
Veto: Prohibit Outdated Edge System Software from Booting

Jonas Röckl1, Adam Wagenhäuser1 and Tilo Müller2

1FAU Erlangen-Nürnberg, Germany
2Hof University of Applied Sciences, Germany

Keywords: Trusted Execution Environment, Full Disk Encryption, Remote Attestation, Edge Computing.

Abstract: Edge computing emerges as a trend, forming a link between the Internet of Things and cloud-based services.
Large-scale edge deployments are already in place today in the context of communication network providers
that offload more and more tasks to the edge to ensure high flexibility and low latencies. By relying on remote
attestation and disk encryption techniques, we design a novel system architecture that protects confidential
data on edge nodes in the case of device theft. Recent vulnerabilities like Ripple20 and Amnesia:33 show the
consequences and costs of critical security bugs stemming from outdated system software. Thus, we design
our system in a way that a node can derive its decryption key if and only if a trusted remote party (e.g., a
network operator) can verify that it is running the latest software. This is a security feature that prevalent
implementations like Linux’s dm-crypt lack. To secure the early-boot communication, we rely on a trusted
execution environment, hardware offloading, and Rust device drivers. We prototype our system on two recent
ARMv8 devices and show that the performance overhead (≈ 2%) and the boot delay (1s) are low. Thus, we
believe that our concept is a meaningful step towards more secure future edge devices.

1 INTRODUCTION

Driven by broad applications like home automation,
energy metering, health monitoring, and large-scale
industrial systems, the Internet of Things (IoT) grows
every day. The constantly increasing demand for high
bandwidth, low latencies, and strong privacy fosters
location-aware edge computing models, forming a
link between IoT devices and a cloud service. Edge
computing differs from traditional cloud computing
in the sense that it performs computing at the edge of
the network (e.g., cell towers or distributed “micro”
data centers), closer to the source of the data like IoT
devices (Cao et al., 2020). Large edge computing de-
ployments are in place already today in the context of
communication network providers that deploy more
and more intelligent network elements and offload a
variety of tasks to the edge of the network. Edge
nodes process and also store potentially sensitive data
from a growing number of stakeholders (Röckl et al.,
2021). In the future, a wide variety of data is expected
to be processed on the edge, including but not limited
to data from health monitoring systems, GPS data,
CCTV surveillance streams, autonomous driving sys-
tems, and multiple more.

In contrast to highly-protected cloud data centers,

physical attacks on edge nodes are a realistic sce-
nario because access cannot be limited to authorized
personnel only due to geographic dispersion (Busch
et al., 2019). This results in attack vectors to network
infrastructure like device theft, threatening the data on
edge devices.

The recently published sets of vulnerabilities
named Ripple20 and Amnesia:33 expose a plethora
of critical bugs in widely-used network stacks, with
some of them enabling remote code execution (Kol
and Oberman, 2020; Forescout Research Labs, 2020).
For example, CVE-2020-11901 allows remote code
execution with a forged DNS response. Those inci-
dents clearly show the consequences and costs of crit-
ical vulnerabilities in outdated system software. Most
strikingly, some of the affected devices do not include
an update mechanism to patch the vulnerabilities, ex-
posing the device and, thus, potentially confidential
data to an adversary indefinitely.

While there is research on disk encryption for
user-facing devices like smartphones (Groß et al.,
2021), Full Disk Encryption (FDE) for edge nodes
is rarely dealt with. One challenge is that edge de-
vices need to boot without actively entering a pass-
word during boot. To tackle that challenge, existing
techniques like Microsoft’s Bitlocker, Apple’s File-

46
Röckl, J., Wagenhäuser, A. and Müller, T.
Veto: Prohibit Outdated Edge System Software from Booting.
DOI: 10.5220/0011627700003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 46-57
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Vault, and Linux’s dm-crypt can rely on a secret pro-
tected by hardware (e.g., by a TPM). Still, an attacker
can steal the device and indefinitely boot the device.
With the stolen device, the attacker has enough time to
try to break into the system via software (jailbreak) or
hardware vulnerabilities and to exfiltrate confidential
data. For example, the attacker might be able to ex-
ploit a bug in the booted Operating System (OS) via
a logical communication channel (e.g., a serial con-
sole) that was not or not sufficiently secured. Even
if the vulnerabilities are fixed by the vendor, there is
no way to ensure that the updates are installed on the
stolen device. Thus, novel anti-theft techniques for
edge infrastructure are to be developed.
Contributions. We design a novel system architec-
ture that protects confidential data on edge nodes in
the case of device theft. A trusted remote party (e.g., a
network operator) can actively decide if a device with
a given software state is allowed to boot the OS.

If the trusted remote party deems the device se-
cure (e.g., by verifying that all recent software up-
dates are installed), the trusted party sends a token
that is required to derive the key for the FDE. This
way, outdated and potentially vulnerable system soft-
ware is not able to derive the FDE key, mitigating data
breaches on stolen edge computing nodes. In sum-
mary, we make the following contributions:

• We design a novel system architecture that binds
booting the OS on edge nodes to the most up-to-
date system software.

• We develop a protocol to securely retrieve a to-
ken from a trusted party during the boot process,
which is used to derive the FDE key.

• We propose and implement several strategies
to isolate an early-boot communication channel
from system resources including key material.

• We prototype our system on two ARMv8-A de-
vices. We evaluate the size of the Trusted Com-
puting Base (TCB) and discuss security.

• We measure the CPU overhead and the boot delay.

2 THREAT MODEL

In our work, we focus on the confidentiality of the
data on edge devices. We require that the communi-
cation interfaces of the device (e.g., PCI, serial con-
sole, and JTAG) are either disabled or protected via
appropriate authentication mechanisms. We assume
that these mechanisms are strong enough to hinder the
adversary from conducting runtime attacks directly at
the site of deployment (e.g., brute-forcing the creden-
tials for a local serial console). We instead focus on

an attacker that steals the device and conducts boot-
time attacks. We identify threats (Ts). In the attacker-
controlled environment, the adversary can read (T1)
and write blocks (T2) by using the storage device’s
interfaces (e.g., a SATA cable or the exposed pins of
an eMMC). The attacker can also mount downgrade
attacks (T3) to the storage. Moreover, the adversary
can conduct cold-boot attacks on external RAM as
well as Direct Memory Access (DMA) attacks (T4).
The adversary can emulate network traffic from and to
the device (T5) and can connect additional peripher-
als (T6). The attacker may also exploit bugs in early-
boot software (T7) akin to jailbreaks (axi0mX, 2019).

However, we assume that the attacker can neither
access on-chip RAM nor extract hardware-protected
secrets by relying on, for example, focused ion
beams (Selmke et al., 2016). These attacks are ex-
pected to be highly intrusive, dependent on the hard-
ware, and costly. Hardware side-channel attacks are
out of scope and we presume that the cryptography
primitives are secure. We assume that the hardware
works according to the corresponding specification.
This includes the eMMC Replay-Protected Memory
Block (RPMB) which must never allow access with-
out a valid Message Authentication Code (MAC).

Securing the trusted remote party is out of scope.
We assume a cloud-based server and, thus, a wide
range of existing protection techniques are available.

