
On the Interest of Combining Several Variability Tactics to Design the
Implementation of Product Lines

Maouaheb Belarbi and Vincent Englebert a

NADI Research Institute, University of Namur, Faculty of Computer Science, Belgium

Keywords: Product Line, Variability, Mechanism, Implementing Variability.

Abstract: In Software Product Line (SPL) field, several variability mechanisms have been proposed to realize system
requirements. Despite that each mechanism is relevant to satisfy only specific engineering criteria, it is unable
to face several challenges. We believe that using several variability realization techniques allows to get trade-
off for all the benefits and strength of the considered realization techniques. In this paper, we provide an
answer for the fact that if combining several programming techniques is worth investment which, at the best
of our knowledge, was not tackled before in the literature. The current study implements, at first, an open
source product line entirely with different variability realization techniques, and secondly, combines these
mechanisms in the same product line. An assessment of the obtained product lines is performed according to
quality attributes,code quality metrics, and product line concepts. Together, the present findings confirm that
combining several variability mechanisms hits the best rates in most quality evaluation metrics and provides a
median to achieve most relevant software quality criteria.

1 INTRODUCTION

The growth of the enterprise application system in
the last few decades has justified the need to indus-
trialize the software development industry (Jalil and
Bakar, 2017b). Software Factory (SF) approach pro-
vides a solution that can transform software develop-
ment project into a more systematic approach imitat-
ing factory manufacturing concept (Jalil and Bakar,
2017a). SF was defined as a configuration of lan-
guages, patterns, frameworks, and tools that can be
used to produce an open-ended set of variants belong-
ing to a family products(Özgür, 2007). This last pro-
vides a context wherein many problems and require-
ments common to family members can be solved col-
lectively. Building on System Product Line (SPL)
concepts, SF exploits this context to provide family
wide solutions, while managing variation among the
family members (White et al., 2008). Instead of wait-
ing for serendipitous opportunities for ad-hoc reuse
to arise under arbitrary circumstances, an SF captures
knowledge of how to produce the members of an SPL
family.

In the design of complex and variable software
systems, one of the key steps is to select the vari-

a https://orcid.org/0000-0001-8201-4294

ability mechanisms that defines how features are re-
alized in code level. Herein, several research seek
to discuss the practical benefits and drawbacks of
the mechanisms and present the cases of their suc-
cessful use. SF emphasizes the use of the variabil-
ity implementation mechanisms and tools to stream-
line software products development. We consider
the categorization mentioned in (Kästner and Apel,
2008) which discusses the following mechanisms:
Cloning, Conditional Compilation, Conditional Exe-
cution, Polymorphism, Module Replacement, Aspect
Orientation, Frame Technology, and Design Patterns.
Indeed, these variability mechanisms vary in binding-
time, granularity, quality criteria, etc. For example,
mechanisms with early binding-time as compile-time
allow a well definition of features, however, mech-
anisms with late binding-time such as run-time en-
hance the system flexibility and adaptability but with
a restricted behavior (Tërnava and Collet, 2017). Be-
sides, the classification of mechanisms considers the
separation of concerns to meet the increasing stake-
holders and customers requirements. Here, indus-
trial case studies showed that each mechanism hit ad-
vantages but brought challenges during each software
development process (Zhang et al., 2016). In other
words, each mechanism is relevant to satisfy only spe-
cific engineering criteria set but not all of them.

Belarbi, M. and Englebert, V.
On the Interest of Combining Several Variability Tactics to Design the Implementation of Product Lines.
DOI: 10.5220/0011630700003402
In Proceedings of the 11th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2023), pages 105-116
ISBN: 978-989-758-633-0; ISSN: 2184-4348
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

105

We propose a SF which aims to bear programming
challenges by combining a set of variability mecha-
nisms to build software product systematically. We
argue that using several variability realization tech-
niques allows to get trade-off for all the benefits and
strength of the considered realization techniques. In
this paper, we provide an answer for the fact that if
combining several programming techniques is worth
investment which, at the best of our knowledge, was
not tackled before in the literature. We propose to
implement an open source Product Line (PL) en-
tirely with different variability realization techniques.
Thereafter,we implement the PL with a combination
of mechanisms. An assessment of the obtained prod-
uct lines is performed according to quality attributes,
literature measures, and product line concepts.

The rest of the paper is organized as follows: sec-
tion 2 explains the methodology and the real use case
study. Section 3 clarifies the misunderstandings that
may be confused with our proposal. Thereafter, sec-
tion 4 is carried out to present quality metrics consid-
ered throughout the evaluation performed in section 5.
Some potential weakness threatening our proposal are
identified in the section 8 with some attempts to miti-
gate them. Finally, some of the relevant related work
are presented in section 7 followed by a conclusion
and some of our perspectives in section 9.

2 METHODOLOGY AND USE
CASE STUDY

This section introduces the considered use case study
to give insight the application of the presented ap-
proach as well as we the methodology adopted in this
research.

2.1 The Elevator System

In traffic control of elevator systems, each one is or-
dered to move up or down, to stop or start, and to
open or close the door. The following features were
integrated into the base elevator system as shown in
the feature model in Fig 1:

Figure 1: Feature Model of elevator system.

• Parking. When a lift is idle, it goes to a
specified floor (typically the ground floor) and
opens its doors. The parking floor may be dif-
ferent at different times of the day, anticipating
upwards-travelling passengers in the morning and
downwards-travelling passengers in the evening.

