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Abstract: The Internet of Things (IoT) is growing rapidly and so the need of ensuring protection against cybersecurity
attacks to IoT devices. In this scenario, Intrusion Detection Systems (IDSs) play a crucial role and data-driven
IDSs based on machine learning (ML) have recently attracted more and more interest by the research com-
munity. While conventional ML-based IDSs are based on a centralized architecture where IoT devices share
their data with a central server for model training, we propose a novel approach that is based on federated
learning (FL). However, conventional FL is ineffective in the considered scenario, due to the high statistical
heterogeneity of data collected by IoT devices. To overcome this limitation, we propose a three-tier FL-based
architecture where IoT devices are clustered together based on their statistical properties. Clustering decisions
are taken by means of a novel entropy-based strategy, which helps improve model training performance. We
tested our solution on the CIC-ToN-IoT dataset: our clustering strategy increases intrusion detection perfor-
mance with respect to a conventional FL approach up to +17% in terms of F1-score, along with a significant
reduction of the number of training rounds.

1 INTRODUCTION

The Internet of Things (IoT) is an emerging paradigm
that enables the interconnection of heterogeneous
devices and computing capabilities in the Internet.
However, the continuous development of IoT systems
including a large number of devices leads to an in-
creased risk of cyber-attacks, therefore security and
privacy are widely considered critical issues in such a
context (Hassija et al., 2019).

One of the main security measures in modern net-
works are Intrusion Detection Systems (IDSs), whose
aim is to identify attacks, unauthorized intrusions, and
malicious activity in networks (Tsimenidids et al.,
2022). The traditional approach for detecting in-
trusion relies on knowledge-based systems (Hassija
et al., 2019) but as long as networks rise in complexity
they become more prone to error (Shone et al., 2018;
Tsimenidids et al., 2022). As a consequence, data-
driven approaches based on machine learning (ML)
have been widely considered in the recent years for
the detection of attacks, also in IoT scenarios (Al-
Garadi et al., 2020).
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However, a limitation of current ML-based ap-
proaches is that model training is based on data and
computational power elaborated and owned by a cen-
tralized node (e.g. a server). Centralized ML ap-
proaches are thus generally associated with differ-
ent challenges including the need of high computa-
tional power and long training time, as well as with
the rise of security and privacy concerning users’ data
(Mothukuri et al., 2020).

In order to address these issues, federated learn-
ing (FL) was originally proposed in (McMahan et al.,
2017) and has recently emerged as an effective
model training paradigm to address the issues recalled
above. It embodies the principles of focused collec-
tion and data minimization, and can especially miti-
gate many of the systemic privacy risks and costs re-
sulting from traditional, centralized machine learning,
including high communication efficiency and low-
latency data processing (Kairouz et al., 2021).

In an IoT environment, devices typically collect
data samples that are not independent and identically
distributed (iid) (Campos et al., 2021). This scenario,
known as statistical heterogeneity of the collected
clients’ (i.e., IoT devices’) datasets, poses a challenge
for a federated learning setting (Li et al., 2020) and
is particularly detrimental when developing and de-
ploying an FL-based IDS, since some clients may
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have traffic associated with several kinds of attacks
(e.g. DoS, port scanning, etc.), while other could only
have traffic related to their intended operation (Cam-
pos et al., 2021).

To get around the problem of imbalance between
IoT devices’ data we propose a three-tiered FL-based
system where a set of data aggregators act as FL
clients, each on behalf of a group (or cluster) of IoT
devices. IoT devices are clustered by means of a novel
strategy employing a similarity score to measure the
statistical similarity of high-level attacks’ data col-
lected by any IoT device, and assign similar IoT de-
vices (in terms of suffered attacks) to different clus-
ters. In this way attacks’ labeled samples, as em-
ployed by the data aggregators for model training,
are re-balanced with a consequent enhancement of the
FL-based model training procedure.

We tested the validity of our approach on CIC-
ToN-IoT dataset (Sarhan et al., 2021), one of the latest
and more adopted dataset related to attacks towards
an IoT infrastructure (Alsaedi et al., 2020). We com-
pared it to a classical FL approach, where IoT de-
vices act as FL clients (no matter how training data
is distributed), and a centralized approach, where the
model for intrusion detection is trained with data col-
lected from IoT devices in a centralized location. Our
results show that our proposal is effective and can en-
hance intrusion detection performance with respect to
a classical FL approach, leading to results close to
those obtained in a centralized setting.

