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Outlier detection is the process of detecting individual data points that deviate markedly from the majority
of the data. Typical applications include intrusion detection and fraud detection. In comparison to the well-
known classification tasks in machine learning, commonly unsupervised learning techniques with unlabeled
data are used in outlier detection. Recent algorithms mainly focus on detecting the outliers, but do not provide
any insights what caused the outlierness. Therefore, this paper presents two model-dependent approaches to
provide explainability in multivariate outlier detection using feature ranking. The approaches are based on the
k-nearest neighbors and Gaussian Mixture Model algorithm. In addition, these approaches are compared to
an existing method based on an autoencoder neural network. For a qualitative evaluation and to illustrate the
strengths and weaknesses of each method, they are applied to one synthetically generated and two real-world
data sets. The results show that all methods can identify the most relevant features in synthetic and real-world
data. It is also found that the explainability depends on the model being used: The Gaussian Mixture Model
shows its strength in explaining outliers caused by not following feature correlations. The k-nearest neighbors
and autoencoder approaches are more general and suitable for data that does not follow a Gaussian distribution.

1 INTRODUCTION

Outlier detection was first introduced in the late 60s in
order to detect and often remove possible incorrect in-
stances from a data set. Grubbs (1969) was the first to
introduce the term outlier and he also defined it as an
outlying observation that appears to deviate markedly
from other members of the sample in which it occurs.

Today, the reason for performing outlier detection
is very different: The goal is mainly to identify the
outliers or anomalies in the data, since they can be
of great interest in various application scenarios. For
example, in intrusion detection, attackers or compro-
mised machines in computer networks can be found.
When applied on financial or transaction data, fraudu-
lent records such as credit card fraud can be identified.
Sometimes, outlier detection is also called anomaly
detection, novelty detection, or has a specific name
based on the application scenario (fraud detection, in-
trusion detection).

Furthermore, outlier detection can be performed
in a supervised, a semi-supervised or an unsupervised
setting. The latter is by far the most relevant scenario
since outliers are often not available for training in ad-
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vance. This paper focuses on an unsupervised setting
and algorithms thereof. In this context, it is also im-
portant to know that most of the modern unsupervised
outlier detection algorithms do not output a binary la-
bel, but an outlier score instead, indicating by how
much an instance is considered to be an outlier. In
practical applications, the scores are of great interest
because outliers can be ordered by their degree of out-
lierness and most interesting ones can be investigated
first (Goldstein and Uchida, 2016).

Especially in multivariate outlier detection, the
subsequent analysis of the outliers poses a challeng-
ing task. In machine learning, the topic of explain-
ability has recently gained a lot of interest. In our
context of outlier detection, explainability has often
been tackled in the context of application domains,
but barely in a generic fashion (Panjei et al., 2022).

Modern outlier detection algorithms often use ma-
chine learning techniques (Aggarwal, 2017) and can
be categorized based on their underlying concept be-
ing used. Common are distance-based approaches
that use the assumption that normal data instances oc-
cur in dense neighborhoods, while outliers occur far
from their closest neighbors (Chandola et al., 2009).
A prominent approach in this area is the k-nearest
neighbors (k-NN) algorithm.
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Other approaches are based on probabilities and
assume that normal data can be represented as a
stochastic model. The underlying principle of these
statistical-based outlier detection techniques is that
an outlier is an observation that is suspected of be-
ing partially or totally incorrect because it is not gen-
erated by the stochastic model assumed (Anscombe,
1960; Chandola et al., 2009). Statistical-based algo-
rithms fit a model using the given data first and then
apply a statistical inference test to determine whether
or not an instance belongs to that model. Instances
that have a low probability of being generated by the
learned model are considered as outliers. A promi-
nent approach here is the Gaussian Mixture Model
(GMM), which represents the underlying data distri-
bution with a fixed number of Gaussian distributions
(called components).