• Lift 2/3 Full. When the lift detects that it is more
than two-thirds full, it does not stop in response to
landing calls, since it is unlikely to be able to ac-
cept more passengers. Instead, it gives priority to
passengers already inside the lift, as serving them
will help reduce its load.

• Overloaded. When the lift is overloaded, the
doors will not close and some passengers must get
out to fulfill the movement requests.

• Empty. When the lift is empty, it cancels any calls
which have been made inside the lift. Such calls
were made by passengers who changed their mind
and exited the lift early, or by practical jokers who
pressed lots of buttons and then got out.

• Executive Floor. The lift gives priority to calls
from the executive floor.

For comprehensive investigation we considered the
Elevator PL case to meet different criteria: The
elevator system describes a real world case study,
which was developed in the context of an indus-
trial project (Plath and Ryan, 2001) and published
in (Meinicke et al., 2017) to provide an open Java
source code 1. In fact, real industry case applications
raise the domain real relevant challenges. Hence, they
present a way to check the usability and credibility
of our approach when it crashes into reality. Eleva-
tor case provides support for SPL context since (i)
several variability points are related to heterogeneous
concepts of elevator systems and (ii) many alternative
and optional functionality exist.

2.2 The Methodology of Study

The elevator system was adapted to SPL context and
is available in FeatureIDE plugin with Java language.
The elevator PL will be adapted again and to fetch
the variability mechanisms illustrated in the right side
of Fig 2. In other words, we provide several ver-
sions of the original elevator PL according to spe-
cific variability mechanism. All these versions 2 ex-
cept the original PL are implemented by a middle-
level developer. The resulting product lines will all
be evaluated against literature quality attributes, in-
dustrial measures, and PL criteria. The assessment

1See http://spl2go.cs.ovgu.de/projects/16
2See https://github.com/Maouaheb/ElevatorsSystem.git

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

106

process confronts the statistics of both PL developed
with only one realization technique and the PL built
with several programming techniques. The choice of
the involved techniques is justified as follows:

• Strategy: pattern is useful here because many re-
lated classes differ only in behavior. In this con-
text, Strategy is applied to handle: elevator direc-
tion variation (up or down), the status (in service
or blocked, stopped or in movement), a shift re-
quest called by an normal or executive floor, etc.

• State: pattern is not applied here to resolve a con-
cept variability in the considered PL. However,
a state machine is set up in the current use case
to handle the following variability states: the el-
evator direction state (up or down), the elevator
state (in service or blocked), the transition state
(stopped or in movement), the shift request called
by a normal or an executive floor, etc. Thus, we
call the State pattern to hold the presented states
and let them evolve over time. PL implemented
with both State and Strategy patterns are similar
since they converge to the same structure.

• Aspect Oriented Programming (AOP): is a pro-
gramming paradigm that aims to increase modu-
larity by allowing the separation of cross-cutting
concerns. It does so by adding additional behav-
ior to existing code (an advice) without modify-
ing the code itself, instead separately specifying
which code is modified via a ”pointcut” specifica-
tion. This allows behaviors that are not central
to the business logic to be added to a program
without cluttering the code core to the function-
ality. Considering the original version of elevator
PL, we apply AOP here to add the executive floor
specification, overloaded feature, and two thirds
full elevator function.

• Observer: pattern defines an object called the
subject which maintains a list of its dependents,
called observers, and notifies them automati-
cally of any state changes (Hunt, 2013). In case
the elevator is overloaded or two-thirds full, the
corresponding overloaded and two-thirds ob-
servers will be notified and executed.

• Polymorphism: is the ability of an object to take
on many forms. The most common use of poly-
morphism in OOP occurs when a parent class ref-
erence is used to refer to a child class object.
Building elevator PL with polymorphism defines
elevator super-type and sub-type classes, calling
actions super-type class (i.e, to request call from
executive floor), etc.

• Combination: The objective is to implement PL
elevator with combination of the aforementioned

mechanisms as follows: We consider Strategy
pattern to resolve the elevator call actions when
the executive floor is calling then the shift strat-
egy gives priority to that request than the others.
Since two shift elevator directions exist, hence,
moving up or down is performed with Strategy
pattern. Besides, State pattern is applied to realize
the elevator state movements whereas the elevator
is continuing towards the target direction or if it
is stopping. Whenever, the maximum weight of
persons inside the elevator exceeds the maximum
weight threshold, then, an Observer is notified to
stop the elevator movement and warn users. Poly-
morphism is used to resolve the call specification
variability: if the user is of type Handicap, if the
current floor is executive or normal, etc. Finally,
when the elevator receives a shift call from a dis-
abled passenger, then, an adapted behavior is set
up to serve him. AOP is applied to inject specific
shift aspect for disabled people.

The aforementioned elevator PL versions will be
compared according to attributes quality, PL criteria,
and industrial measures to confirm or refute the priv-
ileges of combining several variability mechanisms.

3 DISCLAIMER

In this section, we present the following delimitation
that exceeds the objective of our study: First, we pro-
pose here an intuitive analysis to motivate combining
different tactics together, however, this does not note a
valid scientific conclusion to be admitted for all prod-
uct lines. As well, the present paper does not present
a guideline about how to combine and apply the se-
lected variability implementation techniques. This
task will be postponed over later.

Second, this study does not evaluate the perfor-
mance of variability realization techniques individu-
ally or give a comparison between them. For example,
comparing the PL versions implemented by State and
Observer patterns does not assess the two aforemen-
tioned patterns but the performance and code quality
of both product lines. It is an evaluation of how acts
these mechanisms in the context of the elevator PL.

