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Abstract: The success of deep learning models depends on the size and quality of the dataset to solve certain tasks.
Here, we explore how far generated data can aid real data in improving the performance of Neural Networks.
In this work, we consider facial expression recognition since it requires challenging local data generation at the
level of local regions such as mouth, eyebrows, etc, rather than simple augmentation. Generative Adversarial
Networks (GANs) provide an alternative method for generating such local deformations but they need further
validation. To answer our question, we consider noncomplex Convolutional Neural Networks (CNNs) based
classifiers for recognizing Ekman emotions. For the data generation process, we consider generating facial
expressions (FEs) by relying on two GANs. The first generates a random identity while the second imposes
facial deformations on top of it. We consider training the CNN classifier using FEs from: real-faces, GANs-
generated, and finally using a combination of real and GAN-generated faces. We determine an upper bound
regarding the data generation quantity to be mixed with the real one which contributes the most to enhancing
FER accuracy. In our experiments, we find out that 5-times more synthetic data to the real FEs dataset increases
accuracy by 16%.

1 INTRODUCTION

Deep learning (DL) has achieved high accuracy per-
formance in various complex tasks including recog-
nition (Rakesh et al., 2022), detection (Zhou et al.,
2022), localization (Grumiaux et al., 2022), etc. Yet
despite its success, it requires large amounts of la-
beled data, especially if high performance is required.
For instance, considering a Facial Expression Recog-
nition (FER) model trained on a specific Facial Ex-
pressions (FEs) dataset, it would not perform as well
when applied to a moderately different real-world
dataset. This is due to the distribution shift coming
from a lack of diversity and biases in the datasets
against certain demographic changes (Drozdowski
et al., 2020) such as race, gender, and age.

Biases in the training data prone trained models
towards overfitting as they are optimized over the ma-
jority samples (e.g. certain age) represented in the
dataset. Hence a low performance is expected over
minor samples (e.g. certain races). To address this is-
sue, we argue that having at disposal a diverse dataset
would help in overcoming such biases and building
a generalizable model. However, acquiring and la-
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beling image and video data is a very expensive and
time-consuming task and sometimes it is not even
feasible. In this paper, we study the impact of syn-
thetic data generation on the performance of neural
networks. We propose to alleviate the bias issue by
testing a data augmentation procedure able to gener-
ate balanced and diverse data samples.

Several works (da Silva and Pedrini, 2015), (Gu
et al., 2012), (Hasani and Mahoor, 2017), and
(Zavarez et al., 2017) routinely performed standard
data augmentation using affine transformation (e.g.,
translation, scaling, rotation, reflection, shearing,
cropping, etc.). Standard augmentation does not bring
any new information to enrich the training dataset
to solve the bias problem. On the contrary, Genera-
tive adversarial networks (GANs) (Goodfellow et al.,
2014) offer the opportunity, to increase the amount
of training samples, and to enrich the diversity of the
final training set under certain experimental data gen-
eration process. In this paper, we consider an FER
task and we address and evaluate the use of gener-
ated synthetic FEs via GANs to compensate the lack
of diversity in FE training databases in an attempt to
reduce the bias of the considered FER model and to
increase its generalization ability.

Here, we consider a classical CNN classification
scheme as it is not our intention to build a novel classi-
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fier. However we carefully design the data augmenta-
tion scheme based on combining multiple GANs that
consider generating: i) new and diverse FEs with new
identities and races, various genders, and different
ages; ii) various FEs deformation intensities, which
makes the generated facial expressions closer to spon-
taneous human behavior; and iii) balanced dataset
where we guarantee that each identity gets the same
amount of generated images per emotion class.

To this end, our contributions are:

• We design a method to generate diverse and bal-
anced facial expression deformations.

• We empirically investigate the contribution of
synthetic data and their role in improving DL per-
formance.

• We perform a cross-database evaluation to esti-
mate fairly the impact of generated data on the
generalizability of the trained model.

The paper is structured as follows: Section 2 dis-
cusses related works; Section 3 presents the proposed
procedure of building an FER system based on aug-
mented data; Section 4 discusses the experimental re-
sults; Finally, Section 5 concludes the paper.