Besides the two groups, Chandola et al. (2009)
further categorizes outlier detection algorithms into
clustering-based and classification-based. The latter
category also contains autoencoder neural networks,
which will be used in this work as a third algorithm.
All of the categories have today in common that state-
of-the-art algorithms focus on detecting the outliers
and do not provide insights about what led to the out-
lier decision. These insights often have to be deter-
mined by experts manually by analyzing the outliers
in order to determine their root cause. In practice, this
is often a challenging task since the causes of outliers
are complex and even often hidden in multiple di-
mensions. Furthermore, detailed domain knowledge
is often required by the experts. Therefore, this pa-
per proposes a method for providing explainability of
the k-NN and GMM algorithms for outlier detection.
The basic idea is to rank each individual dimension
depending on its influence on the detected outliers by
analyzing the distances per dimension based on the
learned model. The goal is to support the experts
while analyzing the outliers by presenting the dimen-
sions that need to be examined more closely in order
to identify the cause or causes of the outlier.

2 RELATED WORK

2.1 Kk-Nearest Neighbors Outlier
Detection Algorithm

The global k-NN approach, often simply referred to as
k-NN, is a distance-based outlier detection approach
that uses the assumption that outliers occur far away
from their closest neighbors in comparison to nor-
mal instances. As described by Goldstein and Uchida
(2016), this approach detects outliers by first calcu-
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lating the k nearest neighbors for every data point in
the data set. Afterwards, the outlier score is computed
by either using the distance to the k™ nearest neigh-
bor (a single one) (Ramaswamy et al., 2000) or the
average distance to all k nearest neighbors (Angiulli
and Pizzuti, 2002). The second approach is used
in the following. Here, the average Euclidean dis-
tance for a given point g to the k-nearest neighbors set
N = {n',n?,...n*} is calculated in the d-dimensional
space:

dist(q,N) = 1/

The choice of the parameter & is crucial for the results.
If it is too small, the local density estimate might not
be reliable. On the other hand, the density estimate
may be too coarse and thus outliers not found if it is
selected too large.

Several publications exist, in which this approach
is used for outlier detection. Amer and Goldstein
(2012) evaluated different distance-based outlier de-
tection approaches including k-NN for anomaly de-
tection on three different data sets. The authors found
that this approach performs especially well in detect-
ing global outliers.

2.2 Using a Gaussian Mixture Model
for Outlier Detection

A mixture model is a collection of probability distri-
butions or densities Cy,...,C; and mixing weights or
proportions wi, ..., wg, where k is the number of com-
ponent distributions (Lindsay, 1995; McLachlan and
Peel, 2000).
Therefore, the mixture model P is a probability dis-
tribution of the data based on a mixture of multiple
component distributions and their corresponding mix-
ing weights and is given as (Baxter, 2017):
k

P(x|C1,...,Co,wi,...,w Z P(|C;) (@)
For the GMM, the probability distribution C is given
by the Gaussian distribution C = A (u, 6?) in the one-
dimensional case with a mean of u and variance of
62 In the multidimensional case, C is given by the
multivariate Gaussian distribution C = A(u, X) with
a mean vector of u and the covariance matrix of X.

P(x|6) = P(x|N(u, £) ) )

||M»

To estimate the parameters 8 = (w, u,X) of the compo-
nents, the expectation maximization (EM) algorithm
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introduced by Dempster et al. (1977) is applied. This
algorithm aims to estimate the parameters 6 in such
a way that they maximize the joint probability of the
data set by solving the following optimization prob-
lem:

argmax P(X|0) = argmaxHP(xi|9)
0 0 i

k
= argglaxH(Z wiP(xi| N (1, 7)) (4)
i =

In practice, GMMs are used in several unsuper-
vised learning setups, e.g., density estimation, model-
based clustering and outlier detection. In the latter,
the estimated likelihood or, due to computational rea-
sons, the log-likelihood per data point is then used as
an outlier score.

