
Rainfuzz: Reinforcement-Learning Driven Heat-Maps for Boosting
Coverage-Guided Fuzzing

Lorenzo Binosi a, Luca Rullo, Mario Polino b, Michele Carminati c and Stefano Zanero d

Politecnico di Milano, Milan, Italy

Keywords: Fuzzing, Heat-Maps, Reinforcement-Learning.

Abstract: Fuzzing is a dynamic analysis technique that repeatedly executes the target program with many different inputs
to trigger abnormal behavior, such as a crash. One of the most successful techniques consists in generating
inputs to increase code-coverage by using a mutational approach: this type of fuzzers maintains a population
of inputs, they perform mutations on the inputs in the current population, and they add mutated inputs to the
population if they discover new code-coverage in the target program. Researchers are continuously looking
for techniques to increment the efficiency of fuzzers; one of these techniques consists in generating heat-maps
for targeting specific bytes during the mutation of the input, as not all bytes might be useful for controlling
the program’s workflow. We propose the first approach in the literature that uses reinforcement learning
for building heat-maps, by formalizing the problem of choosing the position to be mutated within the input
as a reinforcement-learning problem. We model the policy by means of a neural network, and we train it
by using Proximal Policy Optimization (PPO). We implement our approach in Rainfuzz, and we show the
effectiveness of its heat-maps by comparing Rainfuzz against an equivalent fuzzer that performs mutations
at random positions. We achieve the best performance by running AFL++ and Rainfuzz in parallel (in a
collaborative fuzzing setting), outperforming a setting where we run two AFL++ instances in parallel.

1 INTRODUCTION

In a world where technology plays such a signifi-
cant role, by influencing many aspects of our lives,
it is extremely important to rely on secure software.
Software vulnerabilities are what make software inse-
cure, by making it possible for an attacker to violate
CIA (Confidentiality, Integrity, Availability). When-
ever new software is developed or existing software
is changed, it is reasonable to consider that software
vulnerabilities are introduced as well. For this reason,
security best practices are usually inserted in the soft-
ware development life cycle. One of the most popular
and promising practices to address vulnerability de-
tection is fuzzing. Fuzzing consists in repeatedly ex-
ecuting the Program Under Test (PUT) by providing
it with many different inputs, with the intent of find-
ing an abnormal behavior (for instance, by causing a
crash). There are many different types of fuzzers (Za-
lewski, 2016), (Fioraldi et al., 2020), (Google, 2016),

a https://orcid.org/0000-0001-7476-0166
b https://orcid.org/0000-0002-0925-2306
c https://orcid.org/0000-0001-8284-6074
d https://orcid.org/0000-0003-4710-5283

(LLVM, 2017). They mainly differ from each other
due to the way they generate new inputs to be tested.
A very popular category is the one of gray-box muta-
tional fuzzers: this class of fuzzers employs a genetic
algorithm to generate increasingly interesting inputs:
they maintain a population of inputs, at each step, they
apply a mutation to one of these inputs, and they use
code-coverage as a fitness function in order to decide
whether to keep the mutated input in the population
or not. AFL (Zalewski, 2016), which is one of the
most popular fuzzers, falls under this category. In
recent years researchers have dedicated a lot of ef-
fort to improving fuzzers’ performance by using ma-
chine learning techniques (Wang et al., 2019b). In
this work, we focus on machine learning techniques
that learn which bytes within the input are more con-
venient to mutate; this process is often referred to in
the literature as creating heat-maps associated to an
input that guide the fuzzer when deciding which po-
sitions within the input to choose for mutation. Two
noteworthy approaches that try to achieve the same
results are reported in (Rajpal et al., 2017) and (She
et al., 2019). Both these approaches use supervised-
learning techniques, and they both need to alternate

Binosi, L., Rullo, L., Polino, M., Carminati, M. and Zanero, S.
Rainfuzz: Reinforcement-Learning Driven Heat-Maps for Boosting Coverage-Guided Fuzzing.
DOI: 10.5220/0011625300003411
In Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2023), pages 39-50
ISBN: 978-989-758-626-2; ISSN: 2184-4313
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

39

phases of training with phases of fuzzing, introducing
significant overhead.

