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Abstract: Successful preictal, interictal and ictal activity discrimination is extremely important for accurate seizure 
detection and prediction in epileptology. Here, we introduce an algorithmic pipeline applied to local field 
potentials (LFPs) recorded from layers II/III of the primary somatosensory cortex of young mice for the 
classification of endogenous (preictal), interictal, and seizure-like (ictal) activity events using time series 
analysis and machine learning (ML) models. Using the HCTSA time series analysis toolbox, over 4000 
features were extracted from the LFPs after applying over 7700 operations. Iterative application of correlation 
analysis and random-forest-recursive-feature-elimination with cross validation method reduced the 
dimensionality of the feature space to 22 features and 27 features, in endogenous-to-interictal events 
discrimination, and interictal-to-ictal events discrimination, respectively. Application of nine ML algorithms 
on these reduced feature sets showed preictal activity can be discriminated from interictal activity by a radial 
basis function SVM with a 0.9914 Cohen kappa score with just 22 features, whereas interictal and seizure-
like (ictal) activities can be discriminated by the same classifier with a 0.9565 Cohen kappa score with just 
27 features. Our preliminary results show that ML application in cortical LFP recordings may be a promising 
research avenue for accurate seizure detection and prediction in focal epilepsy. 

1 INTRODUCTION 

Epilepsy, the sacred disease, is one of the oldest 
recognizable neurological conditions with written 
records dating back to 2000 BCE (Chang and 
Lowenstein, 2003; Magiorkinis et al., 2010). As of 
2020 around 50 million people worldwide were 
affected by epilepsy (Ghosh et al., 2021). The causes 
of epilepsy are mostly unknown (idiopathic), but 
often epilepsy is caused from brain damage, stroke, 
and trauma (Goldberg and Coulter, 2013). The 
disease is characterized by recurrent violent episodes 
of involuntary movements called seizures, which may 
be partial (involve only one part of the body) or 
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generalized (involve the whole body) followed at 
times by loss of consciousness and/or control of 
bowel or bladder function (Duncan et al., 2006). 

Seizures are the result of excessive electrical 
discharges in neuronal populations (Colmers and 
Maguire, 2020). Seizures measured by 
electroencephalography (EEG) or LFP recordings 
have been shown to vary in frequency, from one per 
year to several episodes per day. Because they occur 
so sporadically and at unknown times, the availability 
of seizure-like (ictal) activity is scarce and thus 
interictal activity is often used in diagnosis. 

The best way for detecting interictal activity is a 
visual inspection of the EEG/LFP signal by an expert 
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(Lodder et al., 2014). This approach, however, has 
several limitations including a very long learning 
curve and extensive analysis time, especially for long 
recordings. Human error, subjectivity, intra and 
interobserver variability often result in misdiagnosis 
leading to lack of treatment or prescription of 
medication with potentially harmful side effects 
(Lodder et al., 2014). 

Overcoming these drawbacks requires the 
development of an artificial intelligence system for an 
automatic pre-ictal, interictal, and ictal detection that 
can match or even outperform experts, hence 
reducing the time and resources spent on visual 
analysis, as well as misdiagnosis rates. 

Herein, we introduce an algorithmic pipeline 
applied to LFP signals recorded from mouse 
somatosensory cortical slices to extract features used 
for the classification of endogenous (preictal), 
interictal, and seizure-like (ictal) events using time 
series analysis and ML models. 

2 MATERIALS AND METHODS 

2.1 LFP Data 

2.1.1 Animals 

Thirty-one C57Bl/6J mice were bred in the animal 
facility of the Center for Experimental Surgery of the 
Biomedical Research Foundation of the Academy of 
Athens, registered as a breeding and experimental 
facility according to the Presidential Decree of the 
Greek Democracy 160/91, which harmonizes the 
Greek national legislation with the European Council 
Directive 86/609/EEC on the protection of animals 
used for experimental and other scientific purposes. 
The present study was approved by the Regional 
Veterinary Service, in accordance with the National 
legal framework for the protection of animals used for 
scientific purposes (reference number 2834/08-05-
2013). Mice were weaned at 21 days old, housed in 
groups of 5 – 7, in 267 × 483 × 203 mm cages 
supplied with bedding material and kept at a 12/12 h 
dark-light schedule. Food was provided ad libitum. 

2.1.2 Slice Preparation 

Coronal brain slices (400 μm) were prepared from the 
primary somatosensory cortex of young mice (P18-
20) as described before (Rigas et al 2015; 2018; 
Sigalas et al 2015; 2017). Briefly slices were placed 
in a holding chamber with artificial cerebrospinal 
fluid (ACSF) containing (in mM): NaCl 126; KCl 

3.53; NaH2PO4.H2O 1.25; NaHCO3 26; MgSO4 1; 
D-Glucose 10 and CaCl2.2H2O 2 [osmolarity (mean 
± SD): 317 ± 4 mOsm, pH: 7.4±0.2], where they were 
left to recover at room temperature (RT: 24–26 °C). 

2.1.3 ex Vivo Electrophysiology 

Twenty minutes LFP recordings of endogenous 
cortical activity in the form of recurring Up and Down 
states were obtained. Subsequently, epileptiform 
activity was induced by replacing the ACSF with low 
Mg2+ ACSF (Avoli & Jefferys, 2016; Dreier & 
Heinemann, 1991) for up to 80 minutes to ensure that 
the pattern of epileptiform activity had stabilized. 
Network activity was assessed by LFP recordings 
which were obtained from cortical layers II/III of 
S1BF using low impedance (∼0.5 MΩ) glass pipettes 
filled with ACSF. Recordings were obtained in 
current-clamp mode with a Multiclamp 700B 
amplifier (Molecular Devices, San Jose, CA, USA). 
LFP signals were low-pass filtered at 6 kHz (by an 
analog anti-aliasing filter) and subsequently digitized 
at 15 kHz by means of a 16-bit multi-channel 
interface (InstruTECH ITC-18; HEKA Elektronic, 
Lambrecht, Germany). Data acquisition was 
accomplished using AxoGraph X (version 1.3.5; 
https://axograph.com; RRID: SCR_014284). 