2.3 Autoencoder for Outlier Detection

An autoencoder (AE) is a neural network trained in a
specific way in order to learn reconstructions that ap-
proximate the original input (Goodfellow et al., 2016,
p-499). An AE consists of two parts, an encoder and a
decoder part. An AE with a single hidden layer could
be represented by the following equations, where w, w
and b, b are the weights and biases of the encoder and
decoder and 6,6 are the activation functions (An and
Cho, 2015):
h=oc(wx+Db) 3)
£=6(Wh+Db) (6)
1 d . 1 d 9
MAE = ~ Y [xi — £ or MSE = v Y xi—%)> (D
i=1 i=1
Equation 5 describes the encoder step, mapping an in-
put vector x to a hidden representation / by an affine
mapping following an activation function. Equation 6
shows the decoder step, reconstructing the hidden rep-
resentation & back to the original input space by the
same transformation as the encoder. The difference
between the input vector x and the reconstructed out-
put ¥ in the d dimensional space, described in Equa-
tion 7, is called the reconstruction error. As a metric,
the mean absolute error (MAE) or the mean squared
error (MSE) is often used to calculate the reconstruc-
tion error. During the training, the AE learns to min-
imize the reconstruction error by using backpropaga-
tion and stochastic gradient descent.
Due to the usage of a non-linear activation function,
the AE is capable of learning non-linear relationships.
Using the hidden representation of an AE as an in-
put to another one makes it possible to stack AEs,

also known as deep autoencoder. To force a com-
pressed representation in the hidden layers, the num-
ber of units in the hidden layers is subsequently re-
duced. This introduces a bottleneck that forces the AE
to learn the most relevant features and relationships of
the data. Hawkins et al. (2002) first used this concept
for the task of outlier detection. The key idea is that
during training, the weights of the AE are adjusted to
minimize the reconstruction error for all training pat-
terns. As a result, frequent patterns are more likely
to be well reproduced by the trained AE, so the pat-
terns that represent outliers are less well reproduced
and have a higher reconstruction error. The recon-
struction error is then used as the outlier score.

2.4 Explainability in Qutlier Detection

To understand explainability within the context of
outlier detection, first a definition in the wider area of
artificial intelligence (Al) is reviewed. Explainabil-
ity in Al (XAI) refers to the concept of being able to
understand the machine learning model. This is of-
ten crucial since the underlying machine learning al-
gorithms construct complex models which are often
opaque to humans (Burkart and Huber, 2020) and ap-
pear as black box models. It is important to stress
that it aims to explain causal effects in the model and
not casual effects in the domain (Herskind Sejr et al.,
2021). The focus towards XAl is currently in the con-
text of supervised learning. However, also in the field
of unsupervised learning, the principles of XAI are
applicable. We believe that the widespread applica-
tion of unsupervised outlier detection in practice is
still behind due to missing confidence and trust. In
particular, the algorithms lack of association between
detected outliers and their root causes. This is espe-
cially relevant for multivariate outlier detection: Here,
outliers are often complex situations, where causes
are hidden in multiple dimensions. It is difficult to
identify them without additional insights.

Explainability in outlier detection has just recently
gained importance. In comparison to other sub-areas
of Al, only limited work on this topic is available.
However, a summary of the current state of this topic
is provided by Panjei et al. (2022) and Sejr and
Schneider-Kamp, who refer to the topic of explain-
able outlier detection with the term XOD.

In this work, we present two approaches that pro-
vide a weight vector as output, which can be inter-
preted as feature ranking and is intended to provide
an explanation of which features are most important
according to the used outlier detection algorithm.
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3 EXPLAINABLE OUTLIER
DETECTION

3.1 Explainable k-Nearest Neighbors
Outlier Detection

For the k-NN approach, we propose an outlier expla-
nation by ranking individual dimensions accordingly
to how strongly they contribute to the detected outlier.
This is achieved by computing the average Euclidean
distance per dimension d for an outlier point g to the
k-nearest neighbors set NV as described in Equation 8:

. 1¢ ;
dista(q:N) = 7. Y |aa — | vd (8)
j=1

As it is well-known for k-NN outlier detection, the
results of the described dimensional ranking are
strongly dependent on the parameter k.