Finally, the mechanisms chosen were the most ap-
propriate for the context of the elevator use case and
for its original Java implementation. Thus, several
tactics were dropped out such that conditional com-
pilation which is unsuitable for the Java language.

On the Interest of Combining Several Variability Tactics to Design the Implementation of Product Lines

107

Figure 2: Overview of the methodology research study.

4 ASSESSMENT CRITERIA

In this section, we present the assessment criteria re-
vealed in the literature and considered during this
study. The evaluation and comparison are performed
against: the software quality attributes, the industrial
code metrics, and the PL criteria.

4.1 Quality Attributes

Within systems engineering, quality attributes deals
with non-functional requirements to evaluate the per-
formance and the software system quality (Bachmann
et al., 2005). We believe that we cannot satisfy all of
them, thus, we prioritize the followings:

Modifiability: is the degree of ease to carry out a
change to a system and the flexibility experienced by
this latter to adapt to these changes (Barbacci, 2004).
We have planned the following three scenarios to ex-
plore the modifiability of the different PL versions
source code:

• Add a function: Handicap call is a new function
added to the system to ensure carrying disabled
persons.

• Update existing function: Shift elevator function
will be adapted to make the system suitable for
disabled people.

• Delete function: checking if the elevator is two
thirds full new requests will be ignored in order
to avoid to reach the maximum weight. Deleting
this feature implies that elevator continues treat-
ing calls till getting the maximum weight thresh-
old. The reliability of the system is not threatened
by the exclusion of this functionality which opti-
mizes the operation but does not affect it.

Reusability: means that a segment of source code can
be used again when adding new functionalities, with

only slight or no modifications. Code reusability can
also be achieved by inheritance as a derived class in-
herits its properties from parent class. Several exist-
ing metrics have been proposed to estimate reusabil-
ity factor of software code. We consider the following
metrics mentioned in (Padhy et al., 2018):

• Reusability estimation Rank metric (RR) is deter-
mined using the ratio of elements that are reused
to the sum of all components available in the sys-
tem. A proposal that reuse should be measured as
the number of lines of code incorporated in a sys-
tem without modification. RR is given as follows:

RR =
reused elements

sum of all elements
(1)

• Reusability of class: The reusability is addressed
and calculated for each class according to three
parameters: At first, Depth Inheritance Tree (DIT)
signifies the highest length from the root class to
the node across the tree. Secondly, Number Of
Children (NOC) metric calculates the total num-
ber of adjacent sub-classes subsidiary to the con-
sidered class in the associated class hierarchy.
Thirdly, Coupling Between Objects (CBO) mea-
sures, for each class, number of classes connected
together. At this level, the reusability of class is
calculated as follows:

Reusability = X × (DIT)+Y × (NOC)+Z × (CBO)
(2)

Where X, Y, Z are experimental constants. For
expediency, we take X = Y = 1 and Z = 0.5. By
convention in (Padhy et al., 2018), the class hav-
ing the most reusability :

Class diagram Reusability = Max(reusability(classi))

(3)
Where i = 1,...,n and n defines the total number of
classes.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

108

Integrability: is about the degree to which an archi-
tect has anticipated and designed for integration tasks
that the system may undergo to predict the costs and
risks of integrating some units at some future point
in time (Kazman et al., 2019). To evaluate this, we
need to measure the potential dependencies between
the system components. Code program graphs will be
performed to model the code assets dependency in a
graph.
Testability: is the degree to which a system or com-
ponent facilitates the establishment of test criteria and
the performance of tests (Tsai et al., 2006). Unit tests
are applied to separate variants, whereas integration,
system and acceptance tests are applied to a combina-
tion of bound variants. During this study, we check
for each PL version which the test types that can be
performed.

4.2 Code Quality Metrics

Based on different standards considered in the domain
of evaluating code source quality, we have chosen a
set of the most used metrics in source code evalua-
tion (Boja et al., 2017). Table 1 describes the soft-
ware metrics that are used for a static analysis. For
each metric, we provide the description, the calcula-
tion formula, and the range of values. As showing
in table below, Stability Index (SI) metric is calcu-
lated to assess system change and modification be-
tween different versions of same software (Koziolek
et al., 2012). The higher the SI is, the maintainability
of source code is considered better. Besides, McCabe
complexity (M) metric is used to assess complexity
and maintenance of software systems. This metric
measures the maximum number of linearly indepen-
dent circuits in a program control graph. Lower the
cyclomatic complexity is , lower the risk to modify
and easier to understand (Mccabe, 1996). Finally, we
check considered engineering skills required to apply
a mechanism which can be low, medium, or intense.

4.3 PL Criteria

Many research argue that SPL is an efficient approach
to build software similar systems in lower effort (Mo-
hammed et al., 2019). Therefore, if a PL version
checks the following requirements, then, it shows
proof for good quality:

• Variability: designates parts of software that re-
main flexible so that variations of the system will
be supported by a single source with multiple in-
stances (Metzger and Pohl, 2007). Hence, it is
important to verify for each PL elevator version

if the variability is explicit in source code or all
common and variant parts are mixed together.

• Reification: designates that each feature pre-
sented in model level, such that the feature model,
is retrieved directly in code level. Features can
be reified to classes, attributes, methods, aspects,
etc. The reification is crucial for the traceability
and the ability to describe and follow the life of
a requirement, and by the way, it is essential for
product derivation and SPL evolution (Shen et al.,
2009).