To summarize, our main contributions are:

• The definition of a novel FL-based three-tier sys-
tem for model training and clustering, for en-
hanced intrusion detection in IoT devices.

• The definition of a similarity score for measuring
the overall imbalance between IoT devices’ data.

• The definition of a clustering strategy driven by
the optimization of our score.

• An evaluation of how different cluster configura-
tions impact the overall attacks’ classification per-
formance.

The structure of the paper is organized as follows.
Section 2 introduces the related work, while Section 3
describes the system architecture and Section 4 intro-
duces the proposed clustering strategy. Finally, Sec-
tion 5 describes the experiments and related results,
while Section 6 concludes the paper.

2 RELATED WORK

Intrusion Detection Systems (IDSs) are traditionally
considered as a second line of defence, with the

aim of monitoring the network traffic and detect-
ing malicious activities that have eluded the security
perimeter (Moustafa et al., 2018). IDSs are gener-
ally divided into signature-based or anomaly-based
(Tauscher et al., 2021). The first category, also known
as misuse IDS, is based on pattern recognition, with
the goal of comparing signatures of well-known at-
tacks to current network traffic patterns. On the other
hand, anomaly-based methods rely on a model for the
normal network traffic so that any pattern that devi-
ates from the usual one is considered an intrusion.

In this paper, we focus on signature-based intru-
sion detection for IoT, and in the following subsec-
tion we report on relevant work related to data-driven
systems, based on machine learning, in this context.
Later we also recall relevant recent strategies that
have been proposed for improving performance in a
FL setting, including clustering of FL clients.

2.1 ML-Based Intrusion Detection
Systems

In recent years, data-driven approaches for develop-
ing IDSs have been explored (Shone et al., 2018;
Liu and Lang, 2019; Tauscher et al., 2021) consid-
ering different methods such as random forests, sup-
port vector machines, neural networks or clustering
techniques. In particular, machine learning and deep
learning are emerging as promising data-driven meth-
ods with the capability to learn and extract harmful
patterns from network traffic, which can be beneficial
for detecting security threats occurring in networked
systems in general (Shone et al., 2018), and on IoT
networks in particular (Chaabouni et al., 2019; Sarhan
et al., 2022). However, the vast majority of the pro-
posed IDS approaches adopted in the IoT domain that
can be found in the literature relies on centralized ap-
proaches where IoT devices send their local dataset
to cloud datacenters (or centralized servers) to lever-
age on their computing capabilities for model training
(Campos et al., 2021).

As a consequence, the specification of a ML-
based IDS whose model is trained following a fed-
erated learning approach seems a very promising al-
ternative solution in such a domain, and it is possi-
ble to find a few examples in the literature exploring
its feasibility (Rahman et al., 2020; Campos et al.,
2021; Aouedi et al., 2022; Rey et al., 2022). For
instance, in (Rey et al., 2022) the authors presented
a framework that uses a federated learning approach
to detect malware, based on both supervised and un-
supervised models. More precisely, the authors per-
form a binary classification with a multi-layer percep-
tron and an autoencoder on balanced datasets, which
present the same class proportions for every client.
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Another relevant contribution is represented by the
paper (Campos et al., 2021), in which the authors in-
vestigated a FL approach on a realistic IoT dataset
(i.e., CiC-TON-IoT) (Alsaedi et al., 2020). In particu-
lar, the authors evaluated how the unbalance between
clients’ data class distribution affects the performance
of the federated learning workflow. They also suggest
the usage of Shannon entropy to measure the unbal-
ance within each client data. With respect to (Cam-
pos et al., 2021), in this paper we define a more gen-
eral score for assessing the unbalance of the data dis-
tribution and we leverage it to design an architecture
where IoT devices’ data is balanced without any need
of sharing samples between themselves, assumption
that is instead made in that paper.