2 RELATED WORKS

In most traditional research in facial expression
recognition, the combination of face appearance de-
scriptors used to represent facial expressions with
deep learning techniques is considered to overcome
the difficult factors for FER. Regardless, due to the
small size of public image-labeled databases, Data
Augmentation (DA) techniques are often used to in-
crease the size of the database. In addition to DA ge-
ometric transformations, more complex guided aug-
mentation methods can be used for DA, such as GAN.
In (Yi et al., 2018), a conditional GAN is used to
generate images to augment the FER2013 dataset. A
CNN is used to train the predictive model, and the
average accuracy increased by 5% after applying the
GAN DA technique. (Chu et al., 2019) proposed an
FER method based on Contextual GAN. Chu’s model
uses a contextual loss function to enhance the facial
expression image and a reconstruction loss function
to retain the subject’s identity information in the ex-
pression image. Experimental results with the ex-
tended CK+ database (Lucey et al., 2010) show that
Chu’s method improves recognition performance by
7%. However, neither Yi’s nor Chu’s studies perform
cross-database evaluation nor consider the generation
of balanced synthetic FEs classes. (Porcu et al., 2020)
experimented with the combination of various data

augmentation approaches, such as using synthetic im-
ages, and discovered that a combination of synthetic
data with horizontal reflection, and translation can in-
crease the accuracy by approximately 30%. They per-
formed cross-database evaluations by training their
model on an “augmented” KDEF database (Lundqvist
et al., 1998) and testing it on two different databases
(CK+ and ExpW (Zhanpeng Zhang and Tang, 2016)).
Unlike them, we design our method to consider a di-
verse but balanced generation of FE classes and create
our experimental setup to resemble fair performance
metrics.

3 DATA MODALITY

Generative Adversarial Networks are used to gener-
ate different FEs for training our FER algorithm. Our
model design splits into three different compartments:
the data generation stage, the CNN classifier training
stage, and the inference stage.

3.1 Dataset Generation Process

Our data generation process relies on using two GANs
on top of each other. One is for new identity gener-
ation while the other is used to impose the genera-
tion of local FEs. First, we generate new identities
with new facial features using the StyleGAN model
of (Karras et al., 2020) that randomly generates re-
alistic human faces. Additionally, since we want to
compare the performance of our FER model trained
with both real or generated facial features, we build a
database that resembles existing public databases. In
those public datasets, subjects pose different expres-
sions in front of a fixed-setting camera. For this rea-
son, we build a novel method that jointly uses Style-
GAN and StarGAN on top of each other as a way to
reinforce the FEs generation process over new iden-
tities. However, due to the randomness of the Style-
GAN model and the desirability of a balanced training
set, we use the structure of a StarGAN model (Choi
et al., 2017) for image-to-image translation with dif-
ferent settings to artificially synthesize the six Ek-
man emotions (anger, disgust, fear, happiness, sad-
ness, and surprised) on a single generated identity.
We train the StarGAN model with the spontaneous
public database Affectnet-HQ (Mollahosseini et al.,
2019) since this database captures images from vari-
ous settings, and from lots of people through the in-
ternet. We use the trained model to generate facial
expressions on both real face images and StyleGAN
generated face images as shown in figure 1. The final
result of using the image-to-image translation Star-
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Table 1: Model summary of the considered CNN-based
model for Facial Expression Recognition.

Layer input number of filters Pool size Activation function
1 Conv2D 64×64×1 32 Relu
2 Conv2D 64×64×32 64 Relu
3 Max Pooling 64×64×64 2×2
4 Drop out 25%
5 Conv2D 32×32×64 128 Relu
6 Max Pooling 32×32×128 2×2
7 Conv2D 16×16×128 128 Relu
8 Max Pooling 16×16×128 2×2
9 Drop out 25%
10 Flatten
11 Dense 1024 Relu
12 Drop out 50%
13 Dense 6 Softmax

GAN model to synthesize different expressions for a
given real or generated identity is shown in figure 2.
As we can see, there are several artifacts in the output
images, which are mainly found on the outer part of
the face. However, these artifacts are not important
in our task since we only focus on facial features for
facial expression recognition. During this process, we
generated 100,000 identities and synthesized 6 basic
emotions on each of them. Finally, with some prepro-
cessing (face cropping, gray-scale, and resizing), we
generated the balanced dataset illustrated in figure 3.

(a) Real human facial features. (b) StyleGAN Generated identity.

Figure 1: Two samples of facial features.

3.2 Convolutional Neural Network

In the second stage of our method, we design a CNN
classifier whose architecture is summarized in table
1. Our purpose is to use a simple yet effective clas-
sifier in order to focus our attention on the contribu-
tion of GAN-generated images with respect to model
enhancement. To avoid the overfitting effect, we use
drop-out layers.