• Extend Variability: Since customer require-
ments and domain specifications evolve through
the time, it is compulsory to be able to extend
the behavior of a product by adding additional
instructions or assets independently (Schmid and
Eichelberger, 2017). Extending variability allows
systems to evolve, keep up and satisfy customer
requirements.

• Size of Variability: A variation point or variant in
the core-code assets can have different sizes: an
expression, statement, methods, classes, aspects,
interfaces , packages, etc (Tërnava and Collet,
2017). Hence, variability size indicates to what
extend the engineers can be involved.

• Expressivity: is the ability that a PL version can
progress in the future.

5 THE EVALUATION OF
ELEVATOR PL VERSIONS

The evaluation procedure is performed according to
the three groups of quality characteristics. Code met-
rics will be considered to justify some quality at-
tributes.

5.1 The Evaluation of Quality
Attributes

Modifiability: The scenarios defined in section 4.1
were applied on the elevator PL systems to exper-
iment the modifiability criterion when adding, up-
dating, and deleting program parts in the PL code
source. Table 3 sums up the observations noticed
when performing this practical exercise. As shown,
we needed to locate where are the instructions in
which it was prone to add, update or delete the re-
quirement. Hence, for each PL it was necessary to
answer if locating the program part that ensures the
concerned feature was direct to identify or if it was
unavoidable to iterate through all the classes in the

On the Interest of Combining Several Variability Tactics to Design the Implementation of Product Lines

109

Table 1: Code quality metrics description.

Metric Acronym Description Range
Lines Of Code LOC Source code length as physical lines of code >0
Comment Lines CL Number of commented lines >0
Comment Density CD The percent of comment lines in a source code

CD=CL/LOC
<=0.2

Cyclomatic complexity M McCabe cyclomatic complexity 1-10
Number of defined functions FNUM Total number of functions >0
Number of calling functions FCALL Number of sub-functions called by function 0-5
Number of code lines per func-
tion

FSTM Empty functions fall through 1-50

Number of modified statements STMMOD Number of statements in a function which have changed >=0
Number of deleted statements STMDEL Number of statements in a function which have been

deleted between the previous and the current version.
>=0

Number of new statements STMNEW Number of statements in function which have been added
between the previous and the current version.

>=0

Stability Index SI Measures the number of changes between two versions of a
software.
SI =(FSTM-(STMMOD+STMDEL+STMNEW))/FSTM

0-1

Table 2: Index Stability Evaluation.
PL imple-
mented
with:

STMMOD STMNEW STMDEL FSTM SI

Original 0 30 0 71 0,57
Strategy 1 9 0 45 0,77
Polymor
phism

1 30 0 65 0,52

State 1 6 0 25 0,76
AOP 0 6 0 36 0,83
Observer 0 9 0 31 0,70
Combi
nation

0 6 0 36 0,83

program looking for it. Secondly, components des-
ignates which assets in the code level (i.e, class, in-
struction , aspects, interfaces,etc) are involved during
the modification scenario. Finally, at what point it
was necessary to propagate the modification applied
on the existing parts to rectify them and ensure that
the program keeps its consistency. In case of adding a
new feature in the system according to the logic with
which it was built, the criterion behavior was dedi-
cated to determine in which PL version this function
can be extended or not. Our findings hint that:

• The Original PL Version : in this PL all the re-
quirements implementation were mixed together
and IF-ELSE statements are used to specify which
code will be executed. Hence, adding and delet-
ing functions implies to iterate overall the com-
ponents program to locate where to perform the
update. Adding handicap call was spread over
three other components, which is the highest num-
ber over the PL versions. Besides, the function is
added by the same reasoning as the original im-
plementation. Hence, it is tangled with other re-
quirements which implies that the new feature is
also hardly extensible in the future.

• The AOP PL Version: This PL gives better results
when modifying its implementation. The com-
ponents are directly located and easily extensible
with low spreading effects.

• The Polymorphism PL version: Modification ap-
peals to look for the super-type class responsible
for adding and updating the elevator shift opera-
tion. However, deleting a feature from the parent
class implies its automatic suppression from all
the children classes.

• The State and Strategy PL Versions: Since these
two design patterns are similar, they present same
findings in terms of modifiability. Components
are directly located via the Strategy (resp. the
State) classes which implies that contributions are
easy to carry. The deletion removes the class con-
ceived for the two thirds full feature.

• The Observer PL Version: Here, the handicap call
function is injected directly when encountering a
call of type Handicap. The behavior is extensible
and separated with other program assets. Finally,
the deletion consists in suppressing the responsi-
ble observer and the instructions to attach it to the
subject class (the elevator class).

• The Combination of Mechanisms PL Version:
Here, the feature call handicap was ensured by
AOP and the two thirds full was performed with
strategy pattern to select shift operation algorithm.
Hence, the findings here ties well with previous
results presented by the AOP PL version to add
and update a feature and Strategy PL version to
delete function. From these results it is clear that
the PL version performed with combination of
mechanisms is easily modifiable: Adding Hand-

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

110

icap call function and update the elevator shift op-
eration are performed directly and without sup-
plying the broadcasting of change over several
components. Finally, to eliminate the two thirds
full feature, we delete directly its implementation
class, and the instructions to instantiate it as a
strategy variant.