 
Figure 1: Exemplary 20-min LFP recording trace from a 
coronal slice of the primary somatosensory cortex of a 
young mouse. Blue downward pointing arrow indicates the 
time the ACSF was replaced with zero Mg2+ ACSF. 

2.1.4 Data Analysis 

The detection of spontaneous network events was 
performed semi-automatically from the LFP 
recordings. Traces were exported to MATLAB 
format and analyzed with LFPAnalyzer, an in-house-
developed software (Tsakanikas et al., 2017; 
Kaplanian et al., 2022). Briefly: (i) input signals were 
pre-processed by DC offset subtraction and low-pass 
filtering at 200 Hz; (ii) two feature sequences were 
extracted for each segment, based on two 
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complementary mathematical transformations 
(Hilbert and Short energy); (iii) a dynamic, data-
driven threshold based on Gaussian mixture models 
was estimated for each feature sequence and used to 
create a mask;  and (iv) the two masks were combined 
using a logical OR operator and used for the detection 
of the onset and offset of the LFP events. After 
identification of their onset and offset, events were 
manually classified as endogenous activity (EA) (up- 
states), interictal activity (IA), or seizure-like activity 
(SLA) (see Figure 1 for traces of these three types of 
events) based on their shape (waveform), and on the 
basis of previous simultaneous whole-cell patch 
clamp recordings (Sigalas et al 2015; Kaplanian et al 
2022). 

2.2 Algorithmic pipeline 

Our high-level algorithmic pipeline is depicted in 
Figure 2. Every step in the pipeline is described in 
detail in the following sections. 

 
Figure 2: General algorithmic pipeline. 

2.2.1 Data Preparation 

The steps followed for preparing the data for further 
analysis are depicted in Figure 3.  

 
Figure 3: Data preparation pipeline. 

All digitized recordings were downsampled (fs = 962 
Hz). A segmentation window with a 5 sec duration 
and a 50% overlap was slid to all signals to segment 
them into 18542 samples. Out of these samples 8357 
were identified as EA, 1318 as IA and 8872 as SLA 
by expert users (see Figure 4 for segmented data 
distributions). The HCTSA suite of time series 
methods (Fulcher et al., 2013) was then used to 
extract features. HCTSA consists of thousands of 
time-series analysis methods allowing users to 
convert a time series into a vector of thousands of 
informative features, corresponding to different 
outputs of time-series analysis operations (Fulcher et 
al., 2013; Fulcher and Jones, 2017). HCTSA has been 
successfully used to a wide range of problems 
including the diagnosis of Parkinson’s disease from 
speech signals, monitoring sleep-stage progression, 
predicting schizophrenia from brain imaging data,  

 
Figure 4: Segmented signal events distribution. EA: 
endogenous activity; IA: interictal activity; SLA: seizure-
like activity. Time in parenthesis is the total cumulative 
duration of each event class in minutes. 

and forecasting catastrophes in financial and 
ecological systems. The features we extracted with 
HCTSA were from the time, frequency, time-
frequency, and chaotic domains of the segmented 
LFP signals by performing over 7700 operations to 
them. For all segmented signals from our LFP 
recordings a total of 4476 meaningful (non-zero, non-
constant, etc) features were extracted. All features 
were then normalized to a common scale (0-1), 
without distorting differences in the ranges of values. 
These features constituted the Full Feature Set. 

2.2.2 Dimensionality Reduction 

The steps followed for reducing the dimensionality of 
the extracted features of the LFP data are depicted in 
Figure 5. To further reduce the high-dimensional 
space of the extracted features we calculated the 
correlation scores of all features in the Full Feature 
Set. Any features whose score was higher than ρ were 
removed. The remaining features constituted the 
Uncorrelated Feature Set. 

 
Figure 5: Dimensionality reduction pipeline. 
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On the uncorrelated feature set we used Random 
Forrest (RF) (Breiman, 2001), a machine learning 
method that operates by constructing a multitude of 
decision trees at training time (Ho, 1995, 1998). For 
classification tasks, RF performs implicit feature 
selection, using a small subset of "strong variables" 
for classification only, resulting in superior 
performance on high-dimensional data (Menze et al, 
2009). The mean decrease of Entropy (or increase of 
Information Gain) over all the decision trees is an 
indicator of feature relevance derived from this 
implicit feature selection of the random forest. A 
feature importance score indicates the relative 
importance of features, which is a by-product of 
random forest classifier training. Several studies 
(Menze et al., 2007; Díaz-Uriarte & Alvarez de 
Andres, 2006) have shown that this feature selection 
step can significantly reduce the number of features 
while increasing the model’s accuracy. The output of 
RF is the class selected by most trees according to 
some predefined criterion (Ho, 1998). The criterion in 
our case was the importance score (we kept those 
features with score greater than 6*mean importance 
score). Each of these feature sets constituted the 
Selected Features Set. A recursive feature elimination 
with cross-validation (RFECV) method was then 
used to remove the weakest features and find from 
each Selected Features Set the optimum number of 
features that gave the best accuracy results. Because 
it was not known in advance how many features 
would be valid, cross validation was used with RFE 
to score different feature subsets and find the average 
optimum number of features. Each of these optimum 
number of features constituted the RFE Feature Set. 