In the first experiment, the CNN classifier is
trained on the two facial expression public databases
(RaFD (Langner et al., 2010), and Oulu-CASIA
(Zhao et al., 2011)) labeled with the 6 basic Ekman
emotions. In the second experiment, the CNN model
is trained again from scratch using only generated fa-
cial expressions. These two control experiments serve
as baselines. Finally, we re-train the CNN model
again by gradually augmenting the public databases
with images of generated FEs with the same number
of identities each time.

3.3 Testing Phase

To fairly evaluate the performance of our method, we
split the real and generated database to create a test
database. About 17% of the data that are created are
used for testing purposes. Although these test datasets
are necessary to assess the model’s performance, the
similarity in distribution between the test and train
sets makes it difficult to determine the exact contribu-
tion of the generated data to the model’s performance.
To ensure a fair analysis of the results and prevent bias
in model prediction, it is important for our settings
to perform a cross-database evaluation in which our
test data resemble zero correlation with training sets.
Hence, to have a fixed reference test dataset to com-
pare all the models, we use the MMI database (Pantic
et al., 2005) which is completely blind to the training
process.

4 RESULTS AND ANALYSIS

In the following, we present the results of three ex-
periments with different settings and designs. RaFD
(Langner et al., 2010) and Oulu-CASIA (Zhao et al.,
2011) real databases have been used in experiments
1 and 3. Alternatively, in experiment 2 we use only
synthetic data, and these synthetic data are also used
in experiment 3 for further analysis.

4.1 Experiment 1 - Training with Real
Data

In this first baseline experiment, the CNN classifier
for the FER model has been trained with real face
images coming from RaFD and Oulu-CASIA which
in total have 144 subjects. Here, we use 109 sub-
ject images with 6 basic emotions for training, 10 for
validation, and 25 for testing. From these data, we
only consider the frontal faces that are associated with
emotional labels.

Our trained CNN classifier achieves 69.6% of ac-
curacy when it is tested over 25 subjects. However,
we observe overfitting because our model achieves
84.5% in the training phase. By applying a cross-
database evaluation using the MMI database (Pan-
tic et al., 2005), the obtained accuracy drops to 45%
which is expected due to the limited number of sub-
jects we have in the training dataset. Next, we analyze
each class separately to get an insight into the classes’
separability. Figure 4 presents the associated confu-
sion matrix. Based on this map, the “Happy” emotion
has the best performance and the “Disgust” class is
also showing a good performance compared to other
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Figure 2: Examples of synthetic facial expressions. In the top row, the StarGAN model acts on an actual human face. In the
bottom row, the model works with a generated identity.

(a) Samples from the Oulu-CASIA database.

(b) Samples from the generated dataset.

Figure 3: Samples of generated FEs either on a real face or
on a generated one.

classes of emotions. While this confusion matrix pro-
vides a comprehensive overview of each class, it is
unnormalized, making later comparisons difficult. To
analyze the results of the cross-database evaluation on
the MMI database in a more detailed manner, in a sec-
ond step, we measure three metrics (precision, recall,
and F1-score) to explore the model’s prediction with
the annotations provided for the MMI database. Fig-
ure 5 presents these metrics results for each class of
emotions. It can be noticed that the model trained
on real facial features has the most difficulty at rec-
ognizing the “Sad” class, while the other classes are
not showing a good performance either. Despite hav-
ing two real databases for training, this model fails
to perform adequately. As a result, adding more data
to the training is necessary and we argue that adding
synthetic data might aid in overcoming the overfitting
and also in lifting up the accuracy rate.

4.2 Experiment 2 - Training with
Synthetic Generated Data

In the second experiment, we follow the same proto-
col. The only difference is that we are using synthetic
facial images as the training dataset. We consider
the same number of synthetic identities as in the real
dataset in the first experiment (109 identities). These
identities are generated with the process presented in
section 3.1. For each identity, all six basic emotions
exist in the dataset. Training our model with this syn-
thetic dataset, the accuracy reaches 99.84% during

Figure 4: Confusion Matrix on the MMI database in exper-
iment one.

Figure 5: Precision, recall, and F1-score on the MMI
database obtained on the CNN model trained with real faces
only (cf. experiment 1).

the training process and 97.6% while testing on the
synthetic dataset. Also, no overfitting is observed in
this experiment. Although these results show a sig-
nificant improvement, performing the cross-database
evaluation on the MMI database is not that promising.
On the MMI database, the obtained accuracy drops
to 47% showing nearly the same performance as the
model trained in experiment 1.