Figure 1 shows the outcome for different values of
k in a two-dimensional space. Here, the solid green
and dashed black lines visualize the mean distance of
the X and Y dimension of two selected outliers ¢; and
g2. On the left-hand side, it can be seen how this ap-
proach behaves for small values of k. Dimensions that
have large deviations to the nearest, more dense area
result in a larger distance. This indicates which di-
mension would have to be shifted to get to a more
dense area (e.g. causing the outlier). However, on
the right-hand side, it can be seen that the average
distance per dimension approaches the global average
indicated by the red dot for large values of k.

This approach is later used to assess the influence
per dimension on the outlier and therefore to provide
an explanation of why a particular instance was de-
tected as an outlier.

k-nearest Neighbor with k=10 k-nearest Neighbor with k=200
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Figure 1: Feature ranking: Mean Euclidean distance per
dimension for two selected outliers with k = 10 (left) and a
too large value of k = 200 (right).

3.2 Explainable Gaussian Mixture
Model Outlier Detection

To enable explanations for the GMM model, also a
ranking of individual dimensions accordingly to how
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strongly they contribute to the outlier is proposed.
Since the data is described by a finite set of Gaus-
sian components, the Mahalanobis distance is used.
Therefore, for an outlier ¢, the vector i is calculated,
representing the Mahalanobis distances for each di-
mension to the best fitting component C (cf. Equa-
tion 9). This is obtained by replacing the dot prod-
uct of the Mahalanobis distances equation with the
element-wise product. From the resulting vector, the
element-wise absolute values are taken to eliminate
negative values. C is chosen based on which compo-
nent maximizes the log-likelihood for the data point

q.

i=llg—pc) =0l ©
An example of how this feature ranking behaves on a
data set generated from two Gaussian distributions is
visualized in Figure 2. On the left, the Mahalanobis
distance per dimension of the outliers g; to the best
fitting component C;, and g, to the component C, is
presented for the X and Y dimension. A GMM with
k =2 is fitted to the data. Both outliers show a larger
Mahalanobis distance on the ¥ dimension than on the
X dimension. This is because they are both close to
the mean of their best fitting component on the X di-
mension. However, on the Y dimension, they are both
off. Therefore, this is used as an indication that the Y
dimension is mainly causing the outlier. Also, the out-
lier ¢ shows a larger Mahalanobis distance on the Y
dimension than g;, even though the difference on this
dimension to the mean of the best fitting component
is larger for g;. This presents the difference of the
Mahalanobis distance in comparison to the Euclidean
distance. It also considers the variance per dimension
and thus results in a larger distance of ¢> to C; on
dimension Y in comparison to g; to Cj.

Gaussian Mixture Model with k=2 Gaussian Mixture Model with k=3

0.0 492 0.0 —a:
0.0 0.5 1.0 0.0 0.5 1.0
X X
~— Mabha. dist X dim ~— Mabha. dist X dim

==+ Maha. dist Y dim ==+ Maha. dist Y dim
# Component 1 - weight: 0.5 Component 1 - weight: 0.5
® Component 2 - weight: 0.5 Component 2 - weight: 0.47
Component 3 - weight: 0.03

Figure 2: Mahalanobis distance per dimension for two se-
lected outliers as explanation. On the left a GMM with k =2
and on the right a GMM with k = 3 is fitted on the data.
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This approach is again highly dependent on the
parameter k of the GMM. When choosing k to large,
the GMM tends to learn low-weighted components
which describe the outliers.This is contrary to the idea
of using the best-fitting components, since here the
best-fitting component is distorted by the outlier. The
right plot visualizes this behavior where a GMM with
k = 3 is fitted on the data, whereas the low-weighted
component C3 with a weight factor of w =0.03 is dis-
torted due to the outlier g». To avoid such a situation,
the parameter k should be chosen large enough to suf-
ficiently describe the normal data but low enough to
prevent overfitting on the outliers. Another solution
could also be to ignore low-weighted components.

