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Abstract: Remote sensing image captioning has greater significance in image understanding that generates textual 
description of aerial images automatically. Majority of the existing architectures work within the framework 
of encoder-decoder structure. However, it is noted that the existing encoder-decoder based methods for remote 
sensing image captioning avoid fine-grained structural representation of objects and lack deep encoding 
representation of an image. In this paper, we propose a novel structural representative network for capturing 
fine-grained structures of remote sensing imagery to produce fine grained captions. Initially, a deformable 
network has been incorporated on intermediate layers of convolutional neural network to take out spatially 
invariant features from an image. Secondly, a contextual network is incorporated in the last layers of the 
proposed network for producing multi-level contextual features. In order to extract dense contextual features, 
an attention mechanism is accomplished in contextual networks. Thus, the holistic representations of aerial 
images are obtained through a structural representative network by combining spatial and contextual features. 
Further, features from the structural representative network are provided to multi-level decoders for 
generating spatially semantic meaningful captions. The textual descriptions obtained due to our proposed 
approach is demonstrated on two standard datasets, namely, the Sydney-Captions dataset and the UCM-
Captions dataset. The comparative analysis is made with recently proposed approaches to exhibit the 
performance of the proposed approach and hence argue that the proposed approach is more suitable for remote 
sensing image captioning tasks. 

1 INTRODUCTION 

Due to technological advancements in aerial imagery 
understanding systems, it is possible by the satellites 
and launch vehicles to provide the finer details of the 
earths’ surface. However, the amount of remotely 
sensed image data generated by satellites and launch 
vehicles is veryy large, making it difficult for both 
researchers and users to access, store, and observe 
relevant data from a large number of details. Remote 
sensing image captioning (RSIC) is a probabilistic 
approach that depends on the attributes and visual 
features of the image and it helps in providing 
meaningful descriptions about  remotely sensed 
images. The main goal of RSIC is that the generated 
captions must focus on the relationship between the 

scene and the object of an image. It is applied in most 
of the recent applications, including image 
interpretation and understanding (Wang B, 2020), 
text search in an image (Gu J, 2018), detail generation 
(Xu K, 2015), robotic vision (Szegedy C, 2016), 
content search (Chung YN, 2015) etc. Several RSIC 
methods (Ramos, 2022 & Wang, 2022) in the 
literature explore encoder-decoder framework to 
generate meaningful captions. These frameworks 
generate sequences of words using recurrent neural 
networks (RNNs) that depend on the features of the 
remote sensing images captured by the convolutional 
neural networks (CNNs). Recently, Gu et al. (Ma C, 
2018) proposed an approach in which multiple LSTM 
decoders are incorporated into a multi level coarse to 
fine generative network for producing fine grained 
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descriptions. Later, a few research works employed 
the attention mechanism (Wei H, 2019) in the encoder 
and decoder of the models to focus on essential parts 
of an image. However, these frameworks are not 
efficient in generating meaningful captions due to 
their failure in capturing the structural representations 
of remotely sensed images (RSI). The major 
challenges pertaining to current approaches are (i) 
inefficient spatial and structural representations of 
RSI and (ii) the use of a single-level caption decoder, 
which leads to inefficient generation of fine-grained 
meaningful  captions. Therefore, we propose a 
structural representative network (SRN) that 
addresses these limitations. 

Our proposed SRN extracts both spatial and 
semantic information from initial and final layers of 
CNN through deformable and contextual networks. 
Deformable networks are incorporated into initial 
layers of CNN as it possesses capability of handling 
geometric transformations, thus improving the 
transformation capability of the model. However, 
CNNs do not handle these transformations because of 
fixed size kernels of convolution and max pool 
operations. Robust way of representing different 
scaled objects is possible through a deformable 
network in remote sensing images. An SRN is 
incorporated on top of the final layers of CNN to 
capture fine grained structural representations of RSI 
since CNN fails in preserving multi scale features and 
capturing boundary details of an object due to 
repeated stride and pooling operations (Chen LC, 
2018). The proposed SRN captures structural 
representations of an RSI  by applying dilated 
convolutions parallely at different dilation rates in 
various fields of views. Finally, these  spatial and 
semantic features are given to multi level decoder for 
generating meaningful captions of an RSI. The major 
contributions of this work are as follows: 
● We propose a structural representative network 

(SRN) in order to encode guided contextual 
information for generating meaningful 
captions. 