The approach explored in this work is the first at-
tempt in the literature to use reinforcement learning to
build heat-maps. We model the problem of choosing
the next byte to mutate as a reinforcement learning
problem, where states are inputs to be mutated, and
actions consist in choosing a position to perform a se-
ries of mutations. The RL agent receives an higher
reward the higher the effectiveness of the mutations
performed at the position it chooses.

We implement our approach by means of Rain-
fuzz: a fuzzer built on top of AFL++ (Fioraldi et al.,
2020) guided by a reinforcement learning module for
its mutation strategy.

Overall, the main contributions of this work are:
• The first fuzzing approach guided by reinforce-

ment learning heat-maps.
• We overcome the issue of alternating fuzzing and

training phases, which are present in state-of-the-
art approaches for building heat-maps.

• We provide evidence that the reinforcement learn-
ing policy outperforms the random policy; this is
a great theoretical result, and it sets the stage for
future research in building heat-maps using the
same reinforcement learning formalization.

• We also show that running Rainfuzz and AFL++
in parallel (in a collaborative fuzzing setting)
achieves better results than running two AFL++
instances in parallel; this result has direct practi-
cal uses.

2 FUZZING

Fuzzing is a commonly used technique for testing
the reliability and security of software (Manès et al.,
2021). The goal of fuzzing is to uncover software
bugs, such as crashes, by providing a program with
a wide range of different inputs. These bugs often
have the potential to become vulnerabilities in the
software. Over time researchers have developed more
and more advanced methods, giving rise to various
fuzzing techniques.

2.1 Classification

Below a brief summary of how fuzzers can be clas-
sified based on the techniques they use (Chen et al.,
2018).

Mutation-Based vs Generation-Based Fuzzing.
The core feature of fuzzers is to create new inputs to

be fed into the program. In mutation-based fuzzers,
new inputs are generated by taking old inputs and ap-
plying some mutations to them (mutations can be, for
instance, MIN INT, MAX INT, MIN BYTE, MAX BYTE,
bit-flipping, etc.). In generation-based fuzzers, a for-
mal specification of the input format must be pro-
vided, and inputs are generated following the specifi-
cation (for instance, if the specification is provided in
the form of a formal grammar, inputs can be generated
by randomly applying grammar rules). Generation-
based fuzzers are particularly useful when the PUT
parses the input and checks whether it is compliant
with a specific grammar (e.g., program languages and
data formats). In such a case, an input that is not com-
pliant with the grammar would be rejected in the early
stages of the program without exercising a large part
of the program’s code. When using mutation-based
fuzzers in these scenarios, chances are that most of
the inputs created are invalid, while using generation-
based fuzzers, the input is guaranteed to be valid.
The main drawback of generation-based fuzzers is
that a formal specification of the input is not always
provided, and creating it might be really challenging
based on how well the specifications are described in
the program’s documentation.

Black-Box vs White-Box vs Gray-Box Fuzzing.
In black-box fuzzing, the internal logic of the program
is not observed, and mutations are applied blindly
without any kind of feedback. On the opposite, in
white-box fuzzing, the fuzzer observes the internal
logic of the program and uses it to enhance the effi-
ciency of the fuzzing process (for instance, a white-
box fuzzer might use symbolic execution to generate
an input so that a particular branch is taken). Gray-
box fuzzing is a trade-off between the two, which ob-
serves just some aspects of the program execution (for
instance, code-coverage information obtained by us-
ing lightweight code instrumentation).

2.2 AFL

AFL (American Fuzzy Lop) (Zalewski, 2016) is a
gray-box mutation-based fuzzer. AFL uses a genetic
algorithm that keeps a population of inputs (input
corpus), performs various kinds of mutations starting
from inputs in the population, and uses edge-coverage
information generated by the execution of the pro-
gram as a fitness function, to decide whether to add
the mutated input to the population (for future muta-
tion) or not.