3.3 Explainable Outlier Detection for
Autoencoders

To explain how much each dimension contributed to
the detected outlier using an AE, the reconstruction
error per dimension between the input vector x and
the reconstructed output X is used. The assumption is,
that in case certain dimensions show a higher recon-
struction error than other dimensions, they are more
likely to deviate from their usual distribution. This
idea was introduced by Antwarg et al. (2019) using a
similar approach for explaining the outcome of an AE
for anomaly detection.

4 EVALUATING EXPLAINABLE
OUTLIER DETECTION
ALGORITHMS

To assess the effectiveness and compare the outcomes
of the presented approaches, an evaluation using a
synthetically generated data set and two real-world
data sets Wine Quality and KDD-HTTP-Cup are used.
The source code for this evaluation is publicly avail-
able on GitHub!. Although outlier detection is done
in practice using unsupervised learning, the hyperpa-
rameters per data set are listed in Table 1 and were
selected by hyperparameter tuning based on the max-
imization of the AUC of the ROC curve. This was
done to ensure that the selected methods are suitable
for outlier detection on the used datasets in the first
place. Since the focus of this work is on how these ap-
proaches are explaining outliers, it requires that out-
liers are detected reliably. Furthermore, only true pos-
itive detected outliers were used for further analysis.

I'github.com/lucas8k/explainable_outlier_detection

Table 1: Hyperparameters for the approaches applied on the
synthetic, wine quality and KDD-Cup99 data set.

Approach Hyperparameter

Values Values Values
(Synthetic) (Wine quality) (KDD-Cup99)

Gaussian Mixture Model ~ Components

2 3 3

k-Nearest Neighbors k 10 43 50
Encoder Dimensions ~ 6-4-2 11-9-7-5 29-25-22-20
Decoder Dimensions ~ 2-4-6 5-7-8-11 20-22-25-29
Activation Function
Hidden Layer tanh tanh tanh
Autoencoder Activation function
Output Layer Sigmoid Sigmoid Sigmoid
Learning Rate le-3 le-3 le-3
Epochs 30 100 15

Batch Size

10 32 32
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Figure 3: ROC-AUC of the different methods on the wine
quality data set (left) and the KDD-Cup99 data set (right).

4.1 Synthetic Data Set

The synthetic data set consists of 2,000 6-dimensional
data points sampled from two Gaussian distributions
Ai (u1, 1) and AL (uz, Xo) where the elements of the
vector u are all set to 0 and for the covariance matrix
41 the diagonal is set to 1 and all other elements are
set to 0.9. The elements of the vector u, are all set
to 12 and for the covariance matrix u, the diagonal is
set to 1 and all other elements are set to 0.3. Then,
the four outliers q; ... q4 were introduced by shifting
the point in the first two dimensions while keeping the
last four dimensions The resulting data set is visual-
ized in Figure 4. Here it can clearly be seen that the
data set consists of two clusters and the four outliers
are only observable in the projection of the first two
dimensions.

The methods presented are applied to the synthetic
data set. Afterwards, the feature ranking of the out-
liers are calculated. For a better comparison, the re-
sults are scaled into a common interval of [0,1]. The
feature rankings are visualized in Figure 5. It can be
seen that all three approaches identified either the first
dimension (D1), the second dimension (D2) or both
as important for detecting the outlier.

In addition to identify the important features, the
feature ranking can also be interpreted as a distance
per dimension. This provides information about the
direction in which the point would have to be moved
to reduce the outlier score. For example, in Figure 6
the outlier g3 including the feature ranking given by
the different approaches is visualized in the dimen-
sions D1 and D2. On the left, the distance to the k
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Sythentic data set across all 6 dimensions
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Figure 4: Synthetic data set consisting of 2,000 6-

dimensional data points sampled from two Gaussian distri-
butions including four outliers in the first two dimensions.