3 ARM TrustZone

The ARM TrustZone is a Trusted Execution Envi-
ronment (TEE) available on most modern ARMv8-A
CPUs. Two isolated computing domains, the Normal
World (NW) and the Secure World (SW) are intro-
duced (Pinto and Santos, 2019). The NW is also re-
ferred to as Rich Execution Environment (REE). A
CPU status bit, the so-called Non-Secure (NS) bit, en-
codes the world a core currently executes in. The SW
can access resources from the NW but not vice versa.
The NS bit is passed down to the RAM and the periph-
eral buses. A dedicated peripheral, the TrustZone Pro-
tection Controller (TZPC) assigns memory-mapped
peripherals to the SW or the NW. The TrustZone Ad-
dress Space Controller (TZASC) allows partitioning
DRAM into secure and non-secure partitions.

The hardware privilege levels of the CPU are
called Exception Levels (ELs). EL0 is typically used
for applications, EL1 for an OS, and EL2 provides
hardware support for virtualization. Whereas EL0-
EL2 exist in both worlds, EL3, the level with the
highest privilege, only exists in the SW. The so-
called secure monitor runs in EL3, which manages

Veto: Prohibit Outdated Edge System Software from Booting

47

context switches from and to the SW (ARM Lim-
ited, a), coordinates the power state of the CPU, and
handles firmware updates (ARM Limited, b). More-
over, it includes a True Random Number Generator
(TRNG) and a trusted boot process with a Chain of
Trust (CoT). Typically, the Root of Trust (RoT) is
stemmed from hardware. The secure monitor runs
on on-chip memory to mitigate cold-boot attacks and
DMA attacks.

The ARM TrustZone with a software stack like
OP-TEE (Linaro Limited, 2022) does neither provide
full disk encryption nor does it allow early-boot re-
mote attestation for autonomously booting systems.

4 DESIGN

Fig. 1 illustrates the boot process of an edge de-
vice. The underlined components are extensions to
the original boot flow that are gradually explained in
this section. On ARMv8-A, the device boots up in the
TEE. Typically, some vendor-provided software in a
Read-Only Memory (ROM) runs after a device reset
(1). The boot ROM loads and executes some sort of
firmware (1). Any component after the boot ROM is
signed and only executed after verifying the signature
(secure boot). The signatures can be stored alongside
the components. The hardware is required to support
an RoT that allows storing a public key to verify the
signatures. The public key must be protected from
modifications. For this reason, some devices support
blowing eFuses to pin the public key. The correspond-
ing private key remains at the trusted remote party.

On a system without our proposed modifications,
the firmware directly passes control to the REE (8)
and loads the kernel or a second-stage boot loader. A
kernel binary can include a small file system (initfs),
which can set up dm-crypt to decrypt the actual root
file system (rootfs). The REE’s root file system is en-
crypted with an FDE key. On a conventional system,
this key is derived from a passphrase that needs to be
manually entered before the system boots.

We, however, carefully alter the boot process so
that the device receives a token from a trusted party
during the boot process which is used to derive the
FDE key. We add the following lightweight compo-
nents as an extension to the firmware:
Governor. The governor is responsible for the coor-
dination of the altered boot process. It is called by the
firmware (2) and returns to it after execution (7). The
governor supervises the retrieval of a token from the
trusted remote party and derives the FDE key. The
REE can only boot if the rootfs is decrypted. This
depends on deriving the FDE key, which is only pos-

ROM Firmware +
Key Shield

Kernel +
initfs rootfs

Governor

Emergency
Switch

Confinement
Module

Agent

REE
TEE

1 2/7

4
5

8
9

3/6
encrypted
signed

restricts

Figure 1: The boot process. Green components with solid
border are trusted. Red components with dashed border are
untrusted. Underlined components extend the original boot
process. The numbers show the boot order.

sible with the token. Subsidiaries to the governor are
the emergency switch, the confinement module, and
the agent. They are dealt with in the following.
Emergency Switch. A security functionality that pre-
vents an attack on the agent from indefinitely monop-
olizing the device. The emergency switch ensures that
the control flow is passed back to the governor in the
TEE even if the system behaves unexpectedly. One
option to implement the emergency switch is a hard-
ware timer interrupt. Likewise, hardware watchdogs
are widely available (Xu et al., 2019). As a require-
ment, the interrupt may not be prevented by the agent.
Modern TEEs can assign the interrupt or the watch-
dog to the TEE only.
Confinement Module. While the emergency switch
isolates the agent in a temporal fashion, the con-
finement module does so in a spatial manner. The
confinement module uses hardware-based protection
techniques to securely restrict the agent to certain re-
gions of memory and peripherals.
Agent. The governor activates the emergency switch
and the confinement module (3) before the agent is
called (4). This is because the agent is exposed to a
network-facing attacker and, thus, is considered un-
trusted. The agent communicates with the trusted
party to receive the token. To do so, the agent sets
up a network connection. In this work, we rely on
an external hardware network stack connected to the
edge device (Sec. 5). Subsequently, the agent submits
the token to the governor (5). The governor disables
the confinement module and the emergency switch
again (6). The governor can access a local device se-
cret derived from the RoT of the device. Based on the
local device secret and the token, the governor derives
an FDE key. Finally, the governor passes the FDE key
to the key shield.
Key Shield. In addition to boot flow modifications,
we add a runtime component called the key shield to

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

48

the firmware. We refer to it as a runtime component,
since the REE software can use it after it has booted.
The key shield is similar to a trusted key store (An-
droid, 2022). In contrast, one cannot dynamically add
and remove keys. During the boot process, the key
shield receives the FDE key from the governor. After
initialization, the REE can ask the key shield to con-
duct encryption and decryption with this key (9). Yet,
the key is never directly exposed to the REE.
Trusted Remote Party. Following the edge comput-
ing model (Cao et al., 2020), we assume a trusted re-
mote party (e.g., the network operator) to operate a
cloud-based server that decides whether an edge de-
vice with an attested software state is allowed to de-
crypt the rootfs and boot the REE.

4.1 Remote Attestation

We use static remote attestation similar to related
works (Röckl et al., 2021; Huber et al., 2020; Xu
et al., 2019). The firmware calculates an attestation
value A = H(M1||M2||...||Mn) where M1, M2, ... Mn
are measurements of the early-boot software compo-
nents. The attestation value covers the firmware with
the key shield, the governor, the emergency switch,
the confinement module, the agent, and the kernel bi-
nary including the initfs. We attest the state to prevent
outdated system software from successfully receiving
the token and booting the REE. We do not attest the
state of the encrypted file system during early boot.
If the use case requires it, one can rely on existing
kernel features like dm-verity to attest the file system
state after one has booted the REE kernel.

4.2 Key Derivation Protocol

We design a lightweight protocol so that a device D
can retrieve a token T from a trusted remote party P.
The token T is used to derive an FDE key. The design
goals for the protocol are as follows: The protocol
is required to 1© ensure the confidentiality of T , 2©
check the authenticity of D and P, and 3© be resistant
to replay attacks. Moreover, 4© the protocol needs to
last one Round Trip Time (RTT). This is because the
governor can then prepare a request and pass it to the
agent. Afterward, the agent returns the response to the
governor for verification. This way, no cryptography
is needed in the REE. Finally, 5© the protocol needs
to add a low amount of code to the TCB. We intro-
duce the following notations. A key pair (KY ,K−1

Y) of
entity Y consists of a public key KY and a private key
K−1

Y . MK−1
Y

is a message M, signed by Y .
Based on a hardware device secret X , D derives

XT = H(X ||“token”) and XC = H(X ||“counter”).