Figure 6 presents the confusion matrix of the
model trained with the synthetic dataset for the MMI
database to discover whether the model trained on
synthetic data has similar classifying difficulties as
the model trained on real data. Comparing the Confu-
sion Matrix in figures 4 and 6 we notice:
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Figure 6: Confusion Matrix on MMI database in experiment
two.

Figure 7: Precision, recall, and the F1-score on the MMI
database for the model trained in experiment two (section
4.2).

1. There has been a huge improvement in recogniz-
ing the class “Surprised”, 620 samples instead of
187 samples.

2. We can observe improvements in the recognition
of the “Angry” class, 251 samples instead of 187.

3. As compared to the CNN classifier trained on real
faces, we see some drop in the “Disgust”, “Fear”,
and “Sad” classes, but both models seem to have
similar difficulties.

Also based on the presentation of precision, recall,
and F1-score in figure 7, it appears the recall scores
have decreased for most classes. We can therefore say
that except for the “Surprised” class, the CNN model
trained on synthetic data alone is unable to match the
actual facial expressions annotations provided in the
MMI database. The results of our current experiment
prove that synthetic datasets can achieve similar per-
formance as real datasets. Hence our final aim is to
increase the dataset size to improve the performance
at all class levels. In this case, we hope that the com-
bination of these two databases will help solve such
problems.

Table 2: Accuracy of the model trained on augmented
datasets (Real Facial Expressions (RFEs) augmented by
Generated Facial Expressions (GFEs)).

Training accuracy Testing accuracy
RFEs + GFEs 91% 85.3%

RFEs + 2 × GFEs 93.8% 89%
RFEs + 3 × GFEs 94.8% 92.7%
RFEs + 4 × GFEs 95.8% 92.5%
RFEs + 5 × GFEs 97.6% 94.3%
RFEs + 6 × GFEs 97.8% 94%
RFEs + 10 × GFEs 97.9% 95.1%
RFEs + 15 × GFEs 98.9% 95.5%
RFEs + 20 × GFEs 98.9% 97%

4.3 Experiment 3 - Training with
Augmented Datasets

In the last experiment, we augment the Real Fa-
cial Expressions (RFEs) dataset of experiment 1 with
Generated Facial Expressions (GFEs). The number
of generated identities in each unit is the same as the
number in the real database used for experiment 1
(109 identities for training, 10 identities for valida-
tion, and 25 identities for testing). As an example,
RFEs + 2 × GFEs is the extension of the real FEs
with two units of generated FEs (109 real identities
+ 218 generated identities for training). Each of the
augmented datasets is split into training, validation,
and test sets. And the CNN model is trained on each
dataset individually. Each augmented dataset is rep-
resented in table 2 indicating the model accuracy dur-
ing training and testing. The results demonstrate that
adding more synthetic FEs to the training set results in
constant improvement of training and testing accura-
cies. The study also reports no evidence of overfitting.

The cross-database evaluation on the MMI
database is then performed for further validation and
figure 8 shows the accuracy obtained from each
trained model. Note that the first two points are the
result of cross-database evaluation obtained in exper-
iments 1 and 2 respectively. According to this figure,
the highest accuracy corresponds to the model trained
on the RFEs + 5 × GFEs dataset with 58.3%. This
performance from the model trained on the 5th aug-
mented dataset indicates a 13% gain in response to the
model trained in experiment 1 (with real FEs). But
beyond this point, the accuracy drops significantly
due to a catastrophic forgetting mode caused by the
large number of synthetic facial features in the train-
ing set overwhelming the facial features of the real
face database.

To see the improvement of our best model (RFEs
+ 5 × GFEs) in each class separately, we present the
confusion matrix and the calculated precision, recall,
and F1-score metrics on the MMI database in fig-
ures 9 and 10 respectively. It appears that the “Sad”
class performs significantly better than the two base-

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

476



Figure 8: The result of cross-database evaluation on the MMI database. RFEs is referring to Real Facial Expressions and
GFEs is referring to Generated Facial Expressions.

Figure 9: Confusion Matrix on MMI database in experiment
three with the model trained on RFEs + 5 × GFEs database.

Figure 10: Precision, recall, and F1-score on the MMI
database for the model trained on the RFEs + 5 × GFEs
database in experiment three (section 4.3).

line experiments in all three metrics. Based on the
recall scores in all classes, we can conclude that this
trained model matches facial expressions in the MMI
database to their actual annotations better than other
trained models. In contrast with the model trained
in experiment 1 (training set of real FEs), only the
“Anger” class’s performance decreases. In conclu-
sion, based on our observation, we can say that gener-
ated data along with the real facial features is helping
the model’s recognition ability.