Feature ranking for outlier q1...q4 over all 6 dimensions

Outlier g1 Outlier g2
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Figure 5: Feature ranking of the introduced outliers over
all 6-dimensions for the three approaches scaled into the
common range of [0, 1].

nearest neighbors is visualized. In the middle, the
Mahalanobis distance to the component C1 is visu-
alized. On the right, the difference between the re-
constructed and actual data points is visualized. All
three approaches report the D1 dimension as the most
important feature. Overall, the experiments with the
synthetic data set show, that all three presented ap-
proaches are capable of detecting the relevant dimen-
sions for explaining the causes of the outliers.

4.2 Wine Quality Data Set

As a first real-world data set, a modified version of the
wine quality UCI data set (Cortez et al., 2009) is used.
The data set describes the physicochemical properties
of the red and white variants of the Portuguese ”Vinho
Verde” wine by 11 continuous features. Initially, the
data set was collected for classification or regression
tasks. For the task of outlier detection, the data set
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Figure 6: Feature Ranking for the dimensions D1 and D2
for the outlier g3. The outlier is mainly caused by D1.

was modified: The class white wine is used as the
normal class. The class red wine is down-sampled to
50 instances representing the outliers. This results in
a data set containing 4821 normal instances and 50
outliers with an outlier rate of approx. 1.03%.

The presented algorithms are also applied on this data
set. All three approaches achieved an AUC-ROC
of over 96% as visualized in Figure 3 (left). This
means, overall the approaches are suitable to detect
the outliers. Therefore, the presented explainability
approaches are applied to explain the outliers using
feature ranking. For every approach, first the rele-
vant features of the data set causing outliers are iden-
tified. For this purpose, the feature ranking for all
three approaches across all outliers are summed up,
and scaled into a common range of [0, 1]. The results
are visualized in Figure 7. As can be observed all
three approaches detect the feature fotal sulfur diox-
ide as the most relevant followed by the features fixed
acidity, volatile acidity and sulphates.

Summed up feature ranking over all outliers

BN k-NN

Ihhlhh-haCT

Ranking

total sulfur dioxide
fixed acidity
volatile acidity
sulphates
alcohol
chlorides
citric acid
free sulfur dioxide
density
residual sugar

Figure 7: Wine Quality data set: Summed-up feature rank-
ing of the outliers (red wine) over all 6-dimensions for the
three approaches scaled into the common range of [0, 1].

Recalling the insights from the experiment, these
features are the root causes and should be most impor-
tant for identifying the outliers (red wine) within the
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normal instances. Therefore, we try to verify the re-
sults by additionally using the class labels of the data
set in a plot. Figure 8 visualizes the density estima-
tion of the outlier (red wine) and regular (white wine)
for the top four features. It can be seen that especially
the feature rotal sulfur dioxide clearly separates the
outlier and normal instances. The other three features
also show large areas of non-overlap in the density es-
timation, but there is also certain overlap where these
features are not sufficient to distinguish between out-
liers and normal instances.

total sulfur dioxide fixed acidity

2002 B Normal (White Wine) 2% y
g Outiier (Red Wine) e /
o -y [a} \
0.00 > 0.0 p A
0 100 200 300 400 5 10 15
total sulfur dioxide fixed acidity
5 volatile acidity sulphates
2 \ 2
D 3 25
o .
000 025 050 0.75 1.00 04 06 O 8 10 1.2

volatile acidity sulphates

Figure 8: Density estimation for the top 4 features for the
outliers (red wine) and normal instances (white wine).

Additionally, the feature ranking is also suitable
for analyzing and explaining single outliers. As
shown in Figure 7, the feature total sulfur dioxide
is the most dominant features overall. Howeyver,
when analyzing individual outliers, it can be seen
that in a few cases there are differences in what the
second most important features is, depending on the
approach chosen. In concrete terms, this behavior
can be observed for outliers, such as the one shown in
Figure 9. Here, the feature ranking is visualized for a
single outlier. It can be seen that the k-NN approach
considers the feature volatile acidity and the AE
the feature citric acid as the second most important
feature (cause). The GMM approach even ranks the
feature alcohol above the feature total sulfur dioxide.