2.2.3 Classification 

We employed 9 machine learning classifiers: a linear 
SVM (SVMlin), a polynomial of the 2nd degree SVM 
(SVMpol), a polynomial of the 3rd degree SVM 
(SVMpol), a polynomial of the 4th degree SVM 
(SVMpol), a polynomial of the 5th degree SVM 
(SVMpol), a radial basis function with a Gaussian 
kernel SVM (SVMrbf), an RF, a decision tree (DT) 
and a k-nearest neighbours (kNN). The data (N 
samples x M features) were split into a training set 
(80%) and a validation test set (20%). A stratified 5-
fold cross validation was used to preserves the 
percentages of samples of each fold. A 
GridSearchCV function was used for hyperparameter 
tuning of every classifier (see Table 1).  
 
 
 

Table 1: Machine learning classifiers, their 
hyperparameters and their hyperpameter values. C: 
Controls the amount of misclassified data points allowed by 
introducing a penalty. Low C values lead to decision 
boundaries with large margin. High C values add greater 
penalty thus minimizing the number of misclassified 
examples; Gamma: The distance of influence of a training 
point. Low values of gamma indicate greater distance 
resulting in more points taken into account for the 
calculation of the separation line; N_estimators (RF): The 
number of decision trees being built in the forest; 
Max_depth (RF): The number of splits that each decision 
tree is allowed to make; N_estimators (kNN): The number 
of nearest neighbors; Criterion (DT): How the impurity of 
a split will be measured; Max_depth (DT): The number of 
splits that the decision tree is allowed to make. 

Classifier Hyperparameter Values 
SVMlin C [0.01, 0.1, 1, 10] 

SVMpol (2nd 
degree) 

C [0.01, 0.1, 1, 10] 

SVMpol (3rd 
degree) 

C [0.01, 0.1, 1, 10] 

SVMpol (4th 
degree) 

C [0.01, 0.1, 1, 10] 

SVMpol (5th 
degree) 

C [0.01, 0.1, 1, 10] 

SVMrbf C  [0.01, 0.1, 1, 10] 
Gamma [0.1, 1, 10] 

RF N_estimators [100, 200, 300, 
400, 500, 600, 
700, 800, 900] 

Max_depth [10, 20, 30] 
DT Criterion [gini, entropy] 

Max_depth [1, 2, 3, 4, 5, 10, 
20, 30] 

kNN N_estimators [1, 2, 3, 4, 5, 6, 
7, 8, 9, 10] 

Performance Metrics. We used the following 
metrics for evaluating the performances of our 
classifiers: 𝐶𝑜ℎ𝑒𝑛 𝜅 = ଶ (்௉∗்ேିி௉∗ிே)(்௉ାி௉)∗(ி௉ା்ே)ା(்௉ାிே)∗(ிேା்ே)  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  ்௉்௉ାி௉  𝑅𝑒𝑐𝑎𝑙𝑙 =  ்௉்௉ାிே  𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ ௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟  

where TP are the true positives, TN are the true 
negatives, FP are the false positives and FN are the 
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false negatives. The Cohen kappa score was used 
because our classes (EA, IA and SLA) were 
unbalanced. The Cohen kappa score values ranged 
from -1 (worst) to +1 (best). The Precision, Recall, 
and F1-score values ranged from 0 (worst) and 1 
(best). 

3 RESULTS 

3.1 EA vs IA Classification 

We started our analysis from the downsampled and 
segmented 9674 samples (8357 EA + 1318 IA) and 
applied the HCTSA toolbox on them to extract 4476 
meaningful features (Full Feature Set). Then, starting 
with the full feature set we followed the 
“Dimensionality Reduction” pipeline depicted in 
figure 5 and described in section 2.2.2. In every step 
of this pipeline, we evaluated the performances of all 
nine classifiers to determine how much of the 
performance will be lost as the feature space is 
reduced. The performances of all nine classifiers 
tested against the Full Feature Set are summarized in 
Table 2. We then calculated the correlation score of 
each feature in the full feature set, compared it to the 
ρ criterion (see section 2.2.2 for details) and kept only 
those features whose correlation score was lower than 
ρ. We tried different values for ρ (ρ = 0.8 or ρ = 0.9). 
We kept ρ = 0.9 because it gave the best Cohen kappa 
scores when only an RF was tested against the derived 
number of features (1933 features). These 1933 
features constituted the Uncorrelated Feature Set. 
We tested the performances of our classifiers 
including the RF one on the Uncorrelated Feature Set 
and found that SVMpol of the 2nd degree had the best 
Cohen kappa score (see Table 3). In the next step and 
to further reduce the feature space we employed the 
RF with a criterion method (we kept those features 
with score greater than 6*mean importance score = 
0.0031) on the uncorrelated feature set to find the 62 
most important features (Selected Features Set). We 
tested once again the performances of our classifiers 
on the Selected Features Set. The SVMrbf displayed 
the best performance (Cohen kappa score = 0.98, 
precision = 0.9893, recall = 0.9893, F1-score = 
0.9893) (see Table 4). Finally, the RFECV method 
was employed to find the optimum feature set (RFE 
Feature Set). RFECV resulted in 31 optimum 
features. Once more we tested performances of our 
classifiers on this feature set and found that the best 
performance was SVMrbf (Cohen kappa score = 
0.9871, precision = 0.9951, recall = 0.9920, F1-score 
= 0.9936) (see Table 5). 

Table 2: Classifiers’ performances on the full feature set 
(4476 features). 

Classifier Cohen 
kappa 

Precision Recall F1-
score 

SVMlin 0.959 0.9833 0.9758 0.9795 
SVMpol 

2nd degree 
0.9678 0.9861 0.9817 0.9839 

SVMpol 
3rd degree 

0.9657 0.9841 0.9814 0.9828 

SVMpol 
4th degree 

0.9657 0.9843 0.9814 0.9828 

SVMpol 
5th degree 

0.9613 0.9836 0.9777 0.9806 

SVMrbf - - - - 
RF 0.9316 0.9658 0.9658 0.9658 

kNN 0.9027 0.9564 0.9465 0.9513 
DT 0.9056 0.9542 0.9514 0.9528 

Table 3: Classifiers’ performances on the uncorrelated 
feature set (1933 features). 