● A novel structural representation and 
deformable networks are  incorporated at the 
encoder of our encoder decoder framework for 
capturing dense multi scale and spatial 
invariant features from RSI for meaningful 
caption generation 

● Accuracy of the proposed network is evaluated 
on two RSIC datasets, namely, Sydney captions 
and UCM captions. Our model outperforms 
state of the art methods in generating 
semantically meaningful captions by learning a 
rich structural representation of an RSI. 

The remainder of the paper is organised as follows. A 
detailed description of the existing works on RSIC is 
provided in Section 2. Our proposal method is 
presented in Section 3. The implementation details, 
experimental results, comparison with state-of-the-art 
methods are shown in Section 4. Finally, Section 5 
provides the conclusion. 

2 EXISTING WORKS 

This section reviews the state of the art methods and 
various statistical learning algorithms used in 
structural investigation and semantic retrieval of 
RSIC. 

2.1 Image Captioning in Remote 
Sensing Imagery  

Currently, deep learning models are extensively 
explored and applied in image captioning tasks where 
input can be camera based or remotely sensed images. 
Most of the image captioning tasks (zhang, 2017) 
utilise encoder decoder frameworks where CNNs are 
used at encoder to capture the meaningful features 
and RNNs at decoder for providing textual 
description of an RSI. Similarly, we have seen many 
promising approaches (lu, 2019), (Zhao R, 2021), 
(Wang Q, 2020), (Ma X, 2020) to generate 
descriptions for RSI. It is also noted that template-
based technique was proposed by Shi et al (Shi Z, 
2017) where FCN and CNN are used to capture the 
image content. Here, the generated words from the 
decoder are sequenced into complete sentences with 
stable templates. Further, Lu et al (Lu X, 2017) 
introduced RSI datasets such as Sydney-Captions and 
the UCM-Captions datasets for image captioning 
tasks, and conducted a series of evaluations and 
observed increase in the performance with these 
datasets by applying a soft attention mechanism. 
Later, the attribute-attribute model was proposed by  
Zhang et. al (Zhang X, 2019) to generate a huge 
amount of salient features by capturing the core 
attributes to reweight the features of an image. It is 
proved that the strength of the model is improved with 
this attribute data for generating meaningful 
sentences. Marker-driven attention mechanism  was 
introduced by Zhang et al (Zhang Z, 2019) for 
generating meaningful captions where the details of 
the marker are utilised in the attention computation to 
assign weights in the attention layer. In this approach, 
label data from RSI is filtered out and more salient 
features are provided in each decoding step. Another 
notable work by Sumbul et al (Sumbul G, 2020) 
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considered novel visual alignment loss to capture 
important features from an RSI for the training 
process. 

2.2 Visual Feature Encoding Methods  

Standard pipeline with combination of CNN and 
RNN was exploited by Ma et al. (Jégou H, 2011) for 
capturing rich features of an image using deep CNN 
to improve the performance of visual tracking. 
Firstly, the model combines all five true captions into 
single caption and then adaptive weighting strategy 
applied dynamically considering the predicted words 
in the standard and summary time steps. Fusion 
method combines semantic and coarse details to 
achieve spatial visual features of an image. ExFuse 
was another fusion method proposed for 
segmentation tasks where semantic features are 
combined with low level features of an image and 
high spatial resolution features are combined with 
high level features. Later, spatial transformer 
networks (STN) (Jaderberg M, 2015) was introduced 
to deal with spatial transformations of an image. This 
approach can even include spatial manipulations into 
the training data. Further, dilated convolutions are 
applied in CNNs to obtain multi-level structural 
representations of an image. With the exponential 
increase in size of the receptive fields of dilated 
convolutions, rich structural representations are 
captured (Dai J, 2017). Then, the spatial pyramid 
pooling component (Chen LC, 2018) was introduced 
to study dilated convolutions with different dilation 
rates in multiple fields of views. Deformable 
networks (Dai J, 2017) was introduced with 
inspiration from STNs. Incorporating deformable 
networks improves the performance of the model by 
generating dense predictions compared to STNs. 
Recently, several works (Lu Y, 2020), (Jaderberg M, 
2015) handled geometric transformations and multi-

scale variations by incorporating deformable 
networks in model architectures. 