To get code-coverage information, it uses a
lightweight instrumentation of the program (which is
what makes AFL gray-box). This simple idea comes

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

40

B1
hits: 4

B3
hits: 3

B2
hits: 1

B4
hits: 3

Figure 1: Control flow graph (CFG) of a small program,
visualizing the block-coverage of an example execution.

from the intuition that an input corpus that covers a
more significant portion of the program’s code is also
more likely to uncover “buggy” portions of the code.
AFL represents a milestone in the history of fuzzers.
It discovered many bugs in various programs and
paved the way for other successful fuzzers that work
around the same idea. AFL is not maintained any-
more; AFL++ (Fioraldi et al., 2020) is a community-
driven fork of AFL that incorporates state-of-the-art
fuzzing research.

2.3 Coverage Metrics

Many metrics can be used to measure the coverage of
the program code; the key idea behind these metrics is
to recognize different program behaviors. This plays
a key role in coverage-guided fuzzing, as it allows to
recognize which inputs exercise a different behavior
in the program (w.r.t. the inputs currently in the cor-
pus).

Ideally, it is possible to trace the whole execution
path: when the program gets executed, keep track
of the history of which basic-block are visited and
in which order (for instance, h = [B1,B3,B2,B1, ...]).
This way, two program executions with different ex-
ecution paths are considered to exercise the program
in a different way. This path-coverage metric allows
to distinguish different program behaviors with very
high sensitivity, but cannot be used in practice: us-
ing this coverage metric in a real-world fuzzer would
make the input corpus grow very large and very fast
(a lot of inputs will be judged interesting and main-
tained because they generate a different execution
path than the ones already seen). On the other ex-
treme, we have block-coverage (Figure 1), a cover-

B1

B3 B2

B4

e1: 3 hits

e2: 3 hits

e3: 1 hits

e4: 3 hits

Figure 2: Control flow graph (CFG) of a small program,
visualizing the edge-coverage of an example execution.

age metric that, for each execution of the program,
counts how many times a certain basic-block is vis-
ited (hit): the output generated by this metric is a map
m = [B1 → c1,B2 → c2, ...,Bn → cn] where Bi is the
i-th block, and ci is the number of times the i-th block
was visited during this program execution.

A trade-off between execution path-coverage and
block-coverage is the edge-coverage (Figure 2); for
a given execution of the program, it keeps track of
the number of hits of a certain edge (edges are the
transitions between basic blocks – in the control flow
graph of the program they are represented as arrows).
The output generated by this metric is a map m =
[e1 → c1,e2 → c2, ...,en → cn] where ei is the i-th
edge, and ci is the number of times the i-th edge was
hit during this program execution. Edge-coverage is
strictly more sensitive than block-coverage, meaning
that: if two program executions have the same edge-
coverage, that implies that they also have the same
block-coverage, but the opposite is not true.

There are many more types of code-coverage
(Wang et al., 2019a), but edge-coverage and block-
coverage are the most popular among state-of-the-art
fuzzers. AFL (and AFL++) use edge-coverage; we
also use edge-coverage within Rainfuzz, both for de-
ciding whether to keep a mutated input in the input-
corpus and to evaluate the effectiveness of a mutation.

3 PROBLEM FORMALIZATION

During fuzzing, the fuzzing engine makes several de-
cisions on the input to be fed to the PUT. For instance,
which input seed should be mutated, and where and

Rainfuzz: Reinforcement-Learning Driven Heat-Maps for Boosting Coverage-Guided Fuzzing

41

how to perform the mutation. State-of-the-art fuzzers’
engines mostly employ random choices: they pick a
random seed from the pool of interesting seeds, and
they perform fixed and random mutations in a ran-
dom portion of the input seed. In this work, we fo-
cus on the choice of where to apply the mutation, and
we formalize the problem as a reinforcement learn-
ing problem. From the point of view of the RL agent,
inputs to be mutated correspond to states; an action
corresponds to choosing a position within the input
and performing a set of mutations using that position
as an offset; the reward corresponds to a numerical
evaluation of the effectiveness of the mutations.

To better understand the rest of this work, we sum-
marize the main concepts of reinforcement learning
(Section 3.1), with a particular focus on the Proximal
Policy Optimization (PPO) technique (Section 3.2)
used by Rainfuzz.