Classifier Cohen 
kappa 

Precision Recall F1-
score 

SVMlin 0.9461 0.9768 0.9694 0.9731 
SVMpol 

2nd degree 
0.9590 0.9833 0.9758 0.9795 

SVMpol 
3rd degree 

0.9611 0.9851 0.9761 0.9806 

SVMpol 
4th degree 

0.9568 0.9829 0.974 0.9784 

SVMpol 
5th degree 

0.9524 0.9823 0.9703 0.9762 

SVMrbf - - - - 
RF 0.9275 0.9769 0.9516 0.9638 

kNN 0.9105 0.9649 0.9462 0.9553 
DT 0.8460 0.9230 0.9230 0.9230 

Table 4: Classifiers’ performances on the selected feature 
set (62 features). 

Classifier Cohen 
kappa 

Precision Recall F1-
score 

SVMlin 0.9202 0.9637 0.9566 0.9601 
SVMpol 

2nd degree 
0.9367 0.9783 0.959 0.9684 

SVMpol 
3rd degree 

0.9674 0.9772 0.9801 0.9787 

SVMpol 
4th degree 

0.9617 0.9780 0.9838 0.9809 

SVMpol 
5th degree 

0.9660 0.9801 0.986 0.983 

SVMrbf 0.9786 0.9893 0.9893 0.9893 
RF 0.9654 0.9888 0.9767 0.9827 

kNN 0.9491 0.9703 0.9789 0.9746 
DT 0.8736 0.9375 0.9361 0.9368 
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Table 5: Classifiers’ performances on the RFE feature set 
(31 features). 

Classifier Cohen 
kappa 

Precision Recall F1-
score 

SVMlin 0.9295 0.9641 0.9655 0.9648 
SVMpol 

2nd degree 
0.8890 0.9628 0.9281 0.9445 

SVMpol 
3rd degree 

0.9638 0.9797 0.9841 0.9819 

SVMpol 
4th degree 

0.9700 0.9865 0.9835 0.985 

SVMpol 
5th degree 

0.9677 0.9876 0.9801 0.9838 

SVMrbf 0.9871 0.9951 0.9920 0.9936 
RF 0.9740 0.9932 0.9810 0.9870 

kNN 0.9680 0.9832 0.9847 0.9840 
DT 0.8954 0.9470 0.9484 0.9477 

 
Figure 6: Importance scores of all 22 features in the RFE 
feature set. See appendix for description of each feature 
code. 

Figure 6 depicts the importance scores of the 22 out 
of the 31 features from the RFE feature set. See 
Appendix for detailed description of each coded 
feature in Fig. 6. The bottom feature has the highest 
importance score value (IS > 0.1). We then  
 

Table 6: Classifiers’ Cohen kappa scores on the RFE 
feature set for different IS values. IS: importance score. 

Classifier Cohen kappa score 
IS > 0.02  

(22 features) 
IS > 0.03  

(12 features) 
IS > 0.04  

(6 features) 
IS > 0.05 

(4 features)
SVMlin 0.9146 0.8597 0.7361 0.6113 
SVMpol 

2nd degree 
0.9328 0.9128 0.8348 0.6015 

SVMpol 
3rd degree 

0.9722 0.9442 0.8780 0.6078 

SVMpol 
4th degree 

0.9722 0.9464 0.8941 0.6031 

SVMpol 
5th degree 

0.9659 0.9440 0.9064 0.5908 

SVMrbf 0.9914 0.9525 0.9073 0.6300 
RF 0.9761 0.9566 0.9241 0.7518 

kNN 0.9724 0.9534 0.9059 0.7202 
DT 0.9033 0.9028 0.9059 0.6932 

investigated combinations of these features to see if 
we can improve the performances of our classifiers 
and to also assess when their performances worsen as 
feature space is further reduced. These results (Table 
6) reveal that almost all classifiers’ performances 
improved (compare values in Tables 5 and 6). 
SVMrbf had an almost perfect Cohen kappa score 
(0.9914) for 22 features. For smaller number of 
features all classifiers’ Cohen kappa scores 
progressively became worse (see Table 6). 

3.2 IA vs SLA Classification 

For the binary classification of IA vs SLA, we started 
our analysis from the downsampled and segmented 
10190 samples (8872 SLA + 1318 IA) and applied the 
HCTSA toolbox on them to extract 4476 meaningful 
features (Full Feature Set). We followed the 
“Dimensionality Reduction” pipeline depicted in 
figure 5 and described in section 2.2.2. In every step 
of this pipeline, we evaluated the performances of our 
nine classifiers to determine how they were affected 
as the feature space was reduced. The classifiers’ 
performances on the Full Feature Set are summarized 
in Table 7. As before we then calculated the 
correlation score of each feature in the Full Feature 
Set, compared it to the ρ criterion (see section 2.2.2 
for details) and kept only those features whose 
correlation score was lower than ρ. We tried different 
values for ρ (0.8 and 0.9) and kept ρ = 0.9 because it 
gave the best Cohen kappa scores when only an RF 
was tested against the derived number of features 
(1944 features). These 1944 features constituted the 
Uncorrelated Feature Set. We tested the 
performances of our classifiers including the RF one 
on this reduced set and found that SVMpol of the 5th 
degree had the best Cohen kappa score (see Table 8). 
Next, we employed the RF with a criterion method 
(kept as before those features with score greater than 
6*mean importance score = 0.0031) on the 
Uncorrelated Feature Set to find the 40 most 
important features (Selected Features Set). We tested 
once again the performances of our classifiers on the 
Selected Features Set. The SVMrbf had the best 
performance (Cohen kappa score = 0.9217, precision 
= 0.9849, recall = 0.9399, F1-score = 0.9608) (see 
Table 9). Finally, the RFECV method was employed 
to find the optimum feature set (RFE Feature Set). 
RFECV resulted in 27 optimum features. We tested 
again the performances of the nine classifiers on this 
feature set and found that the best performance was 
still SVMrbf (see Table 10). 
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Table 7: Classifiers’ performances on the full feature set 
(4476 features). 