Testability: Overall, all the elevator PL versions sup-
port the unitary tests performed with JUnit plugin.
Besides, integration tests were carried out on the PL
versions to test modules integration. Original PL ver-
sion has been delimited for this kind of tests since
both separation of concerns and modularization are
missing off.
Reusability: Calculating the reusability metrics
given by the equations 1 and 2 have led to the results
given in the table 4. We also calculate the reusabil-
ity average rate of code source by the quotient of the
sum of reusability of each class by the total number
of classes in the project. The higher the reusability
rank and reusability average are, the more PL is qual-
ified to be reusable. From these results, it is clear
that the original version presents the lowest rate of
reusability which is not surprising since the features
are mixed in same classes and it is difficult to make
an object apart from its context. Besides, the imple-
mentation of a same concern is scattered and tangled
over the code source. Hence, reusing existing assets
is hardly performed. Contrarily to the original ver-
sion system, the elevator PL implemented with Poly-
morphism presents the better reusability rank and the
second best reusability average. A popular explana-
tion of that is that Polymorphism paradigm was cre-
ated to this purpose. Combining several mechanisms
in the same code source presents also best results for
reusability rank and reusability average. It is impor-
tant to highlight the fact that separating and modu-
larizing components with patterns, AOP, Design Pat-
terns, and Polymorphism principles ensures the pro-
gram parts to be more reusable and mature in order to
enhance software evolution despite the order of mag-
nitude.
Integrability: To be able to integrate modules of
a system in another one, we evaluate each PL inte-
grability according to criterion mentioned in table 5.
First of all, Separation of concerns (SoC) is to de-
compose and organize software into more compre-
hensive parts in order to improve software quality.
Secondly, if a system is well modularized it is eas-
ier to change it and also to evaluate the side effects of
a change (Li et al., 2021). Modularization evaluation
is built on the assessment of coupling and cohesion
in code source, where, coupling is the degree of de-
pendency between the modules, whereas, cohesion is

the inter-dependency within a single module. Finally,
each PL will be qualified if it reduces or enhances the
dependency comparing it to the original implementa-
tion source code dependency level. From the short
review above, key findings emerge followings:

The PL elevator implemented with respectively
AOP technique, Strategy, State, and Observer patterns
present a solution to resolve SoC, provide high level
of modularization and a ensure low dependency be-
tween system components. Developing elevator PL
with a combination of mechanism yielded to simi-
lar last integrability qualification. In this PL version
AOP and design patterns are required to verify claims
concerning separating concerns into independent ele-
ments. In addition, gross decomposition of a system
by patterns and AOP into interacting components us-
ing proper abstractions for component interaction de-
fines the modularity of the system which can be un-
derstood, reused, and modified independently, with-
out regard for where the code is used.

Finally, another promising finding shows that el-
evator PL realized with Polymorphism resolves SoC
by separating concepts in super-types and sub-types
which reduces interring concepts inside the same java
construct and enhances the modularizaion level.

5.2 The Evaluation of Code Quality
Metrics

We start by evaluating the SI of the PL versions. In
table 2 we show that the combination of mechanisms
provides the highest value of SI and hence a better
quality of code. This confirms that the correspond-
ing PL is the easiest version to maintain and under-
stand which confirms our previous observations for
the Modifiability quality attribute. The evaluation
of the rest of code metrics leads to results shown
in table 6. We explore the applicability of undi-
rected graphs in understanding source code nuances:
In Fig 3, we modeled the program units (classes, in-
terfaces,etc) by nodes and the dependencies between
program parts with edges. Based on these graphs we
calculate the average dependecy, the component num-
ber, and the McCabe cyclomatic complexity.

Results provide a good fit to the observations no-
ticed when evaluating quality attributes: elevator PL
versions implemented with State and Strategy pat-
terns and the combination of mechanisms present
the lowest rate of dependency. In addition, in the
line of combining variability we notice that despite
the corresponding PL shows almost same results as
Strategy and State PL versions, it ensures the low-
est number of code components. The idea here, is to
demonstrate that using several realization techniques

On the Interest of Combining Several Variability Tactics to Design the Implementation of Product Lines

111

Table 3: Evaluation of Modifiability PL versions.

PL implemen-
tation tactic

Add and update handicap call function Delete two thirds full feature

Where New components To rectify Behavior Where Components To rectify
Original iterate class handicap 3 hardly exten-

sible
iterate delete instruc-

tions
nothing

AOP direct class handicap and as-
pect

1 easily extensi-
ble

direct aspect nothing

Polymorphism iterate class handicap 2 extensible iterate delete from
super-type

sub-type rectified
automatically

Strategy direct class handicap,
handicap-shift strat-
egy class, call-handicap
strategy class

1 easily extensi-
ble

direct class of the
feature

instructions to call
the strategy class

State direct class handicap,
handicap-shift state
class, call-handicap state
class

1 easily extensi-
ble

direct class of the
feature

instructions to call
the state class

Observer direct class handicap, Observer
shift-handicap

1 easily extensi-
ble

direct class of the
feature

instructions to at-
tach the observer
class

Combination direct class handicap, aspect
shift-handicap

1 easily extensi-
ble

direct class of the
feature

instructions to call
the strategy class

Table 4: Reusability evaluation for the implemented PL versions.