Moreover, D derives a key pair (KD,K−1
D) from

the value H(X ||“cert”). P has a unique key pair
(KP,K−1

P) for each device to communicate with. Dur-
ing provisioning, which is assumed to take part in a
safe environment, D gets to know KP. In return, P
receives KD and XT .

When deployed, the device conducts the following
steps during the boot process:

1. D sends a request req = (A,C,N)K−1
D

. The term
A is the attestation value that statically remote
attests the state of D (Sec. 4.1). C is a non-
volatile boot counter. We require that C can only
be incremented if one knows XC. We use an
eMMC RPMB (Western Digital, 2017), which is a
hardware-protected partition that only allows au-
thenticated reads and writes. We set the RPMB
key to XC. One can do this only once. N is a
nonce, randomly generated for each req.

2. P verifies the signature of req and decides on
whether D is allowed to decrypt the disk and, thus,
boot the REE. P can base the decision on the soft-
ware state A. Furthermore, P can take the device’s
behavior into account, depending on the specific
use case. For example, rolling restarts (as indi-
cated by C) might be a sign of tampering. Simi-
larly, a validly signed request from an unexpected
source IP address may indicate a stolen device.
We note that the actual detection of theft could be
improved via sensors and means of surveillance.
This is a research field orthogonal to our system.

3. If a device theft (or another form of irregular
behavior) is detected, P does not hand out the
token any longer. The communication aborts
at this point. If the software state A is dep-
recated and, thus, an update mechanism is to
be triggered, P answers with an error err =
(C,N,“deprecated”)K−1

P
. To permit the boot, P

derives a symmetric key KT from the secret XT .
Then, P responds with resp = (C,N,E)K−1

P
. The

encrypted payload E = (T)KT consists of the to-
ken T , symmetrically encrypted with KT .

4. D receives resp or err and verifies both the signa-
ture and the correctness of C and N. In the case of
err, an update mechanism is triggered (Sec. 4.3)
and the protocol concludes at this point. In the
case of resp, D derives KT and decrypts E to re-
trieve the token T .

5. D derives the FDE key as K =H(T ||L) where L =
H(X ||“ f de”). The latter binds the FDE key to the
device which is also referred to as sealing.

We sketch reasoning on why the protocol fulfills its
design goals. T is encrypted by KT , which is derived

Veto: Prohibit Outdated Edge System Software from Booting

49

from XT . Only P and D know XT . On D, XT and X
never leave the TEE, and P is trusted. Thus, 1© holds.
Every message is signed by K−1

P or K−1
D . The private

keys are only known to P and D. On D, K−1
D never

leaves the TEE, nor does X . Thus, 2© holds.
In terms of replay attacks, one needs to distinguish

between (a) injecting a previous or foreign message to
a protocol run and (b) delaying a message, i.e., the in-
tended party receives the unaltered message later than
usual (Syverson, 1994).

We first analyze (a). Messages from or to one de-
vice cannot be replayed to another because each de-
vice has a unique key pair and P has a unique key pair
for each device. Moreover, replaying a req from a for-
mer boot cycle of the device to P is not possible. This
is because P stores the last value of C. A req with a C
lower than the remembered is dropped. While replay-
ing a req from the current boot cycle to P is possible
technically, the net effect does not change. P has al-
ready decided on a req with these particular values
of A and C in the past and returns the same resp or
err. Replaying resp or err to D is not possible. This
is because the internal value of N changes as soon as
a response is received. A replayed resp has a depre-
cated N and does not pass the check in the governor.

Delaying a message (b) includes intercepting, re-
pressing the original communication, and sending the
unaltered message later on. We distinguish between
an attack that involves device theft and one without.
Delaying a req or resp without a device theft can
lead to a Denial of Service (DoS) which we deal with
in Sec. 4.4. Including device theft, an attacker can
intercept a req and suppress further communication.
Subsequently, the adversary steals the device and for-
wards req to P in the attacker-controlled environment,
trying to receive a valid resp. However, this is only
possible if the governor’s internal values of C and
N do not change during the theft. In other words,
the device must not reboot while being stolen. If it
does, however, C is increased and N is regenerated. A
resp with a lower value of C or a differing nonce is
not accepted. This work focuses on boot-time attacks
(Sec. 2). Stealing a device without rebooting is seen
as a runtime attack, which is out of scope. In light of
this analysis, we conclude that the protocol is resistant
to replay attacks (3©).

An integer wrap-around of C allows attacking the
protocol. The adversary steals the device and reboots
it until the counter equals the value that was last ac-
cepted by P. Subsequently, D sends a valid req, an-
swered with a valid resp. Since the counter is only
increased during a reboot, the increment is tied to a
certain duration. We propose to use a counter of a size
so that rebooting the device until the counter wraps

around takes longer than the life span of the device
(e.g., hundreds of years). In Sec. 5, we show that a
64-bit counter is sufficient in our case.

We rely on the shared secret XT and symmetric
cryptography to encrypt T . This is because we want
to keep the TCB small. The key shield already gives
us symmetric encryption. Further, an asymmetric sig-
nature algorithm is required. Generally speaking, one
cannot use asymmetric encryption and signatures in-
terchangeably. To prevent also adding asymmetric en-
cryption, we use the symmetric encryption already in
the TCB. In Sec. 6, we quantify the TCB.

One alternative is not to rely on a token but to de-
rive the FDE key from a device secret only. We de-
liberately refrain from this option. This is because we
rather base the confidentiality guarantees on cryptog-
raphy only instead of the whole TCB incl. cryptog-
raphy. If P decides to prohibit the boot of D from
a point in time onwards (e.g., because a device theft
was detected), even vulnerabilities in the TCB (excl.
cryptography) do not threaten confidentiality. This is
because the required information to derive the FDE
key is simply not physically available on the device.

4.3 Software Update

The trusted party can answer with err, indicating that
the software in state A is deprecated (Sec. 4.2). To
update the early-boot system software, one can rely
on an existing early-boot update mechanism. These
are dealt with extensively in related literature and do
not require a booted OS (Xu et al., 2019; Huber et al.,
2020; Röckl et al., 2021). Typically, the works imple-
ment a two-phase approach. First, an early-boot net-
work stack retrieves a software update image. During
the execution of the networking stack, other system
components need to be protected. For example, Xu et
al. rely on storage write protection to limit the con-
sequences of early-boot breaches (Xu et al., 2019),
while we propose to use a hardware network stack,
TEE isolation techniques, and memory-safe and type-
safe device drivers to secure the agent (Sec. 5). After
the download, a dedicated component verifies and in-
stalls the update image. They also include some sort
of update trigger to force the reset of fully-booted de-
vices, limiting the time the device can run on depre-
cated system software. We carefully design our archi-
tecture in a way that the mentioned existing early-boot
update mechanisms can be integrated.