Classifier Cohen 
kappa 

Precision Recall F1-
score 

SVMlin 0.7675 0.8991 0.8699 0.8837 
SVMpol 

2nd degree 
0.8003 0.9227 0.8807 0.9001 

SVMpol 
3rd degree 

0.8112 0.9293 0.8852 0.9056 

SVMpol 
4th degree 

0.8298 0.9373 0.8953 0.9148 

SVMpol 
5th degree 

0.8253 0.935 0.8932 0.9226 

SVMrbf - - - - 
RF 0.8157 0.9702 0.86 0.9076 

kNN 0.7649 0.8985 0.8680 0.8824 
DT 0.7379 0.8713 0.8666 0.8690 

Table 8: Classifiers’ performances on the uncorrelated 
feature set (1944 features). 

Classifier Cohen 
kappa 

Precision Recall F1-
score 

SVMlin 0.7222 0.8770 0.8470 0.8611 
SVMpol 

2nd degree 
0.7573 0.9007 0.8596 0.8796 

SVMpol 
3rd degree 

0.7524 0.9082 0.8502 0.876 

SVMpol 
4th degree 

0.7760 0.9193 0.8625 0.8879 

SVMpol 
5th degree 

0.7837 0.9271 0.8636 0.8917 

SVMrbf - - - - 
RF 0.7663 0.9697 0.8291 0.8826 

kNN 0.7751 0.8852 0.89 0.8876 
DT 0.7369 0.8852 0.8736 0.8684 

Table 9: Classifiers’ performances on the selected feature 
set (40 features). 

Classifier Cohen 
kappa 

Precision Recall F1-
score 

SVMlin 0.7503 0.9019 0.8528 0.8750 
SVMpol 

2nd degree 
0.9145 0.9704 0.945 0.9572 

SVMpol 
3rd degree 

0.9089 0.9619 0.9473 0.9545 

SVMpol 
4th degree 

0.9133 0.9641 0.9495 0.9566 

SVMpol 
5th degree 

0.9147 0.9689 0.9466 0.9574 

SVMrbf 0.9217 0.9849 0.9399 0.9608 
RF 0.9154 0.9788 0.9390 0.9577 

kNN 0.8905 0.9573 0.9341 0.9453 
DT 0.7942 0.9078 0.8871 0.8971 

Table 10: Classifiers’ performances on the RFE feature set 
(27 features). 

Classifier Cohen 
kappa 

Precision Recall F1-
score 

SVMlin 0.6773 0.8853 0.8046 0.8383
SVMpol 

2nd degree
0.9219 0.9685 0.9537 0.961 

SVMpol 
3rd degree

0.9158 0.9631 0.9529 0.9579 

SVMpol 
4th degree

0.9206 0.9625 0.9582 0.9603 

SVMpol 
5th degree

0.9203 0.9639 0.9566 0.9602 

SVMrbf 0.9565 0.9878 0.9692 0.9782 
RF 0.9227 0.9781 0.9462 0.9614

kNN 0.9209 0.9746 0.9475 0.9605
DT 0.7981 0.9016 0.8965 0.899

Figure 8 depicts the importance scores of all 27 
features from the RFE Feature Set. See Appendix for 
detailed description of each coded feature in Fig. 8. 
The bottom feature has the highest importance score. 
We investigated combinations of these features to see 
if we can further improve the classification 
performance of our classifiers and also when their 
 

 
Figure 8: Importance scores of all 27 features in the RFE 
feature set. See appendix for description of each feature 
code. 

Table 11: Classifiers’ Cohen kappa scores on the RFE 
feature set for different IS values. IS: importance score. 

Classifier Cohen kappa score 
IS > 0.02 

(27 features)
IS > 0.03  

(9 features) 
IS > 0.04  

(4 features) 
IS > 0.05 

(2 features)
SVMlin 0.6773 0.2969 - -
SVMpol 

2nd degree
0.9219 0.8457 0.3829 - 

SVMpol 
3rd degree

0.9158 0.8730 0.3565 0.1438 

SVMpol 
4th degree

0.9206 0.8932 0.4522 0.2079 

SVMpol 
5th degree

0.9204 0.8856 0.4860 0.2963 

SVMrbf 0.9565 0.9080 0.7410 0.6523
RF 0.9227 0.9054 0.7749 0.6036

kNN 0.9209 0.8942 0.7258 0.6572 
DT 0.7981 0.8227 0.7491 0.5969
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performance worsen as feature space is further 
reduced. These results are depicted in Table 11. As the 
number of features decreased all classifiers’ Cohen 
kappa score progressively become worse. kNN had the 
best score (0.6572) with only two features. 