3 PROPOSED METHODOLOGY 

This section consists of encoding and decoding phase 
details. Convolutional neural network (CNN) is 
employed in the encoding phase to encode the visual 
depiction of an RSIs followed by a decoding phase 
where multi level long short-term memory (LSTM) is 
utilised to decode the visual attributes and produce a 
series of words. Subsequently, the structural 
representative network and deformable networks are 
designed for RSI captioning.  The framework of the 
proposed methodology is presented in figure 1. 

3.1 Visual Encoder 

Visual encoder network helps in encoding the 
features where the multiscale structural 
representations and spatially transformed features of 
an image are encoded by processing the remote 
sensing image through distinct network components 
namely the backbone network, deformable network, 
multi scale structural representative network, and 
feature fusion.  

3.1.1 Backbone Network 

A pre-trained ResNet (He K, 2016) is used as a 
backbone network and hence to retrieve the features 
for providing visual descriptions of an RSI through 
the first five layers, namely, Conv1, Conv2, Conv3, 
Conv4, and Conv5. Each Conv layer contains 
different bottleneck layers. Generally, initial layers of 
the CNNs hold small object details in an image but 
fail in capturing the semantic details whereas final 
layers  can  capture  semantic  details,  lacking  spatial 

 
Figure 1: The overview of the proposed method. 
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Figure 2: Framework of proposed methodology. 

information of the objects. In our framework (figure 
1), fully connected layers of ResNet are removed to 
utilise spatial and structural representations of conv 
layers. We incorporate 32 × 32 with 512 channels 
spatial resolution at conv3 of the backbone ResNet 
network after extracting the spatial features from it. 
Further, semantic details are obtained through conv5 
layer with 8x8 resolution and 2048 channels. 
Deformable network and SRN is incorporated on top 
of initial and final layers of backbone network to 
capture multi level structural representations of RSI. 

3.1.2 Deformable Network 

The CNN is a broadly analysed model for image 
captioning, yet its accomplishment is bounded by the 
absence of capacity to deal with geometrical changes. 
Earlier, the CNN networks acquired spatially 
invariant information by usage of enormous 
approaches, augmentation methods, and hand crafted 
methods, for example, max-pooling or scale invariant 
element changes using SIFT. But, hand crafted 
features cannot deal with unspecified geometric 
transformations (Si H, 2019) as it can learn only fixed 
and known changes. Further, these models and hand-
crafted approaches are troublesome, intricate, 
inaccessible, and require costly preparation for 
excessively complex changes. Furthermore, the same 
activation units are produced by fixing the kernel and 
max pooling receptive field sizes by skipping out the 
fact that the different locations map with different 
scaled objects as well as deformations (Si H, 2019). 
To overcome these problems, we have introduced 

deformable convs on Conv3 of backbone network as 
the initial layers are not genuinely invariant to 
enormous changes of the input data when compared 
to final layer attributes (Conv5). The standard 
convolution produces the output feature map L 
utilising grid ဌ over the input feature map F as 

L(A0) = Σ ง(An ) · F(A0+ An + ∆An),   An∈ဌ         (1) 

Where A signifies random position (F(A0 + An + ∆A 

n ) and ง, A0 signifies the weight values and  location 
on L.  
An defined on sampled grid (ဌ). Thus, the offsets are 

augmented using deformable convolutions ∆ Am | m 
= 1, . . . , M , M = mod ဌ. In deformable convolutions, 

the sampling is done at irregular and offset locations 
(An + ∆An ). As shown in Eq 2, we apply bilinear 
interpolation ß on Eq 1 since ∆An  is fractional and all 
spatial locations in F are enumerated by S.  

 F(p) =∑(ß(S,P)·F(S))                         (2)  

In the deformable convolution module, 2D offsets 
are sequentially added at grid sampling points in 
standard convolutions. This offset is learned from the 
previous convolution layer and determines the 
deformation of the input feature. Simple backward 
propagation can be used to train the end-to-end 
deformable convolution module between layers. This 
work incorporates two deformable convolutions in 
between two standard bottleneck  layers.. 