3.1 Reinforcement Learning

Reinforcement learning is a branch of machine learn-
ing. It studies the problem of an agent interacting with
an environment whose objective is to take actions to
maximize their reward over time.

The environment state Se
t is the environment’s in-

ternal representation that it uses to produce the next
reward and observation. The reinforcement learning
problem is usually modeled as a Markov Decision
Process (MDP), which requires that the state of the
environment is fully observable by the agent (obser-
vation = Se

t), and that Se
t is all that the environment

needs to know in order to define what are the next
state and reward when the agent takes an action (inde-
pendently from the history of previous states, actions,
rewards). More formally:

MDP = 〈S,A,P,R,γ,µ〉
• S is a set of states.
• A is a set of actions.
• P is a state transition probability matrix (|S|∗|A|×
|S|), where each element pa

s,s′ is the probability to
go from state s to s′ when taking action a.

• R is a reward function: R(s,a) =“average reward
when taking action a in state s”.

• γ is the discount factor (γ ∈ [0,1]); it is used to
compute the cumulative discounted reward, de-
fined as : V = ∑

∞
t=0 γt−1rt .

• µ is a vector of probabilities, where each element
µs is the probability that the initial state is s.

At each time-step t the environment will be in state
st ∈ S, the agent will pick an action at ∈ A avail-
able in state st , the environment will return the reward

rt = R(st ,at) and the environment will perform a state
transition from st to st+1 according to the state tran-
sition probability matrix P. The episode ends when
the state is terminal (a state without available actions);
episodes are not required to end: there might be infi-
nite episodes. The agent chooses their actions accord-
ing to a policy π; More formally, π(a|s) is the proba-
bility of taking action a when we are in state s.

3.1.1 Solving the RL Problem

The goal of the agent is to act following a policy that
maximizes its reward. When we have full knowl-
edge about the MDP, we can compute a determinis-
tic optimal policy (which is guaranteed to exist for
all MDPs). When the characteristics of the MDP are
unknown (or the size of the model makes it compu-
tationally unfeasible), the agent must learn the policy
by interacting with the environment directly (model-
free methods). Some model-free methods are Monte
Carlo control, SARSA, Q-Learning and policy gradi-
ents.

3.1.2 Policy Gradient Methods

Policy gradients are a class of model-free methods
that allows using a policy approximation as a function
in the state’s features and improving it as the agent
gathers more information by interacting with the envi-
ronment (Mnih et al., 2016), (Schulman et al., 2015),
(Lillicrap et al., 2016), (Barth-Maron et al., 2018).
These methods are based on the policy gradient theo-
rem, which allows to differentiate the expected cumu-
lative reward w.r.t. the policy parameters; this allows,
for example, to compute the gradient and use it for
stochastic gradient ascent.

3.2 Proximal Policy Optimization

The policy gradient theorem can be used directly to
estimate the gradient of the expected reward and per-
form stochastic gradient ascent. Over time, more ad-
vanced objective functions have been developed to
improve the learning process’s performance.

PPO (Schulman et al., 2017) is a state-of-the-art
family of policy gradient methods. It uses different
objective functions designed to overcome some draw-
backs of previous approaches. The objective function
we use in this work is the clipped surrogate objective,
proposed in the original PPO paper, with the addition
of an entropy term; following its definition:

LCLIP+S(θ) =
Et [Rt ∗min(rt(θ),clip(rt(θ),1−ε,1+ε))+T ∗S[πθ]]

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

42

where:

• Rt is the reward of episode t.

• rt(θ) =
πθ(at |st)

πθold (at |st)
is the probability ratio.

• S[πθ] is the entropy of the modelled policy.

• ε is the clip param (an hyper-parameter).

• T is the temperature (an hyper-parameter).

Let’s give an intuition of the role of each term: keep-
ing in mind that our goal is to make our policy more
likely to take high-reward functions, what we want
to maximize is E[R ∗πθ(a|s)] (where the expectation
is over the possible states). In order to estimate this
expected value, we sample experience by following
the policy itself (on-policy learning). We want to take
into consideration the probability of what action is
taken in order to add stability to the learning process;
to reach this goal, we use a technique called impor-
tance sampling, and the expectation becomes:

Et [Rt ∗ πθ(at |st)
πθold (at |st)

] = Et [Rt ∗ rt(θ)].