2.2 Approaches for Enhancing
Federated Learning

Despite FL has been recently introduced, it has re-
ceived a lot of interest from the research community
(Li et al., 2020). The standard FL workflow is based
on the FedAvg algorithm (McMahan et al., 2017),
which essentially relies on a weighted average of the
models received from each client after local training.
A crucial aspect in a FL setting is the statistical het-
erogeneity of the client datasets, which can be harm-
ful to training performance. In literature, many works
can be found that aim at analyzing this issue and pro-
pose possible solutions (Hsu et al., 2019; Sattler et al.,
2020; Li et al., 2020).

A possible approach to solve the issue consists
of learning a personalized model for each FL client.
For instance, the MOCHA algorithm proposed in
(Smith et al., 2017) considers a multi-task learning
setting and defines a deterministic optimization prob-
lem where the correlation matrix of the client is ex-
ploited as a regularization term. Another possible ap-
proach is to consider FL with heterogeneous data as a
meta-learning problem. In this scenario, the goal is to
obtain a single global model, and then let each client
fine-tune it using its local data (Jiang et al., 2019).

Lastly, it is possible to tackle this issue by consid-
ering a clustered FL framework (Ghosh et al., 2020;
Sattler et al., 2020). For instance (Sattler et al., 2020)
proposed a centralized clustering algorithm based on
the geometric properties of the FL loss surface, so
that each client may deploy a more specialized model.
The proposed procedure is applied after FL training,
once it has converged to a stationary point, which
may lead to high computational costs (Ghosh et al.,
2020). Another example is given by (Savi and Oli-
vadese, 2021), where K-Means clustering is lever-
aged for grouping FL clients according to some com-
mon features and then collaboratively training an FL
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Figure 1: FL-based intrusion detection with IoT devices’
clustering: system architecture.

model per cluster, rather than deploying a single
global model. The paper shows that this leads to an
increase in performance in the inference phase. How-
ever, in our context, it may be unwise to let each client
(or a cluster of them) deploy a specialized model since
it would be desirable for each of them to be able of
recognizing also new attacks, seen by other IoT de-
vices. In this paper, we try to fill this gap by propos-
ing a three-tier clustering architecture where a single
global model is trained, and IoT devices are clustered
together based on a novel similarity score.

However, unless its very simple and fast applica-
bility, FedAvg may not be an optimal choice in some
cases, e.g. for clients with highly unbalanced and non
iid data distributions, due to convergence issues (Sat-
tler et al., 2020). Moreover, communication is a criti-
cal bottleneck in federated networks and reducing the
total number of communication rounds is a key as-
pect to be considered (Li et al., 2020). In the next
section, we describe our proposed architecture to deal
with these shortcomings.

3 SYSTEM ARCHITECTURE

Fig. 1 shows our proposed architecture for FL-based
intrusion detection. It consists of a three-tier system
including IoT devices, data aggregators and a central
node. These components are responsible for any of
the main tasks performed by the system: (i) FL-based
model training (blue arrows in the figure), (ii) labeled
data exchange (green arrows), and (iii) IoT devices
clustering (red arrows).

With respect to existing FL-based architectures
for intrusion detection (Campos et al., 2021), the
main difference is the presence of the data aggre-
gators. These nodes act as FL clients and, during
the FL-based model training procedure that involves
themselves and the central node (i.e., FL model ag-
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gregator) executing FedAvg, they use labeled traf-
fic data gathered from a subset of clustered IoT de-
vices, which is opportunely aggregated. Traffic data
from any IoT device consists of a set of historical at-
tack/benign traffic samples that should have been col-
lected and labeled by the owner/administrator of such
an IoT device.

Unlike (Campos et al., 2021), the training data
can be balanced among the nodes in charge of model
training (i.e., the data aggregators) without the need
of exchanging part of these data among IoT devices,
which is cumbersome in most IoT real-world scenar-
ios and could lead to privacy issues if IoT devices are
owned by different parties. In addition, IoT devices
are relieved from any training task, which is often
very demanding from a computational point of view
given their hardware equipment. Then, each data ag-
gregator offloads the trained FL model to the IoT de-
vices it is responsible for, so that it can be used for
intrusion detection (i.e., inference) on live traffic by
the IDS service implemented in any IoT device.