4 DISCUSSION 

Our study has produced several interesting results 
concerning the usefulness of time series analysis and 
ML in LFP based epileptology. Most importantly it 
showed that discriminating endogenous (pre-ictal) 
activity from interictal activity is more successful 
(and easier) than discriminating interictal from 
seizure-like (ictal) activity. This result confirms past 
research findings (Fischer, 2014). By using feature 
extraction methods from the time, frequency, time-
frequency and chaotic domains and standard (single 
and ensemble) ML methods such as kNN, RF, SVM, 
and DT we achieved an over 0.9 Cohen kappa score 
and an over 0.95 precision and recall scores when the 
Full Feature Set (4476 features) was used in the EA 
vs IA discrimination task. As the feature space was 
reduced (4476 to 22) the discriminability of the ML 
classifiers changed. The classifier with the best 
performance was SVMrbf (Cohen kappa score = 
0.9914), whereas the classifier with the worst 
performance was DT (Cohen kappa score = 0.9033). 
The average Cohen kappa score was 0.96. Out of the 
22 most important features, the feature with the 
highest importance score (IS ~ 0.12) was the ratio of 
autocorrelation (using lag = 2) of the transformed 
time series over the original time series when 5% of 
time points closest to the mean were removed. When 
only the first 4 features with the highest importance 
scores (A1-A4 in Fig. 6) were used, then the 
discriminability of the classifiers ranged from 0.59-
0.75 (Average Cohen kappa score = 0.6455). 
Addition of just two more features (4 to 6) increased 
the performances of the classifiers by 23% on average 
(Average Cohen kappa score = 0.8769). Addition of 
6 more features (6 to 12) increased the performances 
of the classifiers by only 5% (Average Cohen kappa 
score = 0.9302). 

In the interictal vs seizure-like (ictal) activity 
discrimination task the landscape was different. As 
before using feature extraction methods from the 
time, frequency, time-frequency and chaotic domains 
and the same ML methods we achieved an over 0.73 
Cohen kappa score, an over 0.87 precision score, and 
an over 0.86 recall score when the Full Feature Set 
(4476 features) was used. As the feature space was 
reduced (4476 to 27) the discriminability of the ML 

classifiers changed. The classifier with the best 
performance was once again the SVMrbf (Cohen 
kappa score = 0.9565), whereas the classifier with the 
worst performance was SVMlin (Cohen kappa score = 
0.6773). The average Cohen kappa score was 0.88. Out 
of the 27 most important features, the feature with the 
highest importance score (IS > 0.19) was the mean 
power spectrum density. When only the first 2 features 
with the highest importance scores (A1-A2 in Fig. 8) 
were used, then the discriminability of the classifiers 
ranged from 0.14-0.65 (Average Cohen kappa score = 
0.45). Addition of just two more features (2 to 4) 
increased the performances of the classifiers by 13% 
on average (Average Cohen kappa score = 0.58). 
Addition of 5 more features (4 to 9) the inverse effect 
to EA vs IA was seen: the average performance of the 
classifiers increased by an additional 23% (Average 
Cohen kappa score = 0.8103). 

From these results it is evident that even though in 
both discrimination tasks the first feature had a much 
higher importance score than other features in the set 
(see Figs 6 and 8), on each own it was not enough to 
discriminate the pre-ictal (endogenous) from the 
interictal, and the interictal from the ictal (seizure-
like) events. The performances of the classifiers on 
average were poor (not shown here). Thus, the 
discrimination ability of the classifiers depends on the 
cumulative effect of the features, and not on the 
individual effect of each feature. It is yet to be 
determined whether this cumulative effect is additive 
or multiplicative. 

5 CONCLUSIONS 

A novel algorithmic pipeline was successfully 
applied to LFP recordings from layers II/III of the 
primary somatosensory cortex of young mice to 
discriminate with high accuracy the endogenous 
(preictal), interictal and seizure-like (ictal) activity 
events using time series analysis and ML modelling. 
Over 4000 features were successfully extracted using 
over 7700 operations applied to the LFPs. The high 
dimensionality of the feature space was then reduced 
via an iterative process of correlation analysis and 
RF-RFECV to only 22 features for the EA vs IA 
discrimination case and to 27 features for the IA vs 
SLA one. ML algorithms were then applied to these 
reduced feature sets and a radial basis function SVM 
with a Gaussian kernel has been discovered to 
discriminate with a 0.99 Cohen kappa score the EA 
from IA and with a 0.9565 Cohen kappa the IA and 
SLA. Our preliminary results show that ML 
application in intracortical LFPs may be a promising 
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research avenue for accurate seizure detection and 
prediction in focal epilepsy. 
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APPENDIX 

All Matlab functions used to extract the features 
described below are from the HCTSA time series 
toolbox (Fulcher et al., 2013, 2017). 
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EA vs IA Classification 
 

A1: How time-series properties change as 5% of time 
points are removed. The time points being removed 
are those that are the closest to the mean. The ratio of 
autocorrelation (using lag = 2) of the transformed 
time series over the original time series is the 
extracted feature. The DN_RemovePoints.m function 
was used to extract this feature. 
 

A2: Fitting an AutoRegressive (AR) model to the 
input time series. The range of the order of the fitted 
model is [1, 8] and the optimum model order is being 
chosen using Schwartz's Bayesian Criterion (SBC). 
Eigendecomposition of the AR model is being 
performed in order to compute the maximum of the 
real part of eigenmodes. To extract this feature the 
MF.arfir.m function was used with ‘pmin’, ‘pmax’, 
and ‘selector’ (criterion to select optimal time series 
model order) input arguments set to ‘1’, ‘8’, and 
‘SBC’, respectively. 
 

A3: Same as A1, but at the proportion of points 
closest to the mean removed was set to 8%. 
 

A4: Fits an AR model to 25 segments of length equal 
to 10% of the input time series. The standard 
deviation (std) of the optimal AR model order is the 
extracted feature. The MF_FitSubsegments.m 
function was used to extract this feature. 
 

A5: Same as A4, but the extracted feature is the mean 
of the optimal AR model order. 
 

A6: AutoMutual information between the original 
time-series and their respective delayed version 
(delayed by 10 samples). The Gaussian estimation 
method was used for the computation while the 
maximum time delay to investigate equals to 20 
samples. The IN_AutoMutualInfoStats.m function 
was used to extract this feature. 
 