PPO uses min(rt(θ),clip(rt(θ),1− ε,1+ ε)) instead
of using rt(θ) directly: This inhibits the effect of
those update steps that would make the new policy
too far away from the old policy, with the goal to
avoid performing destructive updates that might force
the policy to sub-optimal behaviors: since the policy
being learned is the same used for sampling experi-
ence, once the policy becomes too bad, it is impos-
sible to recover from it. This is why it is important
to proceed with caution and avoid greedily perform-
ing very large update steps. The clip param (ε) is the
hyper-parameter that allows defining how far the new
policy is allowed to be with respect to the old pol-
icy. T ∗ S[πθ] is an entropy term used to encourage
more stochastic policies. This allows us to handle the
exploration-exploitation dilemma: the final goal is to
obtain greater cumulative rewards when using the pol-
icy we are learning (exploitation), but since the policy
used for sampling is the same used for training, it is
also reasonable to leave some possibility for new be-
haviors to take place (exploration), to learn mecha-
nisms that might lead to even greater rewards. The
temperature (T) is the hyper-parameter defining how
much low-entropy policies are discouraged.

4 RAINFUZZ

State-of-the-art gray-box fuzzers (like AFL) imple-
ment a genetic algorithm that randomly mutates in-
puts and keeps them in the input corpus (for future
mutation) if they discover new edge-coverage in the

program. Our goal is to use this coverage information
not only to decide whether to keep the mutated input
in the input corpus or not but also to evaluate the ef-
fectiveness of the mutation performed. This feedback
about the mutation should allow learning which muta-
tions are effective and which are not, and should allow
taking more effective mutations in the future. Rein-
forcement learning provides a framework that allows
an agent to learn to perform better by interacting with
the environment, and it is a suitable choice to formal-
ize our problem. We list the steps performed within
the mutational stage of Rainfuzz, as schematized in
Figure 3: À We pick an input from the queue. Á We
feed the input into the neural-network policy model.
Â The output policy constitutes a heat-map that gives
a probability distribution over the positions within
the current input (higher probability corresponds to a
higher chance that a mutation in that position is effec-
tive). Ã We sample from the probability distribution
given by the heat-map, to retrieve a specific position
within the input. Ä We feed the input into the mu-
tator, together with the position we sampled. Å The
mutator performs a predefined set of mutations at the
position we just sampled, and we obtain a number of
mutated inputs. Æ We feed the mutated inputs, one
by one, into the executor; the executor runs the PUT
with each one of the mutated inputs while collecting
coverage information. Ç If one or more of the mu-
tated inputs generate new unseen edge-coverage, we
add that mutated input to the queue. È We collect the
coverage information generated by each execution of
the PUT, and we compare it against the coverage gen-
erated by the original un-mutated input; the result of
this comparison is a numerical evaluation of the per-
formance of the mutations at this position: the reward
of the action performed. É We send the reward back
to the policy model, which uses this sampled experi-
ence to train the neural network.

4.1 Learning the Policy: Proximal
Policy Optimization (PPO)

A policy is a mathematical function that, given a
state, returns a probability distribution over the ac-
tions available in that state. Our goal is to improve
the policy over time so that it starts privileging high-
reward actions (which, in our case, corresponds to
performing better mutations). To carry out this learn-
ing task, we decide to use a Policy Gradient method:
Proximal Policy Optimization (PPO).

Rainfuzz: Reinforcement-Learning Driven Heat-Maps for Boosting Coverage-Guided Fuzzing

43

Input queue

Policy model

Current input

1

2

Heatmap

Position to
mutate

3

4

5

5
Mutator

Mutated Inputs

6

Executor

New
coverage?

Reward
function

8

7

9

10

Figure 3: High-level overview of the steps involved in the
fuzzing process of Rainfuzz.