A fundamental aspect of our proposed system is
thus how IoT devices are clustered and consequently
associated to any data aggregator. This is key to en-
sure that local FL models are trained on likely bal-
anced datasets so that overall intrusion detection per-
formance is improved. Details on our clustering pro-
cedure are provided in Section 4: from an architec-
tural point of view, this procedure is carried out by the
central node with some high-level attack information
provided by the IoT devices. Such an information, as
we will better describe in Section 4, includes the sta-
tistical distribution of the attacks experienced by the
IoT devices in the past.

Once the clusters’ composition is computed by the
central node, the cluster membership of each IoT de-
vice is communicated to its associated data aggregator
and to the IoT device itself, so that (i) traffic labeled
data can be sent from the IoT device to the designated
data aggregator for FL-based model training and (ii)
the trained FL model can be offloaded from the des-
ignated data aggregator to the IoT device for local in-
trusion detection.

3.1 Example Scenario

Our system could be adopted in different scenarios.
As a matter of example, let’s consider an Internet Ser-
vice Provider (ISP) that wants to offer an IDS service
to its customers, each one owning a bunch of IoT de-
vices at the far edge (e.g. for smart agriculture (Sinha
and Dhanalakshmi, 2021)). In this specific case, the
data aggregators’ logic can be implemented by the
edge computing nodes (Khan et al., 2019) owned by
the ISP and disseminated at the edge of its infrastruc-

ture. In addition, the central node can be implemented
in the cloud datacenter managed by the same ISP. In
this specific case, the FL model used for inference by
the IoT devices can be trained in the cloud-to-things
continuum while ensuring its best possible quality, re-
gardless of how balanced or imbalanced the labeled
attack traffic data from any single IoT device is.

Moreover, performing federated learning between
edge computing nodes and the central cloud can help
reduce the amount of data that needs to be moved
around in the ISP network if compared to a central-
ized solution, where model training is fully executed
in the cloud (Savi and Olivadese, 2021). In fact, only
model weights need to be transferred between edge
computing nodes and the cloud, while labeled data
related to attacks needs only to be moved from IoT
devices to designated edge computing nodes, and is
thus kept as much as possible local. Note also that
sharing the labeled attacks’ data with edge comput-
ing nodes should not be considered a potential source
of privacy leakage, as this data is kept within the ISP
network domain offering the IDS service.

4 CLUSTERING IoT DEVICES: A
NOVEL STRATEGY

To define our strategy, we took inspiration from some
findings reported in (Campos et al., 2021). In that pa-
per, the authors showed that FL works well in a bal-
anced scenario, when all the clients have the same
number of samples for each class.

Here we propose a clustering strategy with the aim
of automatically choosing an optimal configuration of
the clients partition in each cluster, by analyzing their
labels distributions. The aim is to find a meaning-
ful score so that, for a given number of clusters, its
minimization results in an effective clusters’ config-
uration, which can then be deployed in the three-tier
architecture described in Section 3.

For each client dataset of size N, given the total
number of classes K (i.e., benign and/or attack traf-
fic) and the number of per-class samples ni, it is pos-
sible to compute the normalized Shannon entropy of
the labels probability distribution p = {p1; ...; pK} as
(MacKay, 2003):

H(p) =
−∑

K
i=1 piln(pi)

ln(K)
(1)

where pi is the probability of a sample belonging to
the i-th class to occur, which can be expressed as
pi = ni/N. The Shannon entropy is a measure of the
uncertainty associated with a given probability distri-
bution and it is maximized when the distribution is flat
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(MacKay, 2003) (i.e., when all classes have the same
number of samples).

This is similar to what was done in (Campos et al.,
2021). However, groups with the same entropy may
have different labels distributions, so it is necessary
to take into account also their similarity. For instance,
two IoT devices where all the traffic of any of them
belongs to one class, which is mutually exclusive with
respect to the class of the other device, have the same
entropy (equal to zero) but provide substantially dif-
ferent information about the experienced attacks.

Some of the most common choices for measuring
the similarity between two probability distributions
are: (i) the Kullback-Leibler divergence; its sym-
metrized extensions, such as (ii) the Jensen and Shan-
non distance (Lin, 1991), and (iii) the Hellinger dis-
tance (Hellinger, 1909). Here we decided to exploit
the latter because it satisfies some desirable proper-
ties: it is symmetric, it satisfies the triangle inequality
and it lies in the range [0,1].