Deformable and Structural Representative Network for Remote Sensing Image Captioning

59



 

 

3.1.3 Multi-Scale Structural Representation 
Network 

Major works in image captioning (Vinyals O, 2015), 
(Xu K, 2015), (Chen L, 2017), (Wei H, 2019) utilise 
the semantic details from the final layers of the 
backbone network. But, boundary specific details of 
the objects are reduced due to application of a large 
number of pooling and convolutions operations. To 
overcome this problem, we have employed SRN on 
top of conv5 feature map for capturing structural 
representations of the RSI by applying multiple 
dilated convolutions with different scales parallely. 
The SRN helps in mitigating the number of learnable 
parameters along with computation time by managing 
the receptive field size of the input feature map 
instead of increasing the filter's field of view. Thus, 
greater structural details are obtained through SRN 
where it segments the objects at various scales at 
every layer through parallel dilated convolutions at 
different dilation rates. More formally, given a 2D 
signal for every location L on m which is the output 
attribute map and ง as the  kernel matrix with weights, 
the dilated convolutions are utilised on the input 
attribute map F as 

L(q)=∑F(q+D·ェ)ง(ェ)                     (3) 

Here, for each location L, of q as the output feature 
map  and ง as weight kernel matrix, D implies the 
dilation rate at which the sampling of the input feature 
map is done. D = 1 is the dilated convolution’s special 
case, where it denotes the ideal convolution. The 
filter’s field-of-view changes flexibility with dilation 
rates. 

3.1.4 Feature Fusion 

The spatially transformed representations of RSI 
obtained from deformable network at Conv3 of 
backbone network and structural representations 
obtained due to feeding Conv5 features of backbone 
network to SRN networks are fused in the proposed 
method. Before concatenating, bi-linear interpolation 
technique is applied to upsample structural features to 
spatial features. Then, concatenation of these features 
are done through stacking up features one another and 
3x3 convolutions are applied before sending to the 
decoder. 

3.2 Decoding Module 

Almost all recent works used a one stage decoder 
module for generating captions of an RSI. However, 
these works failed in obtaining meaningful captions 

as there is minimal transitional supervision. To 
overcome this challenge, we have utilised multistage 
caption decoder framework (Gu J, 2018) for a coarse 
to fine grained caption generation.  It also focuses on 
the problem of vanishing gradients that arose because 
of the coarse-to-fine multi-stage caption decoding 
module. As shown in Figure 1, a three-stacked long-
short term memory network, where stage one of the 
LSTM decoder generates coarse to fine grained RSI 
details, and the succeeding LSTM decoder produces 
the fine-grained details. At every stage, preceding 
decoder hidden vectors and attention weights are 
given to the next LSTM decoder to produce more 
precise captions. 

A stage-wise details of multi-stage decoder are 
provided as follows: LSTM network (LSTMC) learns 
encoded details of an image by utilising the visual 
encoder. At every interval ェ, the details of preceding 
words, the visual depiction of an image, and the 
LSTM network’s previous hidden states are provided 
to LSTMC to produce the caption as given by 

C0 
ェ, H0

 ェ= LST MC (H0
 ェ−1 , X0 ェ , Wェ−1 ), 

(4)
X0 ェ = (f (Z); HNf 

ェ−1 ), 

where the hidden states are H0
ェ−1 and HNf ェ−1 , the 

cell state is C0
ェ , the preceding word is Wェ−1 , X 

denotes (X = 0 for LSTMC and X & d ェ= 1 for fine 
decoders (LSTMf )). The total number of fine stages 
are indicated by Nf , and the mean pool visual encoder 
features are denoted by f(Z). Further, utilising the 
attention weights αX−1

ェ , fine stage decoders, visual 
details, and preceding words are precisely captioned 
as 

CX 
ェ, HX 

ェ = LST M f (H X ェ−1 , X X
 ェ, W ェ−1 ), 

(5)
XX

ェ= (d(Z, α ェX−1 , H ェ X−1 , H X−1 ェ), 

Here, the function of spatial attention (d(.)) is to 
produce attention-guided visual details. On 
accomplishing attentive attributes, our decoder 
framework produces meaningful information from an 
input RSI. 

4 EXPERIMENTAL RESULTS 

In this section, we present details of the datasets used, 
implementation details, experimental results and 
comparative analysis to exhibit the performance of 
the proposed approach. 
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4.1 Dataset Details 

4.1.1 UCM-Captions Dataset 

The UCM-Caption dataset (Yang Y, 2010) consists of 
21 classes of land use images with 100 images in each 
class. Each image is of 256x256 size and was 
extracted from the United States Geological Survey 
(USGS) National Map. Every image in this dataset is 
described through five sentences. All the five 
sentences for each image are diversified but the 
difference between sentences of the same class is very 
small. There are 2100 images with 10500 captions 
respectively. 