4.1.1 Model of the Policy

PPO provides a method to perform learning steps over
a policy model. The model we choose for the policy
is a Feed Forward Neural Network (FFNN); the in-
put of the NN is the current state of the RL agent (an
array of bytes constituting the input to be mutated);
the output of the NN is a probability distribution over
the actions available in the current state (a heat-map
indicating which byte offsets are more interesting for
applying mutations). To make sure that the sum of
the output probabilities is 1 we use softmax as the ac-
tivation function of the output layer. Moreover, we do
not allow the input to be larger than a fixed number of
bytes, and we force all the mutations to be within the
allowed size. This can happen, for instance, if the po-
sition of the mutation is the last byte and we want to
perform a multibyte mutation (e.g., MAX INT). In such
a case, we simply perform the mutation and discard
the overflowing bytes.

4.1.2 Learning Algorithm

To improve the performance of the policy model, we
perform gradient ascent as defined in Section 3.2. We
perform a single update step by using a mini-batch of
sampled experience:
1. We put each sampled experience < st ,at ,rt > into

a memory buffer;
2. If the memory is full (number of sampled expe-

riences = M, mini-batch size), then we perform a

learning step: we estimate LCLIP+S by using the
available experience, we differentiate it with re-
spect to the model parameters, and then we apply
the gradients to the parameters;

3. Each time we perform a learning step, we clear
the memory.

4.2 Mutations

As anticipated (in Section 3), an action corresponds
to performing a set of mutations at a given position
within the input. We perform the following actions at
position pos:

• assign random byte

• add to {byte, dbyte, qbyte} {le, be}
• sub from {byte, dbyte, qbyte} {le, be}
• interesting {byte, dbyte, qbyte} {le, be}
• clone piece {overwrite, insert}
• piece insert

• delete block

4.3 Reward Functions

The last step of our learning model is to quantify the
effectiveness of the last action. To do so, we consider
the difference between the coverage of the original
input (corig, an array where the i− th element con-
tains the hit-count for the i− th edge) and the cover-
age of the mutated inputs (Cnew, an array containing
the edge-coverage of the various mutated inputs gen-
erated by the last action). The general principle we
follow is that when the coverage of one or more of
the mutated inputs hits new edges (or has more hits
on already discovered edges), then the reward should
be positive. We experiment with three different ways
of quantifying the effectiveness of the mutations. We
report the reward function R1 in Algorithm 1, R2 in
Algorithm 2 and R3 in Algorithm 3.

5 EXPERIMENT EVALUATION

The goal of our experimental evaluation is to evaluate
several aspects of Rainfuzz and its approach, answer-
ing the following research questions:

• RQ1: Does Rainfuzz’s policy outperform the ran-
dom policy?

• RQ2: Which amount of randomness in the ac-
tion taken is ideal for finding the most edges over
time?

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

44

1 i n p u t : corig , Cnew
2 o u t p u t : reward
3
4 d i f f s = []
5 f o r ci in Cnew :
6 d i f f = 0
7 f o r k in [1,2, ...,num edges] :
8 i f ci[k] > corig[k] :
9 d i f f += ci[k]− corig[k]

10 d i f f s . append (d i f f)
11 r e t u r n a v e r a g e (d i f f s)

Algorithm 1: Pseudocode of reward function R1.

1 i n p u t : corig , Cnew
2 o u t p u t : reward
3
4 t o t s = []
5 f o r ci in Cnew :
6 t o t = 0
7 f o r k in [1,2, ...,num edges] :
8 i f ci[k] > corig[k] :
9 t o t += 1

10 t o t s . append (t o t)
11 r e t u r n a v e r a g e (t o t s)

Algorithm 2: Pseudocode of reward function R2.

1 i n p u t : corig , Cnew
2 o u t p u t : reward
3
4 t o t s = []
5 f o r ci in Cnew :
6 t o t = 0
7 f o r k in [1,2, ...,num edges] :
8 i f corig[k] == 0 and ci[k]> 0 :
9 t o t += 1

10 t o t s . append (t o t)
11 r e t u r n max (t o t s)

Algorithm 3: Pseudocode of reward function R3.

• RQ3: Which Reward Function among the ones
we designed performs best?