The Hellinger distance between two discrete
probability distributions p = {p1; ...; pK} and q =
{q1; ...;qK} is defined as:

d(p,q) =
1√
2

√
K

∑
i=1

(
√

pi−
√

qi)2. (2)

It may be desirable to have clusters where each
group has a high entropy and that all groups pairs
have a low distance between their labels distribution.
In this way, it is ensured that training data among
clusters is balanced as much as possible. Starting
from these considerations we define a similarity score
for ranking the overall balance provided by different
groups/clusters1 configurations. Denoting a cluster-
ing configuration of N groups as R = {p1; ...;pN},
we define the clustering score as:

S(R) =
1
N

N

∑
i=1

1
H(pi)

+
1

2
(N

2

) N

∑
i, j=1
i 6= j

d(pi, p j). (3)

The first term takes into account the entropy of each
group and heavily punishes configurations in which
even just one group has low entropy, as such a condi-
tion is strongly in contrast with a balanced scenario.
The second term describes the dissimilarity of the la-
bels distribution between groups. The sum runs over
the possible groups’ pairs, since the distance is sym-
metric we included a factor 1/2 which accounts for
adding each pair of groups twice while the factor

(N
2

)
represents the number of pairs combinations.

Therefore, for a fixed number of clusters N, the
clustering configuration that minimizes S, as defined

1In this paper, the terms groups and clusters are used
interchangeably.

in Eq. (3), should be chosen. The number of groups
can be considered as a parameter of the proposed clus-
tered federated learning workflow. It has to be prop-
erly tuned by taking into account also the physical
constraints of the considered network, like the num-
ber of aggregators, in order to achieve the best trade-
off between possible performance gains obtained by
clustering and the amount of devices’ traffic data that
needs to be aggregated. In Eq. (3) all the possible
pairs of clusters have been considered, which may
lead to a computational issue for a large number of
clusters. However, it is expected that the best per-
formance is achieved with a few number of clusters,
which makes the computation is feasible: this will be
evident from the evaluations of the next section.

5 EXPERIMENTS AND RESULTS

5.1 Description of the Dataset

For exploring the feasibility of the adoption of a feder-
ated learning approach for the detection of intrusions
in IoT networks, the choice of a realistic dataset plays
a crucial role. In (Campos et al., 2021) it is possi-
ble to find an extensive review of different existing
datasets. As done in that paper and given its proper-
ties, here we exploit the CIC-ToN-IoT dataset (Sarhan
et al., 2021), which is based on the ToN IoT set (Al-
saedi et al., 2020). The dataset includes real collected
data and is based on 83 features describing the net-
work traffic between different source/destination IP
addresses. It is organized per flow: each row repre-
sents a flow and is annotated as belonging to one over
a total of 10 classes, including benign traffic and nine
different attacks.

From the dataset we selected the 16 destination IP
addresses, each associated with a different IoT device,
with more samples. For each of them, we considered
also the flows related to transmitted traffic (i.e., when
they act as sources) so that each IoT device’s dataset
consists of received and sent traffic, mimicking a real-
istic scenario. After this operation, the overall length
of our dataset (not partitioned) was 9849282 samples.
We added a binary feature that takes into account the
direction of the traffic with respect to an IoT device
and we dropped some device-specific features such as
the IP address and the flow timestamp. The result-
ing dataset is unbalanced and class distributions are
highly dissimilar across the clients.

Lastly, each IoT device’s dataset is divided into
train, validation and test set, 60%, 20%, 20% respec-
tively, and standardized using the training data, so that
each feature distribution presents a zero mean and unit
variance. The validation set is exploited for tuning the
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hyper-parameters of the classifier and of the federated
learning setting (batch size, learning rate, number of
local epochs and number of rounds), and the architec-
ture of the classifier. In the next subsections we recall
settings related to the chosen classifier, to the baseline
approaches and to our proposed approach.