Feature ranking for a single outlier

B k-NN

- GMM
) E l
oo Hmm .l . - I- ..

Ranklng

fixed acidity
volatile acidity
citric acid
residual sugar
chlorides
density
sulphates
alcohol

free sulfur dioxide
total sulfur dioxide

Figure 9: Wine Quality data set: Feature ranking for a single
outlier over all 6-dimensions for the three approaches scaled
into the common range of [0, 1].

This shows that the feature ranking is model de-
pendent and therefore does not provide a general ex-
planation. An example of this is visualized in Fig-
ure 10. Here we can see that both, the AE and k-
NN approaches, rank the features with the largest Eu-

clidean distance the highest. The correlation between
certain features does not seem to have any effect in
this situation. The GMM approach, however, learns
a component that represents the negative correlation
between the feature fotal sulfur dioxide and the fea-
ture alcohol. The outlier under consideration devi-
ates from this correlation, which results in a larger
Mahalanobis distance. In summary, the presented
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k-NN GMM
> 15
he] —
o o
© <
2 810
g ©
°
>
5
0.0 0.5 1.0 0 200 400
total sulfur dioxide total sulfur dioxide
AE
1.00 ° === Distance D1
Distance D2
e  Outlier

* k-NN neighbors
GMM component
»  AE reconstructed

citric acid

0.0 0.5 1.0
total sulfur dioxide

Figure 10: Wine Quality data set: Feature ranking of a sin-
gle outlier over the top two features per approach.

approaches are suitable to identify the most relevant
features to distinguish outliers and normal instances.
Furthermore, it is possible to explain a single outlier
in terms of which features are decisive for the model
to identify it as an outlier. Using the wine quality data
set, these approaches show which features are most
important in distinguishing white wine from the few
outlier instances representing red wine. It also ex-
plains why certain instances are recognized as out-
liers by pointing out the features that deviate from the
usual white wine features. Concerning the outliers,
the feature ranking does not explain the domain, but
rather provides a model dependent explanation.

4.3 KDD-Cup99 HTTP Data Set

As a second real-world data set, a modified version
of the KDD-Cup99 HTTP data set (Tavallaee et al.,
2009) is used. Originally, this data set is used for
benchmarking intrusion detection classification sys-
tems. It contains simulated normal and attack traf-
fic on an IP level in a computer network environ-
ment in order to test intrusion detection systems. The
dataset has been modified to serve as an outlier de-
tection benchmark as well as described by Goldstein
(2015). To serve for the purpose of outlier detec-
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tion this data set uses HTTP traffic only and limits
the outlier class to DoS attacks. Furthermore, the
features protocol and port were removed since only
HTTP traffic was used. Additionally, all categorical
non-binary features were removed. This results in a
larger data set containing 620,098 normal records and
1,052 outliers with an outlier rate of approx. 0.17%.
Similar to the previous data set, all outlier detection
approaches achieved an AUC-ROC of over 98%, as
visualized in Figure 3 (right), meaning the approaches
are suitable for detecting the outliers. Again, it was
analyzed which features are the most relevant root
causes per approach for detecting the outliers. Fig-
ure 11 presents the summed-up and scaled feature
ranking for all outliers contained in the data set. In-
terestingly, the summed up feature ranking is not as
consistent between the different approaches as in the
previous data sets. Overall, the feature same_srv_rate
shows a high relevance by all three approaches. For
the other features, there is no clear consensus on their
importance. When analyzing the density estimation

Summed up feature ranking over all outliers
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Figure 11: KDD-Cup99 data set: Feature ranking of the
outliers over the top 15 dimensions for the three approaches
scaled into the common range of [0, 1].