4.4 Denial of Service

D may not receive a response from the trusted party if
the communication between D and P is disrupted. In

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

50

that case, D tries to receive a response from P period-
ically with some reasonable frequency depending on
the use case (e.g., once every minute). If a device theft
has been detected, P rejects further boot processes of
D by aborting the communication.

This might enable a DoS attack for a network-
facing attacker. By hindering the communication be-
tween D and P, the device cannot receive the token
and, thus, cannot boot the REE. While we recognize
that the protocol is not suited for every deployment,
we argue that this is justifiable in the domain of large-
scale edge computing. This is for the following rea-
sons. First, we assume that long-standing network-
level attacks and outages can be mitigated directly at
the infrastructure level. This is a valid strategy already
established widely in the literature (Xu et al., 2019;
Huber et al., 2020; Röckl et al., 2021; Suzaki et al.,
2020). Being close to the network edge (or even at
the network’s edge) fosters a global view of the traffic
and, thus, enables targeted (D)DoS mitigation already
available today (Cloudflare Inc., 2022).

In addition to that, the edge computing paradigm
inherently introduces redundancy, mitigating (D)DoS
attacks to the complete system. The edge comput-
ing paradigm relies on failover techniques to ensure
that another device takes over temporarily if one edge
device fails (Yu et al., 2018; Harchol et al., 2020).
Symantec discovered that less than one percent of
the network-based (D)DoS attacks last more than 24
hours (Symantec, 2016; Xu et al., 2019). In light of
this, we deem a temporary failover plausible.

Due to targeted (D)DoS mitigation techniques at
the edge of the network and the inherent redundancy
of the edge computing model, we argue that it is un-
realistic that an attacker is able to attack a significant
amount of the available edge devices in large deploy-
ments simultaneously.

5 IMPLEMENTATION

We prototype our approach on a Nitrogen8M develop-
ment board from Boundary Devices with an ARMv8-
A Cortex-A53 CPU, 2GB of external RAM, an 8GB
eMMC with RPMB, and a secure boot implementa-
tion based on eFuses. Due to a missing expansion
card (chip shortage) for the Nitrogen8M, we have not
been able to implement the agent on the Nitrogen8M.
Thus, the agent (Sec. 4) is implemented on a Rasp-
berry Pi 4B with an ARMv8-A Cortex-A72 CPU and
8GB of RAM. With the expansion card, porting the
agent is a pure engineering effort. We use Trusted
Firmware-A (TFA), version 2.2, as an EL3 firmware.
TFA is a widely deployed reference implementation.

We rely on Linux in the NW. The emergency switch
is implemented with a secure hardware watchdog.
Currently, we do not yet use a hardware-protected
device secret (X , Sec. 4.2) but rely on a hard-coded
value. Yet, a unique chip identifier in an eFuse is
available in hardware on the Nitrogen8M (NXP Semi-
conductors, 2022).
Implementing the Governor. We implement the
governor in C as part of TFA. The confinement mod-
ule and the emergency switch are object files linked to
the governor. We port the Ed25519 asymmetric sig-
nature algorithm implementation from HACL*, a for-
mally verified cryptography library, to TFA (Zinzin-
dohoué et al., 2017). The Nitrogen8M supports the
ARMv8-A instruction set extensions for AES opera-
tions. We port the Linux drivers, mostly written in as-
sembler, for the ARMv8-A AES hardware extensions
to TFA on the Nitrogen8M.

We modify U-Boot SPL, a small component run-
ning after the boot ROM and before the TFA on
the Nitrogen8M, to read and increase a counter (C,
Sec. 4.2) on eMMC RPMB storage with every boot.
As U-Boot SPL uses the eMMC to load the subse-
quent boot stages, only small additions for the RPMB
are required. We use the existing RPMB code in U-
Boot and link it to U-Boot SPL.

The counter C is an unsigned 64-bit value. To
verify that the system is resistant to practical wrap-
around attacks (Sec. 4.2), we evaluate the time the
system needs from device reset to incrementing the
counter. We use the system timer (CNTPCT EL0) to
quantify the execution time of U-Boot SPL and mea-
sure the interval from the initialization of the console
to the increment of the boot counter. This is a lower
bound since neither the boot ROM nor the time be-
fore console initialization is considered. Rebooting
the device 16 times, we measure an average duration
of 0.40492s. Thus, a complete wrap-around takes at
least 23.7 ·1010 years, which is practically infeasible.
Implementing the Key Shield. The key shield is im-
plemented as a service in TFA, which offers decryp-
tion and encryption to the NW via Secure Monitor
Calls (SMCs). We rely on minimal-intrusive changes
to the existing AES-XTS implementation in the Linux
kernel. Whenever a so-called alias key is used for an
AES-XTS operation, we do not execute the default
Linux version, but trigger a context switch to the key
shield via an SMC. The key shield operates with the
actual key and returns to the NW. The alias key is not
a secret. This way, we can re-use existing interfaces,
i.e., dm-crypt and LUKS, without further modifica-
tions. On the contrary, we break cryptography if the
alias key equals the actual key by coincidence. We
consider the risk as neglectable in practice.

Veto: Prohibit Outdated Edge System Software from Booting

51

Implementing the Confinement Module. The agent
is exposed to the NW and, thus, considered untrusted.
Without any further measures, a compromised agent
can take over the NW and interact with every non-
secure peripheral. To prevent this, we grant the agent
access to as few system resources and peripherals as
possible. TFA already initializes the hardware to run
a bare-metal application in the NW. Before the agent
runs, the confinement module configures the TZPC
(Sec. 3) to deny the NW from accessing any periph-
eral except a hardware network stack. Moreover, the
TZASC restricts the agent to its region in NW RAM.
When the agent returns, the previous configuration is
restored. We implement the confinement module in C
as an extension to TFA.
Implementing the Agent. The confinement module
isolates the agent from the TEE. This section deals
with the strategies on how to reduce the attack surface
from the agent’s perspective.
Network Stack Hardware Offloading. Software net-
work stacks are complex and error-prone (Kol and
Oberman, 2020; Forescout Research Labs, 2020). To
counter, we deploy a Wiznet W5500 Ethernet shield
as a hardware network stack, connected to the Rasp-
berry Pi via Serial Peripheral Interface (SPI). These
connect Ethernet to a significantly less complex logi-
cal communication protocol. While for low-end em-
bedded devices ($3-10) the cost of such a peripheral
might be higher than for the device itself, we argue
that for edge devices ($100+) such a peripheral is rea-
sonable economically. Importantly, they already pro-
vide on-chip implementations of IP, UDP, and TCP.
This means that the network state machines, header
parsing, and fragmentation logic are implemented on
the peripheral. The SPI interface does not carry pack-
ages or datagrams, but payloads only (and some com-
parably simple control messages). We use UDP. This
way, the peripheral does not need to maintain a TCP
state internally, narrowing down the attack surface. If
a network message is dropped, we just resend it after
some time. The hardware network stack adds another
level of isolation to the system. Even if the peripheral
is vulnerable, an attacker still needs to expand their
privileges to the edge device.
Memory-Safe and Type-Safe Agent. To impede the
attacker from expanding their privileges from a po-
tentially vulnerable network stack to the device, the
agent is a bare-metal application written in pure
Rust. Besides the application logic, the agent contains
stripped-down drivers for the SPI controller, the GPIO
controller, and the Ethernet shield. We need GPIO to
configure and enable the SPI pins initially. A small
subset of the drivers cannot be realized in a memory-
safe fashion. This is because raw pointer access is

Table 1: Evaluation of the TCB Size.