5.2 Adopted Classifier and Baseline
Approaches

As we are interested in characterizing the impact of
clustering clients in different ways, we selected a sim-
ple classifier, represented by a multi-layer perceptron
(MLP) consisting of an input layer, a single hidden
layer with 64 neurons, and a final outer layer. The
hidden layer makes use of a hyperbolic tangent acti-
vation function while the outer of Softmax. The opti-
mization of each client is performed using the Adam
optimizer with an initial learning rate of 0.001 and the
cross-entropy as loss function; each MLP is trained
for up to 15 epochs with batches of 512 samples. The
federated learning training workflow varies depend-
ing on the considered approach, as described below.
In every case we simulated the FL training procedure
using TensorFlow Federated, version 0.19.

The first baseline approach is represented by the
usual federated learning approach, where the 16 se-
lected IoT devices are the FL clients, which train lo-
cal models using locally-collected data. In this spe-
cific case, no data aggregators are included in the re-
lated architecture, which only consists of FL clients
and of a centralized aggregator. In this scenario we
trained the global model for 200 consecutive rounds
using FedAvg as aggregation function. As no clus-
tering is performed in this case, we will refer to this
baseline approach as no groups.

The second baseline approach is a centralized sce-
nario where each client transmits its own data to a
central server, which thus has a global dataset at its
disposal. Then, the classifier is trained simultane-
ously on the global dataset with the previously de-
scribed parameters and hyper-parameters. We refer
to this second baseline approach as centralized.

5.3 Proposed Approach

We experimented with different numbers of configu-
rations, with the goal of verifying that our proposed
similarity score represents an effective metric for IoT
devices’ clustering. We considered three cases, as-
sociated with different N values: (i) N = 2, i.e., two
clusters with eight IoT devices each, (ii) N = 4, i.e.,
four clusters with four IoT devices each, and (iii)
N = 8, i.e., eight clusters with two IoT devices each.

Algorithm 1: Clusters selection strategy.

Require: Labels distribution of each of the N randomly-
generated clusters {p}N

j=1
Require: K random realizations {R ≡ [p1, ..,pN ]}K

k=1 of
the clusters

Require: Array for the K clusters scores S
for k = 1, ..,K do
Sk = S([p1, ..,pN ]k) . as in Eq.(5)
end for
Let S∗ = sort(S)
S∗[0]→ Best groups realization (Rbest)
S∗[K]→Worst groups realization (Rworst)
return Rbest,Rworst

Table 1: Test performance for different training groups con-
figurations.

[t]
Configuration Similarity score F1 Mean F1 STD
Centralized - 0.891 0.110
N = 2 (2 groups) 2.11 (Lowest) 0.859 0.123
N = 2 (2 groups) 2.51 (Highest) 0.828 0.141
N = 4 (4 groups) 2.16 (Lowest) 0.856 0.132
N = 4 (4 groups) 2.68 (Highest) 0.797 0.156
N = 8 (8 groups) 2.53 (Lowest) 0.814 0.146
N = 8 (8 groups) +∞ (Highest) 0.769 0.167
No groups +∞ 0.730 0.207

Given N, the choice of how to partition the IoT de-
vices and assign them to data aggregators follows the
scheme reported in Algorithm 1. We randomly chose
different partitions of clients obtaining different K re-
alizations of the clusters. For each of them, we com-
puted the score defined in Eq. (5), and then we trained
our model in a federated learning way for the best and
the worst group realizations according to the score.
This procedure is repeated for all the different N val-
ues defined above.

5.4 Results

For each of the considered cases, we tested the trained
classifier by means of FL on each client test set.
We considered the F1-score as a metric for assess-
ing the performance of the classification on a single
client. All the experiments were performed on a Fu-
jitsu workstation with 32 GB of RAM, equipped with
an Intel Core i7 and a NVIDIA Quadro P1000 GPU.

In Table 1, for each considered configuration ob-
tained by running Alg. 1 and for the baseline strate-
gies, we report the arithmetic mean of F1-score com-
puted over all the 16 IoT devices, along with the
standard deviation (STD). We decided to exploit the
arithmetic mean rather than the most commonly used
weighted mean (over the number of clients’ sam-
ples) since a few IoT devices are associated with a
very large amount of benign traffic: considering a
weighted mean would lead to an overestimated (and
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Figure 2: Violin plots of test performance (L=Lowest,
H=Highest). The y-axis reports the F1-score for each IoT
device test set. The violin plots represent a pictorial be-
haviour of the test performance for a given cluster config-
uration. Violins with denser tails at higher F1-Score are
considered better choices.