of the top features, presented in Figure 12, the fea-
ture same_srv_rate shows that for the regular class
it is centered in a dense area whereas for the out-
lier class it shows a high variance. Therefore, data
instances outside of this dense area are detected as
outliers. The same can be observed for the feature
src_bytes. Both features are considered most impor-
tant by the GMM. However, as the second most im-
portant feature the k-NN identifies dst_host_count and
the AE same_srv_diff_host_rate. The density estima-
tion of these features shows, there is only a marginal
difference and no clear separation between outliers
and normal instances. It can be assumed that these
features in relationship with the feature same_srv_rate
are decisive for the identification of the outliers. This
example shows again the basic premise of the ap-
proach: The feature ranking is algorithm dependent
and different approaches achieve a different feature
ranking.
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The GMM models the data by a fixed number of
multidimensional Gaussian distributions. Inspecting
this data set carefully, it can be derived that it is dif-
ficult to be model by a GMM due to the nature of
the underlying distributions. Therefore, this approach
learns components with a high variance and a covari-
ance that approaches 0. In terms of feature ranking,
this means that the GMM particularly indicates fea-
tures that deviate strongly from the global norm and
are crucial for detecting global outliers. In this case
the features src_byte and same_srv_rate. However, in
comparison to that, the AE can also model non-linear
relationships and is not bound to a Gaussian distribu-
tion of the data. Therefore it achieves a different fea-
ture ranking and ranks the feature srv_diff_host_rate as
the second most important feature. Likewise, the k-
NN is not bound to a specific distribution of the data
due to its non-parametric functionality and ranks the
feature dst_host_count as the second most important
feature. In these cases, both approaches are also able
to explain outliers which are not only identified by de-
viating from an underlying Gaussian distribution. In
terms of feature ranking, this means that features are
selected, which in combination uniquely explain the
outliers. Therefore, the features srv_diff_host_rate and
dst_host_count do not independently explain the out-
liers, but potentially in combination with other fea-
tures e.g. same_srv_rate.
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Figure 12: KDD-Cup99 data set: Density estimation of the
top 4 features for the outliers (attack) and normal instances.
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S CONCLUSION AND OUTLOOK

This paper proposes two approaches enabling ex-
plainability for outlier detection based on feature
ranking and thus support the root cause analysis of
outliers. First, the Euclidean distance per dimen-
sion to the k-nearest neighbors for the k-NN algo-
rithm and the Mahalanobis distance to the best fitting
component estimated by the GMM was introduced to
identify dimensions causing outlierness. A third, al-
ready previously published algorithm, utilizes the re-
construction error of an autoencoder neural network
to identify the features causing outliers was included
for comparison as well.
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To assess the effectiveness of these approaches,
they were qualitatively evaluated in experiments on
a synthetic data set and two real-world data sets,
namely wine quality and KDD-Cup99 HTTP. The ex-
periments showed that all three approaches are suit-
able for increasing the explainability of the outlier de-
tection results by identifying the features which are
most relevant for the algorithm to detect the outliers.
Furthermore, it was found that the feature ranking re-
sults depend on the algorithm used. The GMM fo-
cuses strongly on linear relationships between the fea-
tures and is particularly suitable when the data can be
modeled by a fixed number of Gaussian components.
If this is not the case (e.g. the underlying distribu-
tion is not a Gaussian distribution), the GMM neglects
the relationship of different features to each other and
tends to explain global outliers only. This leads to a
feature ranking assuming independent features, which
is often not the case. The AE approach can model
by its non-linearity also various feature relationships.
Likewise, the k-NN approach is not bound to linear
relationships as well. This leads to a different feature
ranking that is more helpful in general, especially if
the underlying distribution is unknown.

Overall, all three approaches supports the task of
outlier analysis to better understand the results of the
algorithms and explain the outliers. Since many other
commonly used outlier detection algorithms are also
distance- or probability-based, this work can serve as
a basis for investigating further into the topic of ex-
plainable outlier detection using feature ranking.
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