A7: Interquartile range is defined as the spread of the 
middle half of the distribution of the time-series. The 
iqr.m function was used to extract this feature. 
 

A8: The power spectrum of the input time-series is 
being computed using the Welch’s method with 
rectangular windows. A robust linear regression is 
then performed using the logarithmic versions of the 
frequencies and the acquired power spectrum. The 
extracted feature is the gradient of the linear fit using 
the SP_Summaries.m function. 
 

A9: The AutoMutual information between the 
original time-series and their respective delayed 
version (delayed by 5 samples) is the extracted 
feature. The Kraskov estimation method was used for 
the computation while the maximum time delay was 

20 samples. The IN_AutoMutualInfoStats.m function 
was used to extract this feature. 
 

A10: Coarse-grains the time series, turning it into a 
sequence of symbols of a given alphabet of size 
equals to 3. Quantifies measures of 
surprise/information gain of a process with local 
memory of the past memory values of the symbolic 
string. Uses a memory of 50 samples and repeats over 
500 random samples. The mean amount of 
information over these 500 iterations is the extracted 
feature A10. The FC_Surprise.m function was used to 
extract this feature. 
 

A11: An exponential function, f(x) = A*exp(bx), is 
fitted to the variation across the first 10 successive 
derivatives of the signal. The extracted feature is 
parameter A of the above fitted exponential function. 
The SY_StdNthDerChange.m was used to extract this 
feature. 
 

A12: The AutoMutual information between the 
original time-series and their respective delayed 
version (delayed by 5 samples) is this extracted 
feature. Gaussian estimation method was used for the 
computation while the maximum time delay was set 
to 20 samples. The IN_AutoMutualInfoStats.m 
function was used to extract this feature. 
 

A13: Same as A2 the Eigendecomposition of the AR 
model is being performed in order to compute the 
maximum of the imaginary part of the eigenmodes. 
 

A14: Implements fluctuation analysis using a 
detrended RMS method (Talkner and Weber, 2000). 
It first segments the input time-series into parts of log-
spaced lengths, then removes a polynomial trend of 
order 3 in each segment. The average RMS over 
different segment lengths is being computed along 
with a linear fit between log-scales and log-RMS. The 
mean squares residual of the fit is the extracted 
feature. The SC_FluctAnal.m function is used to 
extract this feature from the input time series. 
 

A15: Input time-series is divided into 5 segments 
with 50% overlap. The distribution entropy of each 
segment is being computed using a kernel-smoothed 
distribution. The mean of these entropies is the 
extracted feature. The SY_SlidingWindow.m function 
was used to extract this feature. 
 

A16: measures the standard deviation of the first 
derivative of the input time-series multiplied by a 
constant value. The MD_rawHRVmeas.m function 
was used to extract this feature. 
 

A17: The AutoMutual information between the 
original time-series and their respective delayed 

Machine Learning Algorithms for Mouse LFP Data Classification in Epilepsy

45



version (delayed by 1 samples) is the extracted 
feature. Gaussian estimation method was used for the 
computation while the maximum time delay was 20 
samples. The IN_AutoMutualInfoStats.m function 
was used to extract this feature. 
 

A18: Simulates a hypothetical walker moving 
through the time domain. The walker moves as if it 
has a mass and inertia from the previous time step and 
the time series acts as a force altering its motion in a 
classical Newtonian dynamics framework. The sum 
of the absolute distances between the original time-
series and the hypothetical walker is the extracted 
feature. The PH_Walker.m function was used to 
extract this feature. 
 

A19: The mean AutoMutual information over the 
span of 1 to 20 delay times between the original time-
series and their respective delayed version is the 
extracted feature. The Kraskov estimation method 
was used for this calculation. The 
IN_AutoMutualInfoStats.m function was used to 
extract this feature. 
 

A20: The power spectrum of the input time-series is 
being computed, using Periodogram method with 
hamming windows. The extracted feature is the 
frequency at which the cumulative sum of the Power 
Spectrum Density reaches 25% of the maximum 
value. The SP_Summaries.m function was used to 
extract this feature. 
 

A21: Same as A10 but with alphabet size equal to 2. 
 

A22: Couples the values of the time series to a 
dynamical system. The input time series forces a 
simulated particle in a quartic double-well potential. 
The time series contributes to a forcing term on the 
simulated particle. The autocorrelation of the position 
of the particle is calculated and the first zero-crossing 
of the autocorrelation function is the extracted feature. 
The PH_ForcePotential.m function is used to extract 
this feature. 
 
IA vs SLA Classification 
 

B1: The power spectrum of the input time-series is 
being computed using the Welch’s method with 
rectangular windows. The extracted feature is the 
mean Power Spectrum Density across windows. The 
SP_Summaries.m function was used to extract this 
feature from the time series. 
 

B2: Measures the standard deviation of the first 
derivative of the input time-series multiplied by a 
constant value. The MD_rawHRVmeas.m function 
was used to extract this feature. 
 

B3: First fitting an AR model to the input time series. 
The range of the order of the fitted model is [1, 8] and 
the optimum model order is being chosen using 
Schwartz's Bayesian Criterion. Aikake's final 
prediction error is computed. The minimum value 
divided by the mean of the adjacent points is the 
extracted feature. To extract this feature the 
MF.arfir.m function was used. 
 

B4: A hypothetical walker was simulated moving 
through the time domain. The walker moved as if it 
had a mass equaled to 5 a.u. and inertia from the 
previous time step and the time series acted as a force 
altering its motion in a classical Newtonian dynamics 
framework. The autocorrelation of the residuals 
between the walker and the actual time-series was the 
extracted feature. The PH_Walker.m function was 
used to extract this feature. 
 

B5: Same as A13. 
 