PL version implemented
with:

NOC DIT CBO Reusability Max Reusability average RR

Original 1 2 2 4 2.4 0.09
AOP 5 6 3 12.5 3.25 0.11
Polymorphism 1 2 4 5 3.11 0.36
Observer 1 2 2 4 2.71 0.10
Strategy 6 7 2 14 3.45 0.20
State 6 7 1 13.5 3.10 0.22
Combination 6 7 2 14 3.20 0.23

Table 5: Integrability evaluation for the implemented eleva-
tor PL versions.

PL version
implemented
with

SoC Modularity Dependency

Original low low high
AOP valid high reduced
Polymorphism valid high reduced
Strategy valid high reduced
State valid high reduced
Observer valid high reduced
Combination valid high reduced

together achieves the median trade off between most
important software quality criteria. Besides, analyz-
ing code-graphs allows to determine the number of
complete sub-graphs inside each model. Since in a
complete graph vertices are all adjacent, meaning that
each node is linked to all others. We inferred by this
metric how many there are program parts that de-
pendent all to each other. This metric witnesses the
reusability and integrability of programs. We found
that the Polymorphism PL has the lowest number of
complete sub-graphs followed by the PL implemented

with combination of mechanisms. This confirms our
interpretations for the reusabibility attribute through
the practice exercise to emphasize that combining
mechanisms ensures reusability.

Another promising finding was that McCabe cy-
clomatic complexity (M) manifests itself in the lowest
rate for PL version implemented with combination of
variability mechanisms. As we mentioned before, this
metric used for identifying heuristically subprograms
which might be regarded as <<overly complex>>.
Therefore, the lower M metric is, the better quality
the corresponding PL will be. These results lead to
similar conclusion when evaluating integrability qual-
ity attributes. We confirm here that combining sev-
eral mechanisms together to implement the elevator
PL have led to the best integrability rate assessment
by practice exercise and with calculation method.

On another flap, the calculation of the code qual-
ity measures that are still used in the literature have
shown the followings: PL version implemented with
AOP presents the highest number of LOC which can
be explained by the fact that AOP adds supplement
modules to the original implementation. Another im-

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

112

Table 6: Evaluation of code quality metrics.

PL version
implemented
with

Average
dependency

Number
components

Number of
complete
sub-graph

M LOC CL CD FNUM FCALL Ability

Original 0.55 6 6 6 670 22 0.03 105 55 low
Strategy 0.061 34 3 4 650 32 0.04 93 76 low
Polymorphism 0.3 9 1 4 510 23 0.04 87 61 low
State 0.061 34 3 4 675 41 0.06 97 81 low
AOP 0.28 10 6 6 909 82 0.09 102 53 high
Observer 0.32 9 6 6 610 31 0.05 98 77 medium
Combination 0.07 29 3 3 608 37 0.06 97 77 medium

(a) Graph code of the original elevator PL. (b) Graph code of the PL implemented with Observer.

(c) Graph code of the PL implemented with State. (d) Graph code of the PL implemented with strategy.

(e) Graph code of the PL implemented with AOP.
(f) Graph code of the PL implemented with combination of
mechanisms.

Figure 3: Graph code for PL code sources.

portant witness is that when using a mixture of vari-
ability mechanisms have not led to a huge program
size since its corresponding LOC metric is still up in
standard with the other PL versions.

5.3 The Evaluation of PL Criteria

In this part, we illustrate some experimental results
for the PL criteria shown in Table 7. The evaluations
reveals the following finding:

The original PL version presents several gaps to
explicitly identify variability, and recognize the corre-

sponding program parts for each feature in the feature
model. PL versions implemented with Strategy and
State patterns explicitly define variability inside code
where Variants are identified by sub-classes inheriting
from the variation point class. The modularization of
the code allows variability to be extended and hence
the PL to evolve. Using Polymorphism to realize el-
evator PL defines explicitly variability by consider-
ing mother classes as variation points and children by
variants. However, features can be amalgamated in-
side the same class, hence, the reification criterion is
not always respected. In addition, manipulating super

On the Interest of Combining Several Variability Tactics to Design the Implementation of Product Lines

113

types classes and having deep inheritance trees make
the PL difficult to progress in the future. Moreover,
our findings hint that implementing PL elevator with
AOP and Observer pattern does not specify explicitly
variation points and variants except if we consider an
abstract aspect (resp. observer class)and children as-
pects (resp. observer classes) extending it.

Finally, combining variability mechanisms in a PL
allows to define variability explicitly, recognize each
feature in the feature model and its program assets
in code level since it enhances both modularization
and SoC. In addition, as we have illustrated in the
superior evaluations, this PL version is easily modi-
fiable which ensures that extending variability is easy
to perform and can evolve to be suitable with the fu-
ture challenges.

6 SUMMARY OF RESULTS

Overall, the elevator PL version realized with a set
of variability mechanisms techniques presents the ro-
bustest results and hits the best rates in most of
evaluation experiments: Assessing modifiability by
the practice exercise showed that the combination of
mechanisms achieves the lowest cost of change. Be-
sides, by calculating the SI, we found evidence that
combining several realization techniques records the
highest SI and reusability values as shown in Fig 4
which confirms that this PL version presents the eas-
iest way to accommodate changes. In addition, this
PL version is considered to have less cohesion and
dependency between modules with best of SoC crite-
ria which was hardened by calculating the cyclomatic
complexity and dependency average since we get the
lowest rate as shown in Fig 5.

Moreover, despite that getting best evaluation re-
sults was not always achieved, we obtain always val-
ues among the best rates and we provide the median
of the most important quality criteria. For exam-
ple, using strategy pattern presents the lowest depen-
dency average followed by the PL with combination
of mechanisms which provides lowest number of pro-
gram components. Hence, we assume that our pro-
posal yields to satisfy as much as possible of quality
criterion even if there is a negligible decline on a level.