Software Component LoC [N] Binary [B] Relative [%]

U-Boot SPL 46884 64470 70.95
Trusted Firmware-A 12374 98008 18.73

RPMB Driver 354 3226 0.54
Non-Volatile Boot Counter 44 702 0.07
AES-XTS Crypto Ext. 402 3102 0.61
Key Shield 140 794 0.21
Confinement Module 30 220 0.05
Emergency Switch 68 569 0.10
HACL* Ed25519 5609 30112 8.49
Governor 173 1320 0.26

Total 66078 178213 100.00

necessary to communicate with memory-mapped pe-
ripherals. Still, the remaining parts can profit from
memory-safe and type-safe programming, eradicating
memory-corruption vulnerabilities. We use a custom
library to wrap memory-mapped SPI controller regis-
ters to type-safe and memory-safe abstractions. Be-
fore the agent starts, the governor stores req in NW
RAM. Subsequently, the agent transmits req to the
trusted party and receives resp. The agent stores resp
in NW RAM and returns it to the governor via an
SMC. We restrict the SPI communication via pat-
tern matching with the Rust match keyword to those
control messages and payloads that are required. Any
other message is denied. Because of the simple SPI
protocol (especially when compared to IP), we argue
that this makes it more difficult for an adversary to ex-
pand the privileges from the peripheral to the device.

6 SECURITY DISCUSSION

We evaluate the size of TCB and discuss the security.

6.1 Trusted Computing Base

The components of the TCB are listed in Tab. 1. As
a baseline (first block), we choose U-Boot SPL and
TFA which are the default software for the Nitro-
gen8M. For determining the Lines of Code (LoC), we
first compile the software with debug symbols. Us-
ing readelf (version 2.34), we retrieve the contents
of the .debug line section. This way, we can get
the name of any source code file that resulted in code
in the binary. We use cloc (version 1.82) to count
the LoC of the files. For highly-configurable multi-
platform software like U-Boot and TFA, we deem that
this is a much more appropriate estimation of the lines
in the TCB than counting the LoC of all files. For de-
termining the binary size, we use size (version 2.34).
To quantify the additions to the TCB (second block),
we use cloc on the source files of the added compo-

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

52

nent. Moreover, we use size on the added object file
as an approximation for the binary additions of a com-
ponent. The last row lists the LoC and the binary size
including all extensions. The last column calculates
the relative share based on LoCs.

Although the size of Ed25519 is not neglectable,
HACL* is formally verified for correctness and mem-
ory safety and is resistant to some types of side-
channel attacks. Therefore, we argue that an expan-
sion of the TCB does not lead to a higher security risk
in that case. In summary, we only add 1211 (1.83%)
unverified LoC and 5609 (8.49%) formally verified
LoC to the TCB.

6.2 Attacks and Countermeasures

We summarize potential attacks on our system.
Reading Data (T1). By external access, an attacker
can read out the eMMC. She can access the unen-
crypted binaries of the boot components, i.e., the
boot ROM, the firmware, the governor, the confine-
ment module, the emergency switch, the agent, and
the kernel binary including the initfs. This does not
pose a threat since no secrets are at risk. She cannot
read the boot counter from the RPMB. This requires
XC (Sec. 4.2) which we assume to be stored in se-
cure TEE RAM. While she can access the encrypted
rootfs, she cannot decrypt it. The key is either not
physically available on the device or stored in on-chip
TEE RAM. The device secret X (Sec. 4.2) is stored
by specialized hardware (e.g., eFuses), which we as-
sume to withstand an attacker. During runtime, X and
its derivatives like XC are only stored in secure RAM.
Thus, the attacker is not able to derive the encryption
key and no confidential data is leaked.
Writing Data (T2). Secure boot detects modifica-
tions to the early-boot software on eMMC storage.
According to the threat model, changing the RoT is
not possible because it is physically burnt to the de-
vice. While AES XTS is, theoretically, susceptible to
manipulations of the ciphertext, one can additionally
rely on integrity measures like dm-verity or file sys-
tems with checksums (e.g., ZFS). Thus, overwriting
the ciphertext of the rootfs is not promising. More-
over, the attacker is not able to forge boot counter val-
ues on the RPMB. This is because writing requires
XC, which never leaves the on-chip TEE RAM.
Downgrade (T3). Downgrading the early-boot soft-
ware to a previous but legitimate state is detected.
This is because we include the attestation value A in
our key derivation protocol (Sec. 4.2). As a conse-
quence, the trusted party can hinder the REE from
booting. Downgrade attacks to the boot counter are
not possible. We require the hardware to work as

specified (Sec. 2). Thus, one cannot change the boot
counter on the RPMB without knowing XC. Further-
more, replaying previous but legitimate requests to
the RPMB controller is not promising. This is be-
cause every write request and read request also de-
pends on the current state of the RPMB (Western
Digital, 2017). The latter is important since one
could rely on an eMMC sniffer (Tim Hummel, 2017)
to maliciously modify the boot counter otherwise.
This would allow setting the boot counter to the last
value that caused the remote party to hand out the to-
ken and, thus, re-issuing a request to boot into the
REE. The encrypted rootfs is not attested during early
boot (Sec. 4.1). Thus, in the current implementation,
downgrades of the encrypted rootfs are possible. Still,
one can rely on existing features like dm-verity to at-
test the rootfs after one has booted the REE kernel,
and, thus, prevent downgrades to the rootfs.
Memory-Based Attacks (T4). With a cold-boot at-
tack, the adversary can only extract NW fragments
from external RAM. This is because every trusted
component runs on on-chip SW RAM. Still, the at-
tacker can try to mount cold-boot attacks on the agent.
The only secret the agent has indirect access to is the
encrypted token E (Sec. 4.2). The encryption is based
on KT which is never exposed to the NW. DMA at-
tacks are a further possible attack vector. However,
recent ARMv8-A boards can configure DMA con-
trollers to only allow NW DMA transfers.
Network-Based Attacks (T5). In Sec. 4.2, we ana-
lyze the key derivation protocol regarding the confi-
dentiality of the token, the authenticity of the device
and the trusted party, and the protocol’s resistance to
replay attacks. Besides the protocol, the hardware
network stack might be vulnerable. Exploiting a vul-
nerability (or even replacing the peripheral), an ad-
versary can try to send arbitrary SPI messages to the
CPU. By comparing with a list of allowed SPI mes-
sage patterns, we block unintended communication.
We argue that this makes it difficult for an attacker to
expand their privileges from the SPI peripheral to the
device. But even if the attacker manages to do so, the
agent is still isolated and has no access to secrets. The
interface to the governor accepts only the response as
a fixed-sized parameter, which makes vulnerabilities
at this interface unlikely.
Logical Communication Attacks (T6−T7). We ar-
gue that it is unlikely for an attacker to hijack the
boot behavior via a logical communication interface
that was not initialized by a driver before. We re-
move drivers that are not strictly required (e.g., USB)
from the TCB. Our stripped-down version of U-Boot
SPL has drivers for UART, I2C, and GPIO. TFA in-
cludes drivers for UART. The serial console prints

Veto: Prohibit Outdated Edge System Software from Booting

53

logs during boot. However, it only accepts input af-
ter the REE has booted. Thus, we assume that mali-
cious boot-time input is not possible. Both I2C and
GPIO are required to set up the DRAM on the Nitro-
gen8M. We carefully read the code and verify that no
user-provided input is read. Without input, we deem
a modification of the boot flow unlikely. Special at-
tention has to be paid to hardware-based debugging
interfaces like JTAG, allowing full access to the hard-
ware including the TEE RAM. At the site of deploy-
ment, we require debugging interfaces to be perma-
nently disabled. Contemporary hardware like the Ni-
trogen8M provides the means to do so.