B6: Same as A6. 
 

B7: The AutoMutual information between the 
original time-series and their respective delayed 
version (delayed by 6 samples) is the extracted 
feature. The Gaussian estimation method was used 
for the calculation, while the maximum time delay 
was 20 samples. The IN_AutoMutualInfoStats.m 
function was used to extract this feature. 
 

B8: Simple local linear predictors using the past two 
values of the time series to predict its next value. The 
autocorrelation of the residuals between the actual 
time-series and the predictions is the extracted feature. 
The FC_LocalSimple.m function was used to extract 
this feature. 
 

B9: The AutoMutual information between the 
original time-series and their respective delayed 
version (delayed by 16 samples) was the extracted 
feature. The Gaussian estimation method was used 
for the calculation, while the maximum time delay 
was 20 samples. The IN_AutoMutualInfoStats.m 
function was used to extract this feature. 
 

B10: How time-series properties change as 1% of 
time points are removed. The time points being 
saturated are those that are the furthest from the mean. 
The ratio of autocorrelation (using lag = 1) of the 
transformed time series over the original time series 
is the extracted feature. The DN_RemovePoints.m 
function was used to extract this feature. 
 

B11: The AutoMutual information between the 
original time-series and their respective delayed 
version (delayed by 19 samples) is the extracted 
feature. The Gaussian estimation method was used 

BIOSIGNALS 2023 - 16th International Conference on Bio-inspired Systems and Signal Processing

46



for the calculation, while the maximum time delay 
was 20 samples. The IN_AutoMutualInfoStats.m 
function was used to extract this feature. 
 

B12: The AutoMutual information between the 
original time-series and their respective delayed 
version (delayed by 11 samples) is the extracted 
feature. The Gaussian estimation method was used 
for the calculation, while the maximum time delay 
was 20 samples. The IN_AutoMutualInfoStats.m 
function was used to extract this feature. 
 

B13: The minimum value of the input time-series. 
 

B14: Calculates a normalized nonlinear 
autocorrelation function. Then the time lag at which 
the first minimum of the automutual information 
occurred was calculated. The CO_trev.m function was 
used to extract this feature. 
 

B15: Embeds the (z-scored) time series in a two-
dimensional time-delay embedding space with time-
delay equals to 3 and estimates the autocorrelation 
function. The first zero-crossing of the 
autocorrelation function is the extracted feature. The 
CD_Embed2.m function was used to extract this 
feature. 
 

B16: An exponential function, f(x) = A*exp(bx), is 
fitted to the variation across the first 10 successive 
derivatives. The parameter b is the extracted feature. 
The SY_StdNthDerChange.m was used to extract this 
feature. 
 

B17: Generates 100 surrogate time series and tests 
them against the original time series according to 
some test statistics: T_{rev}, using TSTOOL code 
trev. The standard deviation of the times of the first 
minimum of the mutual information is the extracted 
feature. The SD_TSTL_surrogates.m function was 
used to extract this feature. 
 

B18: The root mean squared error of predictions 
using different local window lengths ranging from 1 
to 9 samples. The SD_LoopLocalSimple.m function 
was used to extract this feature. 
 

B19: Calculates the autocorrelation of the residuals 
between the prediction and the actual time-series 
using different local window lengths ranging from 1 
to 9 samples. The mean autocorrelation score across 
different window lengths is the extracted feature. The 
SD_LoopLocalSimple.m function was used to extract 
this feature. 
 

B20: Finds maximums and minimums within 50-
sample segments of the time series and analyses the 
results. The standard deviation of the local minimums 
is the extracted feature. The function 

ST_LocalExtrema.m was used to extract this feature 
from the time series. 
 

B21: Finds maximums and minimums within 50 
segments of the time series. The proportion of zero-
crossings of the local extrema is the extracted feature. 
The function ST_LocalExtrema.m was used to extract 
this feature from the time series. 
 

B22: The root mean squared value of the input time-
series is the extracted feature. The function rms.m was 
used to extract this feature. 
 

B23: The AutoMutual information between the 
original time-series and their respective delayed 
version (delayed by 7 samples) is the extracted 
feature. The Gaussian estimation method was used 
for the calculation, while the maximum time delay 
was 20 samples. The IN_AutoMutualInfoStats.m 
function was used to extract this feature. 
 

B24: Simulates a hypothetical walker moving 
through the time domain. The walker moves as if it 
has a mass equal to 2 a.u. and inertia from the 
previous time step and the time series acts as a force 
altering its motion in a classical Newtonian dynamics 
framework. The autocorrelation of the residuals 
between the walker and the actual time-series is the 
extracted feature. The PH_Walker.m function was 
used to extract this feature. 
 

B25: How time-series properties change as 1% of 
time points are removed. The time points being 
saturated are those that are the furthest from the mean. 
The difference between the autocorrelation (using lag 
= 3) of the transformed time series and the 
autocorrelation of the original time series is the 
extracted feature. To extract this feature the 
DN_RemovePoints.m function was used. 
 

B26: Simulates a hypothetical walker moving 
through the time domain. The walker moves as if it 
has a mass equal to 2 a.u. and inertia from the 
previous time step and the time series acts as a force 
altering its motion in a classical Newtonian dynamics 
framework. The autocorrelation of the walker divided 
by the autocorrelation of the actual time-series is the 
extracted feature. The PH_Walker.m function was 
used to extract this feature. 
 

B27: Fitting an AR model to the input time series. The 
range of the order of the fitted model is [1, 8] and the 
optimum model order is being chosen using 
Schwartz's Bayesian Criterion. Then it computes the 
margins of error Aerr such that (A ± Aerr) are 
approximate 95% confidence intervals. The 
minimum error margin is the extracted feature. To 
extract this feature the MF.arfir.m function was used. 
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