Finally, we find that combining mechanisms pro-
vides a better quality while remaining within the stan-
dard size of the software since we had acceptable val-
ues for LOC, CL, FCALL, FNUM metrics.

7 RELATED WORK

Actually, we argue that in the literature, combin-
ing several variability techniques to implement PL
is still in infancy. Hence, in this section we sum
up most notable relevant research to implement vari-
ability in SPL field. Most of implementation mech-
anisms found in the literature were usually classified
as compositional or annotative approaches (Kästner
and Apel, 2008). Compositional approaches imple-
ment features as distinct code units and compose them
usually at compile-time or deploy-time. Whereas, an-
notative approaches implement features by planting
implicit or explicit annotations in the source code.
Clone-and-own: is a the easiest way of producing
a variant of a certain software product by copying a
code or non-code artifact and evolving it further with-
out keeping connection with original version (Dubin-
sky et al., 2013). This leads to different problems,
especially for software maintenance due to a merg-
ing process that is high cost and unscalable for a large
number of products.
Conditional Compilation: is one of the most widely
annotative techniques using preprocessors to condi-
tionally include or exclude variability with #ifdef
annotations which is easy-to-use (Couto et al., 2011).
However, variability is not separated from the whole
code and is explicit to identify. Besides they received
severe criticism because the code is usually complex
and hard to understand since #ifdef statements are
nested with a complex structure.
Conditional Execution: is an another annotative
approach that aims to realize variability by cod-
ing it explicitly using conditional if-else code
parts (Meinicke et al., 2017) to enable or disable fea-
tures at runtime. Therefore, it provides high flexibility
to adapt the system to unforeseen requirements. How-
ever, it presents several challenges: Variants must be
fine-grained to be implemented and it is hard to distin-
guish between variation logic and code functionality
because they are nested together. Finally, the com-
pilation speed and variation at run-time are degraded
because of the inclusion of all variant elements from
code compilation until running.
Polymorphism: is used when an overridden method is
called through a reference of parent class, then type
of the object determines which method is to be exe-
cuted (Géraud et al., 2001). Thus, this determination
is made at run time. As a compositional approach,
variability is separated in different files from common
features. However, the adoption of Polymorphism in
practice increases the risk of software defects at run-
time errors such as illegal pointers.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

114

Table 7: PL criteria evaluation for the implemented PL versions.

PL version
implemented
with:

Variability Reification Extend variability Variability size Expressivity

Original No explicit No No Instructions, Methods No
Strategy Explicit Yes Yes Instructions, Methods, Classes Yes
Polymorphism Explicit No Yes Instruction, Methods, Classes Not easy
State Explicit Yes Yes Instruction, Methods, Classes Yes
AOP No explicit Yes Yes Instruction Methods, Classes, Aspects Yes
Observer No explicit Yes Yes Instruction, Methods, Classes Depends
Combination Explicit Yes Yes Instruction, Methods, Classes, Aspects Yes

Figure 4: Graphic of SI and Reusability.

Aspect-Oriented-Programming (AOP): relies on code
weaving techniques that require external tool support
such as AspectJ (Zhang et al., 2016). As a composi-
tional mechanism, it separates common and variable
features into separate files. Depending on the aspect
weaver, variability can be resolved at both compile-
time and run-time. Despite the benefits above, AOP
is not supported natively by programming languages
and therefore it is difficult to apply it rapidly in de-
velopment process without learning efforts and it in-
creases code size which affects code comprehensibil-
ity (Fazal-e Amin and Oxley, 2010).

Software design pattern (Guizzo et al., 2019) is a
general, reusable solution to a commonly occurring
problem within a given context in software design. It
is not a finished design that can be transformed di-
rectly into source or machine code. Rather, it is a de-
scription or template for how to solve a problem that
can be used in many different situations.

8 POTENTIAL WEAKNESS

Since any study has flaws, we identify the follow-
ing weakness points: The literature presents infancy
in providing PL implemented with different program-
ming techniques, hence, we considered a use case pre-
sented by the FeatureIDE plugin and we adjusted it to
fit the different tactics. Intuitively, the engineer must
choose the most suitable programming tactics for the

Figure 5: Graphic of Cyclomatic complexity and depen-
dency average.

features. Choosing the right choice of mechanism is
necessary to obtain a software with highest quality.
This cannot be avoided as this is an immediate conse-
quence of the engineer competence.

Finally, using some quality attributes plugins can
afford more precise values and different quality met-
rics besides to some mathematics analysis diagrams
of program dependency.

9 CONCLUSION AND FUTURE
WORK

This paper provides a practice exercise to illus-
trate that combining several variability mechanisms is
worth the investment. The obtained PL fits well most
of the quality attributes, the code metric, and the SPL
criteria. Besides, it achieves the median trade off be-
tween most important software quality criteria which
is a challenging task.

As a future work, we plan for extending this ap-
proach and identifying the dependencies between dif-
ferent programming tactics to be able to employ all
of them automatically by the software factory frame-
work and generate software products.

On the Interest of Combining Several Variability Tactics to Design the Implementation of Product Lines

115

REFERENCES

Bachmann, F., Bass, L., Klein, M., and Shelton, C. (2005).
Designing software architectures to achieve quality
attribute requirements. IEE Proceedings-Software,
152(4):153–165.