6.3 Real World Attacks

Cold-boot attacks on keys in RAM are possible (Hal-
derman et al., 2008; Gruhn and Müller, 2013). For
example, File-Based Encryption (FBE) on Android
was vulnerable (Groß et al., 2021). To mitigate this,
one can store the keys in CPU registers (Müller et al.,
2011; Simmons, 2011) or use on-chip RAM as we do.

According to CVEDetails, there are currently
2,839 CVEs in the Linux kernel, 34 in U-Boot, and
2 in TFA. Large-scale attacks like Mirai (Anton-
akakis et al., 2017) and Hajime (Herwig et al., 2019)
show that outdated software is a threat to IoT and
edge deployments. Moreover, IoT ransomware has
gained momentum (Xu et al., 2019), showing that at-
tackers increasingly target data on IoT and edge de-
vices. Unfortunately, physical attacks (e.g., device
theft) on large-scale existing edge deployments like
one of communication network providers are hardly
publicly known due to their critical nature. There-
fore, we compare it with jailbreaking smartphones.
Over the last decade, several critical vulnerabilities
enabled jailbreaks. Without claiming completeness, a
few current are CVE-2021-1782, CVE-2021-30883,
CVE-2020-0069, CVE-2019-9467, CVE-2019-9436,
and CVE-2019-8900 (axi0mX, 2019). The latter two
demonstrate the extensive capabilities of vulnerabili-
ties in early-boot software in combination with physi-
cal access. Security bugs in fastboot (a flashing tool
for Android) allowed data exfiltration (Hay, 2017)
and novel techniques to find vulnerabilities in boot-
loaders resulted in several new CVEs (Redini et al.,
2017). While we do not remove vulnerabilities, our
system helps to ensure the confidentiality of the data
after theft and even in presence of said vulnerabili-
ties. As soon as a software state is marked as out-
dated by the trusted party (e.g., because a vulnera-
bility has become public), the REE cannot boot any
longer. Even data exfiltration by exploiting bootROM
vulnerabilities like Checkm8 (axi0mX, 2019) can be

Table 2: Evaluation of the Crypto Performance.

Experiment Enc. [MiB/s] Dec. [MiB/s]

Linux AES 221.46±3.52 222.12±3.71
Key Shield 218.67±4.26 219.11±4.40

Serpent 31.86±0.07 34.49±0.09
Twofish 48.93±0.20 50.24±0.19
Adiantum 79.23±0.38 79.24±0.36

mitigated as soon a device theft has been detected and
as long as the cryptography holds. This is because the
trusted party can refuse to hand out the token from
that point in time onward. Thus, the key material is
just not physically available on the device. We antic-
ipate more data-oriented attacks (incl. physical ones)
in the future and argue that our system is a meaningful
step toward a more secure edge infrastructure.

7 EVALUATION

We evaluate the performance costs of the components.
Cryptography Performance. We compare the key
shield to the default Linux AES-XTS-512 implemen-
tation. Tab. 2 shows the results. The overhead of the
key shield consists of trapping to TFA before a cryp-
tography operation and exchanging the key with an
alias key (Sec. 5). The AES-XTS-512 implementa-
tion is ported from Linux. We execute cryptsetup
benchmark (version 2.3.4) on the Nitrogen8M 32
times and calculate the mean and the standard devia-
tion. The benchmark performs the encryption and de-
cryption on 4096-byte blocks directly on RAM, with
no actual storage peripherals involved. The first block
shows that the key shield slightly decreases the per-
formance by 1.26 % (encryption) and 1.36 % (decryp-
tion).

The AES-XTS-512 algorithm relies on ARMv8-
A hardware extensions for improved performance,
which is visible when looking at pure software im-
plementations of Serpent, Twofish, and Adiantum in
the Linux kernel (second block). In light of this, an
overhead of below 2% seems justifiable.
Boot Time. We implement the agent on a Raspberry
Pi 4 (Sec. 5). In addition to that, we port the emer-
gency switch and the governor as well. We measure
the boot time to evaluate the costs of retrieving the
token from the trusted party. We use a system timer
(CNTPCT EL0) to measure the time between the start
of the TFA to the execution of the init process of the
initfs (Sec. 4). Our baseline is a system that does nei-
ther retrieve a token nor derive an FDE key. We mea-
sure the retrieval of the token from the same LAN and
on the internet. We boot the device 50 times each and

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

54

calculate the mean and the standard deviation. In the
same LAN, we determine an overhead of 1.238s on
average. Receiving the token from the internet leads
to 1.253s of average additional boot time. The stan-
dard deviation is ≈ 1.5ms in both cases. Note that the
boot time evaluation does not account for the confine-
ment module. This is because the Raspberry Pi does
neither have a TZASC nor a TZPC. The confinement
module mostly consists of writes to memory-mapped
registers. We assume that it does not significantly af-
fect our network-focused evaluation. To verify, we
measure the confinement module’s runtime on the Ni-
trogen8M using the same system timer. Setting up
and tearing down the confinement takes 0.015s each
on average (16 samples), with an insignificant stan-
dard deviation. We conclude that ≈ 1.3s additional
boot time in total is a realistic approximation. Relying
on the redundancy of the edge computing paradigm,
we deem this boot time increase acceptable.

8 RELATED WORK

There are several streams of related work.
Full Disk Encryption. FDE keys in external RAM
are typically susceptible to cold-boot attacks (Halder-
man et al., 2008; Götzfried and Müller, 2013; Gruhn
and Müller, 2013). Müller et al. and Simmons im-
plement FDE without relying on external RAM as a
mitigation (Müller et al., 2011; Simmons, 2011). In
contrast, we use on-chip memory and a TEE to protect
key material. Commercial OSs like Linux (dm-crypt),
Microsoft Windows (Bitlocker), and Apple macOS
(FileVault) support FDE.
File-Based Encryption. Recently, FBE has emerged
as an alternative to FDE (Galindo et al., 2021). Be-
ing able to execute certain functions without a pass-
word (e.g., emergency calls on smartphones) is one
of the main advantages. Groß et al. show that widely-
available implementations leak metadata and key ma-
terial (Groß et al., 2019; Groß et al., 2021). For this
reason, we choose FDE in this paper.
Modifications to the Boot Process. A stream of work
focusing on system resiliency and secure updates is
most closely related. Xu et al. design a system that
allows remotely recovering from a system compro-
mise (Xu et al., 2019). They rely on a software net-
work stack and storage devices that support hardware
write protection. While Xu et al. assume a remote
adversary, we deal with physical device theft. Huber
et al. design a recovery system for low-end IoT de-
vices (Huber et al., 2020). Quite similar to us, they
use a hardware network stack. They propose software
handlers in the SW as a proxy for critical peripher-