4.1.2 Sydney-Captions Dataset 

Sydney-captions dataset (Zhang F, 2014) was 
collected from Google Earth. It has 613 images of 
airports, residential areas, rivers etc., and are 
categorised into seven classes. Similar to the UCM-
caption dataset, each image is described with five 
sentences and the entire dataset has 3065 descriptions 
for those 613 images. 

4.2 Parameter Settings and 
Implementation Details 

The proposed deformable and structural 
representative network (SRN) are implemented using 
the Pytorch framework. The dimension of structural 
representative features, the embedding of the 
attention layer, hidden LSTM, and feature maps are 
set to dimension 512. In our work, we implement 
ADAM optimizer with 0.0001 and 0.0003 learning 
rates for the visual encoder and caption decoder. We 
fixed batch size to 32 throughout the implementation. 
This model keeps on learning until the accuracy of the 
model remains the same and also completes 15 
epochs on the validation set. At last, the decay rate is 
employed, when the model does not progress for 6 
epochs. Further, the ResNet-101 (He K, 2016) 
backbone network is pre-trained on Imagenet and is 
used at the visual encoder. Initially, we obtain the 
spatial features from Conv3 and semantic features 
from Conv5 of backbone with resolutions of 
32×32×512 and 8 × 8 × 2048, respectively. Then, the 
spatially transformed features are captured from a 
deformable network employed on top of initial layers 
with two deformable and standard convolutions. For 
standard convolutions, We set bottleneck layer filters 
with 512 channels and 3×3 filters for the deformable 
convolutions. Later, the SRN is incorporated on the 
Conv5 feature map of backbone with various dilated 

convolutions. SRN consists of 1×1 conv and 3×3 
conv layers with different dilation rates ie., 2, 4, and 
6. A single conv layer of 1×1 and average pooling is 
included in the network along with dilated 
convolutions to obtain features from various fields of 
views. Before fusing, the spatially transformed and 
semantic features obtained from two networks, the 
channel count was reduced to 512. 

4.3 Quantitative Results 

Our approach is evaluated on two datasets namely 
Sydney-captions and UCM-captions. Our method is 
compared with various well-known methods such as 
VLAD + RNN (Jégou H, 2011),  GloVe (Pennington 
J, 2014),  Hard-attention, Soft-attention (Lu X, 2017), 
mRNN (Gu J, 2018), ConvCap (Aneja J, 2018), 
mGRU- embedword (Lu X, 2019),  CSMLF (Wang 
B, 2019), SAA (Lu X, 2019), and RTRMN(Wang B, 
2020).  In our work, we split data as 80% for training, 
10% for validation, and the rest for testing.  

Evaluation Metrics: For evaluating the accuracy 
of the produced captions, four different metrics were 
used such as ROUGE-L (Lin CY, 2004), CIDEr-D 
(Vedantam R, 2015), METEOR (Banerjee S, 2005), 
and BLEU (Papineni K, 2002). These metrics are 
widely used in almost all image captioning tasks.  

4.3.1 BLEU 

The co-occurrences among the generated and the 
ground truth captions is measured using the BLEU 
(Papineni K, 2002) that considers a sequence of n 
number of ordered words. The BLEU-n (n = {1, 2, 3, 
4}) is computed as the ratio of the n-grams that are 
matched with the total number of n-grams in the 
evaluated caption to the total n-grams. This scores in 
the range of  0.0 and 1.0 

4.3.2 ROUGE-L 

ROUGE-L (Lin CY, 2004) is an updated form of 
ROUGE, which computes an F-measure that uses the 
longest common subsequence (LCS) between the 
generated and the ground-truth captions with a recall 
bias. This scores in the range of  0.0 and 1.0 

4.3.3 CIDEr-D 

CIDEr-D (Vedantam R, 2015) is another version of 
CIDEr, where initially, the caption is converted into 
the term frequency inverse document frequency (TF-
IDF) vector (Robertson S, 2004) and then the 
reference caption is produced using the cosine 
similarity and finally the caption  is  generated  by  the  
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Table 1: Evaluation scores (%) on the SYDNEY - 
CAPTIONS dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L IDEr-D 
mGRU 
+embedword 
(Lu X, 2019) 