Barbacci, M. (2004). Software quality attributes: modifi-
ability and usability. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh PA, 15213.

Boja, C., Madalina, Z.-D., Marius, P., and Cristian, T.
(2017). Code quality metrics evaluation platform in
software engineering education. In Proceedings of the
16th International Conference on INFORMATICS in
ECONOMY (IE 2017), Education, Research & Busi-
ness Technologies, ISSN, pages 2284–7472.

Couto, M. V., Valente, M. T., and Figueiredo, E. (2011).
Extracting software product lines: A case study using
conditional compilation. In 2011 15th European Con-
ference on Software Maintenance and Reengineering,
pages 191–200. IEEE.

Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker,
M., and Czarnecki, K. (2013). An exploratory study
of cloning in industrial software product lines. In 2013
17th European Conference on Software Maintenance
and Reengineering, pages 25–34. IEEE.

Fazal-e Amin, A. K. M. and Oxley, A. (2010). A review
on aspect oriented implementation of software prod-
uct lines components. Information Technology Jour-
nal, 9(6):1262–1269.

Géraud, T., Demaille, A., and Duret-lutz, R. (2001). Design
patterns for generic programming in c+. In In In the
Proceedings of the 6th USENIX Conference on Ob-
jectOriented Technologies and Systems COOTS. Cite-
seer.

Guizzo, G., Colanzi, T. E., and Vergilio, S. R. (2019). Ap-
plying design patterns in the search-based optimiza-
tion of software product line architectures. Software
& Systems Modeling, 18(2):1487–1512.

Hunt, J. (2013). Gang of four design patterns. In Scala
design patterns, pages 135–136. Springer.

Jalil, D. and Bakar, M. S. A. (2017a). Adapting software
factory approach into cloud erp production model. In-
ternational Journal of Computer Science and Infor-
mation Security, 15(1):221.

Jalil, D. and Bakar, M. S. A. (2017b). Enabling software
factory with job workflow automation. IJCSIS, 15(4).

Kästner, C. and Apel, S. (2008). Integrating compositional
and annotative approaches for product line engineer-
ing. In Proc. GPCE Workshop on Modularization,
Composition and Generative Techniques for Product
Line Engineering, pages 35–40.

Kazman, R., Bianco, P., Ivers, J., and Klein, J. (2019).
Integrability. Technical report, Carnegie-Mellon
University, Software Engineering Institute Pittsburgh
United

Koziolek, H., Domis, D., Goldschmidt, T., Vorst, P., and
Weiss, R. J. (2012). Morphosis: A lightweight method
facilitating sustainable software architectures. In 2012
Joint Working IEEE/IFIP Conference on Software Ar-

chitecture and European Conference on Software Ar-
chitecture, pages 253–257. IEEE.

Li, Y., Ni, Y., Zhang, N., and Liu, Z. (2021). Modulariza-
tion for the complex product considering the design
change requirements. Research in Engineering De-
sign, pages 1–16.

Mccabe, T. (1996). Cyclomatic complexity and the year
2000. IEEE Software, 13(3):115–117.

Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T.,
and Saake, G. (2017). Mastering software variability
with FeatureIDE. Springer.

Metzger, A. and Pohl, K. (2007). Variability management
in software product line engineering. In 29th Interna-
tional Conference on Software Engineering (ICSE’07
Companion), pages 186–187. IEEE.

Mohammed, L. A. A. et al. (2019). A Customized Quality
Model To Evaluate Domain Engineering In Software
Product Line. PhD thesis, Sudan University of Sci-
ence & Technology.

Özgür, T. (2007). Comparison of microsoft dsl tools
and eclipse modeling frameworks for domain-specific
modeling in the context of model-driven development.

Padhy, N., Singh, R., and Satapathy, S. C. (2018). Soft-
ware reusability metrics estimation: algorithms, mod-
els and optimization techniques. Computers & Elec-
trical Engineering, 69:653–668.

Plath, M. and Ryan, M. (2001). Feature integration using a
feature construct. Science of Computer Programming,
41(1):53–84.

Schmid, K. and Eichelberger, H. (2017). Variability mod-
eling with easy-producer. In Proceedings of the
21st International Systems and Software Product Line
Conference-Volume A, pages 251–251.

Shen, L., Peng, X., and Zhao, W. (2009). A comprehen-
sive feature-oriented traceability model for software
product line development. In 2009 Australian Soft-
ware Engineering Conference, pages 210–219. IEEE.

Tërnava, X. and Collet, P. (2017). On the diversity of cap-
turing variability at the implementation level. In Pro-
ceedings of the 21st International Systems and Soft-
ware Product Line Conference-Volume B, pages 81–
88.

Tsai, W.-T., Gao, J., Wei, X., and Chen, Y. (2006). Testa-
bility of software in service-oriented architecture. In
30th Annual International Computer Software and
Applications Conference (COMPSAC’06), volume 2,
pages 163–170. IEEE.

White, J., Schmidt, D. C., Benavides, D., Trinidad, P.,
and Ruiz-Cortés, A. (2008). Automated diagnosis of
product-line configuration errors in feature models. In
2008 12th International Software Product Line Con-
ference, pages 225–234. IEEE.

Zhang, B., Duszynski, S., and Becker, M. (2016). Vari-
ability mechanisms and lessons learned in practice.
In Proceedings of the 1st International Workshop on
Variability and Complexity in Software Design, pages
14–20.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

116