als. We disallow access to critical peripherals during
early boot completely. Suzaki et al. propose a Linux-
based network bootloader to download file system im-
ages (Suzaki et al., 2020). In contrast, we design our
system to keep the attack surface small. We use a
hardware network stack and design a lightweight pro-
tocol based on UDP. We focus on boot-time attacks
and bind FDE to the most up-to-date system software.
TrustZone-Based Isolation Techniques. The re-
search community proposed several new ways to uti-
lize TEEs for software isolation and protection (Azab
et al., 2014; Guan et al., 2017; Brasser et al., 2019).
While those works focus on runtime isolation of
software components, we adjust the boot process to
achieve remote attestation and FDE key derivation.
Similar to our work, Guan et al. use the TZASC to re-
strict access to RAM regions temporarily (Guan et al.,
2017). We extend this concept to peripherals.
Remote Attestation. Remote attestation is a research
field on its own (Kuang et al., 2022). We do not aim to
develop new attestation techniques. Instead, we rely
on existing techniques based on a hardware RoT.

9 LIMITATIONS

Our approach is limited to a boot-time attacker that
steals the device. We assume that the adversary re-
frains from mounting runtime attacks at the site of
deployment. If this does not hold, further attacks are
possible. For example, she can try to take over the
system while the REE runs. Intrusion detection sys-
tems are tailored for that scenario. However, those
are research fields on their own and are considered
orthogonal to our approach (Röckl et al., 2021; Liao
et al., 2013). As already dealt with in Sec. 4.4, an
early-boot network stack might hinder availability.
However, being close to the network edge, the device
can be protected by a wide range of existing (D)DoS
defensive techniques (Cloudflare Inc., 2022).

10 CONCLUSION

We design a novel system architecture that protects
data on stolen edge nodes. If a theft has been de-
tected, the data on the device remains confidential
as long as the cryptography is secure. We combine
remote attestation and FDE in a way that a trusted
party can first assert that the system software on
the device is up-to-date and, second, actively decide
whether the device is allowed to boot. This way, dep-
recated and potentially vulnerable early-boot system
software cannot decrypt the disk - a feature that exist-

Veto: Prohibit Outdated Edge System Software from Booting

55

ing and widely distributed FDE implementations like
Microsoft’s BitLocker and Linux’s dm-crypt lack.

We implement a prototype of our concept on two
recent ARMv8-A devices. Our evaluation shows that
the overhead is almost neglectable in practice, while
we only add a low amount of unverified code to the
TCB. Therefore, we believe that our architecture is a
meaningful step towards future edge infrastructure.

ACKNOWLEDGEMENTS

This research was supported by the German Fed-
eral Ministry of Education and Research (BMBF)
as part of the CELTIC-NEXT project AI-NET-
ANTILLAS (“Automated Network Telecom Infras-
tructure with inteLLigent Autonomous Systems”,
Förderkennzeichen “16KIS1314”).

REFERENCES

Android (2022). Android Keystore System. https://
developer.android.com/training/articles/keystore. Ac-
cessed 2022-02-06.

Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Bursztein, E., Cochran, J., Durumeric, Z., Halderman,
J. A., Invernizzi, L., Kallitsis, M., Kumar, D., Lever,
C., Ma, Z., Mason, J., Menscher, D., Seaman, C., Sul-
livan, N., Thomas, K., and Zhou, Y. (2017). Under-
standing the mirai botnet. In Kirda, E. and Risten-
part, T., editors, 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, Au-
gust 16-18, 2017, pages 1093–1110. USENIX Asso-
ciation.

ARM Limited. SMC Calling Convention System Soft-
ware on ARM Platforms. https://developer.arm.com/
documentation/den0028/a/. Accessed 2022-02-02.

ARM Limited. Trusted Board Boot Requirements Client
(TBBR-CLIENT) Armv8-A. https://developer.arm.
com/documentation/den0006/latest. Accessed 2022-
02-03.

axi0mX (2019). Open-source jailbreaking tool for many
iOS devices. https://github.com/axi0mX/ipwndfu.
Accessed 2022-03-01.

Azab, A. M., Ning, P., Shah, J., Chen, Q., Bhutkar, R.,
Ganesh, G., Ma, J., and Shen, W. (2014). Hypervi-
sion across worlds: Real-time kernel protection from
the ARM trustzone secure world. In Ahn, G., Yung,
M., and Li, N., editors, Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communica-
tions Security, Scottsdale, AZ, USA, November 3-7,
2014, pages 90–102. ACM.

Brasser, F., Gens, D., Jauernig, P., Sadeghi, A., and Stapf,
E. (2019). SANCTUARY: arming trustzone with user-
space enclaves. In 26th Annual Network and Dis-
tributed System Security Symposium, NDSS 2019, San

Diego, California, USA, February 24-27, 2019. The
Internet Society.

Busch, M., Schlenk, R., and Heckel, H. (2019). Teemo:
Trusted peripheral monitoring for optical networks
and beyond. In Proceedings of the 4th Workshop on
System Software for Trusted Execution - SysTEX '19.
ACM Press.

Cao, K., Liu, Y., Meng, G., and Sun, Q. (2020). An
overview on edge computing research. IEEE Access,
8:85714–85728.

Cloudflare Inc. (2022). Cloudflare DDoS Protec-
tion. https://www.cloudflare.com/en-au/ddos-de/. Ac-
cessed 2022-04-25.

Forescout Research Labs (2020). How TCP/IP Stacks
Breed Critical Vulnerabilities in IoT, OT and IT
Devices. https://www.forescout.com/company/
resources/amnesia33-how-tcp-ip-stacks-breed-
critical-vulnerabilities-in-iot-ot-and-it-devices/.
Accessed 2022-02-05.

Galindo, D., Liu, J., Stone, C. M., and Ordean, M. (2021).
SoK: Untangling File-based Encryption on Mobile
Devices. arXiv.

Götzfried, J. and Müller, T. (2013). ARMORED: Cpu-
bound encryption for android-driven ARM devices.
In 2013 International Conference on Availability, Re-
liability and Security, ARES 2013, Regensburg, Ger-
many, September 2-6, 2013, pages 161–168. IEEE
Computer Society.

Groß, T., Busch, M., and Müller, T. (2021). One key to
rule them all: Recovering the master key from ram to
break android’s file-based encryption. Forensic Sci-
ence International: Digital Investigation, 36:301113.
DFRWS 2021 EU - Selected Papers and Extended Ab-
stracts of the Eighth Annual DFRWS Europe Confer-
ence.

Groß, T., Ahmadova, M., and Müller, T. (2019). Analyzing
android’s file-based encryption: Information leakage
through unencrypted metadata. In Proceedings of the
14th International Conference on Availability, Relia-
bility and Security, ARES ’19, New York, NY, USA.
Association for Computing Machinery.

Gruhn, M. and Müller, T. (2013). On the practicability of
cold boot attacks. In 2013 International Conference
on Availability, Reliability and Security, ARES 2013,
Regensburg, Germany, September 2-6, 2013, pages
390–397. IEEE Computer Society.