Furthermore, there is no limit to the number of
identities we can generate. But there is a point be-
yond which adding new generated FEs no longer im-
proves the results. We have observed experimentally

that there is an upper limit in augmentation in relation
to the size of the real face database.

4.4 Comparison with the
State-of-the-Art

As a final step in this study, we compare our results
with state-of-the-art findings. We use the VGG16 tool
to calculate the accuracy of the FER VGG16 model
on the MMI database. With that model, we achieve
54.08% accuracy while our best CNN-based model
reaches 58.3% in accuracy. Through the use of syn-
thetic facial features and a simpler model, we enhance
the accuracy by 4%.

Many state-of-the-art studies have reported their
evaluation results on the CK+ database. Nevertheless,
we did not use the CK+ database in our training or
testing processes. Therefore, in order to perform the
comparison, we evaluate our best model performance
on the CK+ database and the result is presented in
table 3. It can be seen that the approach proposed
by (Zavarez et al., 2017) is the only one that outper-
forms our proposed CNN model. However, the dif-
ference is only 1.09% while they trained their model
using 6 different public databases and some classical
data augmentation techniques. Whilst our results are
achieved with smaller training datasets using only two
public databases and GAN images which makes our
results more outstanding. In addition, compared to the
study in (Porcu et al., 2020) that is explained in sec-
tion 2, even though their model’s accuracy increased
by 30%, our model had more promising results based
on this cross-database evaluation.

Figure 11 shows the result of our CNN-based
model in the cross-database evaluation on the CK+
database. For this database, we achieve an accurate
model for most of the classes even though there is no
record of this public database in our training data.

During this study, we replaced the MMI database
with the CK+ database for cross-database evaluation.
As a result, model performance increased by 16%
rather than the 13% gain we previously achieved.
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Table 3: Comparison among state-of-the-art cross-database experiments tested on the CK+ database.

Method Training Database Accuracy
1 Proposed method RaFD + Oulu-CASIA +GAN 87.49%
2 (Porcu et al., 2020) KDEF 83.30%
3 (da Silva and Pedrini,

2015)
MUG 45.60%

4 (da Silva and Pedrini,
2015)

JAFFE 48.20%

5 (da Silva and Pedrini,
2015)

BOSPHOROUS 57.60%

6 (Lekdioui et al., 2017) KDEF (Lundqvist et al., 1998) 78.85%
7 (Gu et al., 2012) JAFFE 54.05%
8 (Hasani and Mahoor,

2017)
MMI+FERA 73.91%

9 (Mollahosseini et al.,
2016)

MultiPIE (Gross et al., 2008), MMI, CK+, DISFA (Mavadati et al.,
2013), FERA (Valstar et al., 2017), SFEW (Dhall et al., 2011), and
FER2013

64.20%

10 (Zavarez et al., 2017) CK+, JAFFE, MMI, RaFD, KDEF, BU-3DFE (Yin et al., 2006), and
ARFace (Martinez and Benavente, 1998)

88.58%

Figure 11: Confusion Matrix on CK+ database.

While it is undeniable that generated data is a cost-
less method that can help improve FER model accu-
racy, the exact gain would be determined by the test
databases in applications.

5 CONCLUSIONS

The purpose of this study was to investigate how gen-
erated data could be used to augment the data in a
deep learning model to improve its performance. We
chose a simple facial expression recognition model
for this proposal. Our synthetic balanced dataset was
created using two GAN models to test the potential
improvement of the FER model performance. With
real databases, synthetic datasets, and augmented
datasets, we trained the CNN classifier multiple times
for the FER task.

Our study confirms that enriching the training
dataset with GAN images can improve CNN classi-
fier performance. Training and cross-database evalua-
tion performances were improved by augmenting real
databases with synthetic facial features. In compari-
son to a model trained solely from real facial images,
our best model shows a 16% increase in accuracy. On
the same database, we also compared our results with
the state-of-the-art and computed the accuracy of the

VGG16 model, achieving 4% higher accuracy.
For further study, we propose to first augment the

training database with additional real facial expres-
sions. This will enable us to improve the performance
of the model, as it would also let us augment more
GAN images. Secondly, we propose to enrich the
VGG16 database with our generated dataset to see
if we can improve the performance of the VGG16
model as well. And third, we would like to study the
potential performance increase for other applications
related to facial models.

Material and Codes. Results can be repro-
duced using the code available in the GitHub
repository https://github.com/sayeh1994/synthesizin
facial expression and https://github.com/sayeh1994/
Facial-Expression-Recognition.
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