Table 2: Test performance on new 35 clients, for different
training groups configurations.

[t]
Configuration Similarity score F1 Mean F1 STD
Centralized - 0.867 0.151
N = 2 (2 groups) 2.11 (Lowest) 0.849 0.153
N = 2 (2 groups) 2.51 (Highest) 0.831 0.176
N = 4 (4 groups) 2.16 (Lowest) 0.853 0.155
N = 4 (4 groups) 2.68 (Highest) 0.819 0.177
N = 8 (8 groups) 2.53 (Lowest) 0.827 0.162
N = 8 (8 groups) +∞ (Highest) 0.658 0.201
No groups +∞ 0.621 0.204

thus optimistic) performance.
Moreover, in Fig. 2 we present a graphical repre-

sentation of the distribution of IoT devices F1-scores
through violin plots. Violin plots feature a kernel
density estimation of the underlying distribution: the
shape of the violin plots represents a visual aid on
the behavior of the classifier as a function of the
groups’ configuration along with the considered base-
line models. Violins with denser tails represent better
stability: in this case, the groups’ configuration al-
lows the trained classifier to produce fewer outliers
with low F1-score during the test phase.

From Table 1 and Fig. 2 it is possible to notice
that our strategy is better than the standard federated
learning approach (no group) in terms of F1-score,
and thus that the proposed score can be effectively
used to assess groups unbalance. This is reflected
in systematically higher average F1-scores and low
STDs for configurations that lead to a lower similar-
ity score, which are configurations with 4 and 2 clus-
ters. In these settings performance are comparable,

however the configuration with four groups should be
preferred since it would increase the granularity of-
fered by our system and hence it would reduce the
expected computational overhead of aggregators with
respect to the configuration with two clusters. The
best F1-score is however obtained by centralized, as
all classes samples are present during the training of
the global model.

It should also be noted that, in our strategy, the
training rounds can be significantly reduced with re-
spect to no group. While in no groups 200 training
rounds were performed, when clustering is adopted
we could run the federated learning training for only
90 communication rounds, after which the overall
training progress did not improve anymore.

Lastly, we tested our models on new 35 IoT de-
vices’ datasets, not included in the training phase and
randomly chosen from the remaining devices in the
CiC-ToN-IoT dataset. This new dataset has an over-
all length of 175726 samples. Table 2 shows the re-
sults for this test, which essentially confirm the per-
formance trends inferred from Table 1. Moreover, it
also shows that the proposed approach can train ML
models that are able to generalize well to new IoT de-
vices’ data. This is a relevant aspect, especially for
practical applications, since it may happen that some
IoT devices are not able to share their data labels due
to stringent privacy policies or because they have not
collected enough historical samples yet.

6 CONCLUSION

In this paper, a federated-learning-based Intrusion
Detection System for IoT networks, based on IoT de-
vices’ clustering, has been presented. In summary, the
proposed approach relies on a new clustering similar-
ity score, which is a meaningful quantity for group-
ing IoT devices and its minimization is beneficial in
a FL training scenario both in terms of classification
accuracy and number of rounds. More precisely our
approach increases intrusion detection performance
with respect to a conventional FL approach up to
+17% in terms of F1-score with a halved number of
training rounds. Moreover, the classifier trained with
the proposed framework is able to generalize well to
new unseen IoT devices, thus effectively sharing the
knowledge of the attacks to new devices without shar-
ing local data.

Here we have exploited a random search for
choosing the clustering configuration, in future works
we plan to develop also a custom algorithm for find-
ing the near-optimal clustering score for a given col-
lection of clients and number of clusters, as long as
new tests on different datasets. Moreover, we plan
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to further investigate the effects of other aggregation
algorithms that can overcome FedAvg limitations in
unbalanced data scenarios, as well as specific tech-
niques for dealing with unrepresented attacks classes
to improve the overall classification performance.
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