Guan, L., Liu, P., Xing, X., Ge, X., Zhang, S., Yu, M.,
and Jaeger, T. (2017). Trustshadow: Secure execution
of unmodified applications with ARM trustzone. In
Choudhury, T., Ko, S. Y., Campbell, A., and Ganesan,
D., editors, Proceedings of the 15th Annual Interna-
tional Conference on Mobile Systems, Applications,
and Services, MobiSys’17, Niagara Falls, NY, USA,
June 19-23, 2017, pages 488–501. ACM.

Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson,
W., Paul, W., Calandrino, J. A., Feldman, A. J., Ap-
pelbaum, J., and Felten, E. W. (2008). Lest we re-
member: Cold boot attacks on encryption keys. In
van Oorschot, P. C., editor, Proceedings of the 17th
USENIX Security Symposium, July 28-August 1, 2008,

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

56

San Jose, CA, USA, pages 45–60. USENIX Associa-
tion.

Harchol, Y., Mushtaq, A., Fang, V., McCauley, J., Panda,
A., and Shenker, S. (2020). Making edge-computing
resilient. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 253–266, New
York, NY, USA. Association for Computing Machin-
ery.

Hay, R. (2017). fastboot oem vuln: Android bootloader
vulnerabilities in vendor customizations. In Enck, W.
and Mulliner, C., editors, 11th USENIX Workshop on
Offensive Technologies, WOOT 2017, Vancouver, BC,
Canada, August 14-15, 2017. USENIX Association.

Herwig, S., Harvey, K., Hughey, G., Roberts, R., and Levin,
D. (2019). Measurement and analysis of hajime, a
peer-to-peer iot botnet. In 26th Annual Network and
Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019.
The Internet Society.

Huber, M., Hristozov, S., Ott, S., Sarafov, V., and Peinado,
M. (2020). The lazarus effect: Healing compromised
devices in the internet of small things. In Sun, H.,
Shieh, S., Gu, G., and Ateniese, G., editors, ASIA CCS
’20: The 15th ACM Asia Conference on Computer and
Communications Security, Taipei, Taiwan, October 5-
9, 2020, pages 6–19. ACM.

Kol, M. and Oberman, S. (2020). Ripple20. https:
//www.jsof-tech.com/wp-content/uploads/2020/06/
JSOF Ripple20 Technical Whitepaper June20.pdf.
Accessed 2022-03-01.

Kuang, B., Fu, A., Susilo, W., Yu, S., and Gao, Y. (2022). A
survey of remote attestation in internet of things: At-
tacks, countermeasures, and prospects. Comput. Se-
cur., 112:102498.

Liao, H.-J., Richard Lin, C.-H., Lin, Y.-C., and Tung, K.-Y.
(2013). Intrusion detection system: A comprehensive
review. Journal of Network and Computer Applica-
tions, 36(1):16–24.

Linaro Limited (2022). Open Portable Trusted Execu-
tion Environment. https://www.op-tee.org/. Accessed
2022-08-17.

Müller, T., Freiling, F. C., and Dewald, A. (2011). TRE-
SOR runs encryption securely outside RAM. In 20th
USENIX Security Symposium, San Francisco, CA,
USA, August 8-12, 2011, Proceedings. USENIX As-
sociation.

NXP Semiconductors (2022). Security Reference
Manual for i.MX 8M Dual/8M QuadLite/8M
Quad. https://www.nxp.com/webapp/Download?
colCode=IMX8MDQLQSRM\&appType=
moderatedWithoutFAE.

Pinto, S. and Santos, N. (2019). Demystifying arm trust-
zone: A comprehensive survey. ACM Comput. Surv.,
51(6):130:1–130:36.

Redini, N., Machiry, A., Das, D., Fratantonio, Y., Bianchi,
A., Gustafson, E., Shoshitaishvili, Y., Kruegel, C., and
Vigna, G. (2017). Bootstomp: On the security of boot-
loaders in mobile devices. In Kirda, E. and Risten-
part, T., editors, 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, Au-

gust 16-18, 2017, pages 781–798. USENIX Associa-
tion.

Röckl, J., Protsenko, M., Huber, M., Müller, T., and Freil-
ing, F. C. (2021). Advanced system resiliency based
on virtualization techniques for iot devices. In ACSAC
’21: Annual Computer Security Applications Confer-
ence, Virtual Event, USA, December 6 - 10, 2021,
pages 455–467. ACM.

Selmke, B., Heyszl, J., and Sigl, G. (2016). Attack on a
DFA protected AES by simultaneous laser fault injec-
tions. In 2016 Workshop on Fault Diagnosis and Tol-
erance in Cryptography, FDTC 2016, Santa Barbara,
CA, USA, August 16, 2016, pages 36–46. IEEE Com-
puter Society.

Simmons, P. (2011). Security through amnesia: a software-
based solution to the cold boot attack on disk encryp-
tion. In Zakon, R. H., McDermott, J. P., and Lo-
casto, M. E., editors, Twenty-Seventh Annual Com-
puter Security Applications Conference, ACSAC 2011,
Orlando, FL, USA, 5-9 December 2011, pages 73–82.
ACM.

Suzaki, K., Tsukamoto, A., Green, A., and Mannan, M.
(2020). Reboot-oriented iot: Life cycle management
in trusted execution environment for disposable iot
devices. In ACSAC ’20: Annual Computer Security
Applications Conference, Virtual Event / Austin, TX,
USA, 7-11 December, 2020, pages 428–441. ACM.

Symantec (2016). Internet Security Threat Report.
https://docs.broadcom.com/doc/istr-16-april-volume-
21-en. Accessed 2020-05-11.

Syverson, P. F. (1994). A taxonomy of replay attacks. In
Seventh IEEE Computer Security Foundations Work-
shop - CSFW’94, Franconia, New Hampshire, USA,
June 14-16, 1994, Proceedings, pages 187–191. IEEE
Computer Society.

Tim Hummel (2017). FPGA eMMC Reader/Sniffer.
https://timhummel.com/portfolio/fpga emmc reader
sniffer/. Accessed 2022-08-12.

Western Digital (2017). e.MMC Security Methods. https:
//documents.westerndigital.com/content/dam/doc-
library/en us/assets/public/western-digital/collateral/
white-paper/white-paper-emmc-security.pdf. Ac-
cessed 2022-08-12.

Xu, M., Huber, M., Sun, Z., England, P., Peinado, M., Lee,
S., Marochko, A., Mattoon, D., Spiger, R., and Thom,
S. (2019). Dominance as a new trusted computing
primitive for the internet of things. In 2019 IEEE Sym-
posium on Security and Privacy, SP 2019, San Fran-
cisco, CA, USA, May 19-23, 2019, pages 1415–1430.
IEEE.

Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J.,
and Yang, X. (2018). A survey on the edge computing
for the internet of things. IEEE Access, 6:6900–6919.

Zinzindohoué, J. K., Bhargavan, K., Protzenko, J., and
Beurdouche, B. (2017). Hacl*: A verified modern
cryptographic library. In Thuraisingham, B., Evans,
D., Malkin, T., and Xu, D., editors, Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, pages 1789–
1806. ACM.

Veto: Prohibit Outdated Edge System Software from Booting

57