68.85 60.03 51.81 44.29 57.47 168.94 

VLAD 
+LSTM (Lu 
X, 2017) 

49.13 34.12 27.60 23.14 42.01 91.64 

VLAD+RNN
(Lu X, 2017) 

56.58 45.14 38.07 32.79 52.71 93.72 

ConvCap 
(Aneja J, 
2018) 

74.72 65.12 57.25 50.12 66.74 214.84 

Soft-attention
(Lu X, 2017) 

73.22 66.74 66.23 58.20 71.27 249.93 

Hard-
attention  
(Lu X, 2017) 

75.91 66.10 58.89 52.58 71.89 218.19 

CSMLF 
(Wang 2019)

59.98 45.83 38.69 34.33 50.18 75.55 

SAA  
(Lu X, 2019) 

68.82 60.73 52.94 43.89 58.20 175.52 

Ours 77.85 68.01 68.51 60.40 73.64 228.56 

       

Table 2: Evaluation scores (%) on the UCM-CAPTIONS 
dataset (Yang Y, 2010). 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr-D 

mGRU+ 
embedword 
(Lu X, 
2019) 

75.74 69.83 64.51 59.98 66.74 279.2 

VLAD+ 
LSTM (Lu 
X, 2017) 

70.16 60.85 54.96 50.30 65.20 231.3 

VLAD+RN
N (Lu X, 
2017) 

63.11 51.93 46.06 42.09 58.78 200.6 

ConvCap 
(Aneja J, 
2018) 

70.34 56.47 46.24 38.57 59.62 190.1 

Soft-
attention 
(Lu X, 
2017) 

74.54 65.45 58.55 52.50 72.37 261.24 

Hard-
attention 
(Lu X, 
2017) 

81.57 75.12 67.02 61.82 76.98 299.47 

CSMLF(W
ang B,2019)

36.71 14.85 7.63 5.05 29.86 13.51 

SAA  (Lu 
X, 2019) 

79.62 74.01 69.09 64.77 69.42 294.51 

Ours 82.92 76.95 72.17 67.75 78.49 315.15 

model. CIDEr-D regularises n-grams repetition if 
they occur beyond the number of times in the 
reference sentence. Higher score indicates a higher 

accuracy. The score of this metric is between 0.0 and 
1.0.  

The evaluation scores presented in Tables 1 and 2 
follow similar experimental procedures i.e. 80% for 
training, 10% for testing, & 10% for validation, 
making the evaluation fair. It is observed that our 
approach performs well when compared to the 
existing methods due to the addition of rich semantics 
and textual information.  

4.4 Qualitative Results 

The qualitative results obtained due to the proposed 
approach is shown in Figures 3 and 4, where each 
word generated from the decoder has appropriate 
attention mask for the given RSI. As observed in 
Figures 3 and 4, the produced words have appropriate 
mapping with corresponding image parts through an 
attention map. Our approach generates highly 
descriptive, accurate, very precise words by encoding 
spatial and structural representative features of RSI. 
The visualisations of the captioning results are shown 
in Figures 3 and 4 respectively. 

 
Figure 3: Generated caption with attention mask on the 
UCM-Caption dataset. 

 
Figure 4: Generated caption with attention mask on the 
Sydney-Captions dataset. 

5 CONCLUSIONS 

For holistic representation of an RSI, most image 
captioning methods utilise image-level features or 
visual entities. However, these approaches cannot 
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incorporate multi-scale structural information and 
spatial features of small entities. To overcome this 
problem, a novel deformable and structural 
representative network (SRN) is proposed for remote 
sensing image captioning. Particularly, the 
semantically spatial features are obtained from the 
backbone network. Subsequently, we have developed 
a deformable network on the initial layers and SRN 
on the last layers of the CNN to obtain spatially 
transformed information and structural 
representations of an RSI. Finally, a multi-stage 
caption decoder is utilised to produce meaningful 
captions. In our approach, a stack of LSTMs in the 
decoder helps to deal with the vanishing gradient 
problem and also includes mid-path monitoring. Our 
approach performed better than the well-known RSIC 
methods. 
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