (33)
is no simple point in a topological kernel. Figure 11: A 23x 27x 9 image of a letter “A” and its shrunk
Due to the conditions of Theorem 6 the iterated versions produced by the two iterated reductions.
symmetric reductiomd.S may produce 2-voxel wide
line segments with a number or simple points in them. tions can shrink that object to an isolated black point
Thus the iterated symmetric reducti@® cannotex-  (i.e., a singleton object).
tract topological kernels.
It is worthy of note that since the 99 x 9 cube
(see Fig. 9) is symmetric, and it is free from holes and
cavities (i.e., internal bubbles), both iterated reduc-
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original object (37 124)

IR M\ /;// a»?%/ N\ /4

: 8P
¢ B % ¢ 3 s & ;
shrunk bys (316) shrunk byA.$ (188)

Figure 12: A 45x< 45x 45 image of a cube with two holes
and its shrunk versions produced by the two iterated reduc-
tions.

6 CONCLUSIONS

In this paper, we gave two configuration-based and
two point-based sufficient conditions for topology-
preserving parallel reductions acting (I8, 12) pic-
tures of the FCC grid. The configuration-based con-
ditions provide methods of verifying that formerly
constructed parallel reductions preserve the topology.
Our point-based conditions directly provide deletion
rules of topology-preserving parallel reductions, and
allow us to construct topologically correct parallel
thinning algorithms.

As a future work we intend to combine our
point-based conditions with parallel thinning strate-
gies and geometric constraints to generate a family of
topology-preserving parallel thinning algorithms on
the FCC grid.
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