• RQ4: What is the overhead introduced for gen-
erating mutations following Rainfuzz’s reinforce-
ment learning policy?

• RQ5: How does Rainfuzz perform with respect to
AFL++?

• RQ6: Can the union of AFL++ and Rainfuzz
(running in a collaborative fuzzing setting) out-
perform two AFL++ instances running in paral-
lel?

• RQ7: Is the configuration of Rainfuzz we tuned
against libjpeg-turbo still effective if the PUT
changes?

Throughout our experiments, we use libjpeg-turbo
as a PUT, a binary taken from FuzzBench, a fuzzing
benchmarking framework developed by Google to
unify fuzzing evaluation. We use a different binary in
RQ7 to confirm the results obtained. We tune the pol-
icy model by going through a hyper-parameter tuning
phase; in this phase, we run experiments where the
reinforcement learning policy and the random policy
co-live; we use the difference between the average re-
ward generated by the reinforcement learning policy
and the one generated by the random policy as a met-
ric to decide which configuration is best. We report
the best-performing configuration among the ones we
tested.

• Activation function for the intermediate layers of
the NN: tanh

• Number of intermediate layers for the NN: 1
• Number of neurons for each intermediate layer of

the NN: 128
• Learning rate for the stochastic gradient ascent

update: 0.0001
• Mini-batch size: 50
• Clip hyper-parameter of the clipped surrogate loss

function: 0.5
• Temperature hyper-parameter of the entropy term

in the loss function: 3.0
We also decide to introduce an amount of actions to
be taken randomly; in RQ2, we discover that 75% is
the percentage that works best while, in RQ3, we find
that the best-performing reward function is R1. The
resulting configuration is what we call a tuned version
of Rainfuzz.

RQ1: Does Rainfuzz’s Policy Outperform the
Random Policy? First, we run three 24H long ex-
periments for each reward function we designed. We
discover that for all three reward functions, the re-
inforcement learning policy always outperforms the
random policy in terms of average reward. We re-
port the plot of the average-reward signals for R1
as a sample in Figure 4. We are also interested in
assessing the effectiveness of Rainfuzz in terms of
edge-coverage over time (this is the ultimate metric
we use to determine the effectiveness of two fuzzing
approaches). We run three 24H experiments using
the tuned Rainfuzz, and three 24H experiments using
an equivalent fuzzer that uses the random policy; we
plot the resulting average edge-coverage in Figure 5.

Rainfuzz: Reinforcement-Learning Driven Heat-Maps for Boosting Coverage-Guided Fuzzing

45

0.0 0.5 1.0 1.5 2.0
actions 1e7

50

60

70

80

90

100

av
er

ag
e

re
wa

rd

Rainfuzz
random

Figure 4: Average rewards generated by R1.

0 20000 40000 60000 80000
time [s]

800

900

1000

1100

1200

1300

ed
ge

-c
ov

er
ag

e

Rainfuzz
random

Figure 5: Average edge-coverage generated by Rainfuzz
and by the random policy.

As we can see, the reinforcement learning policy out-
performs the random policy by generating an average
edge-coverage of 1277 against 1133.

RQ2: Which Amount of Randomness in the Ac-
tion Taken Is Ideal for Finding the Most Edges
over Time? We run three 24H long experiments for
each amount of randomness, using R2 as a reward
function. We plot the average edge-coverage in Fig-
ure 6. As we observe, 75% randomness outperforms
the other configurations by reaching an average edge-

0 20000 40000 60000 80000
time [s]

800

900

1000

1100

1200

1300

ed
ge

-c
ov

er
ag

e

75%
50%
10%
100%

Figure 6: Average edge-coverage generated by each amount
of randomness.

0 20000 40000 60000 80000
time [s]

800

900

1000

1100

1200

1300

ed
ge

-c
ov

er
ag

e

R1
R2
R3

Figure 7: Average edge-coverage generated by each reward
function.

coverage of 1277 (against 1130 for 10%, 1120 for
25% and 1133 for 100%).

RQ3: Which Reward Function Among the Ones
We Designed Performs Best? We run three 24H
long experiments for each reward function we de-
signed and we plot the average edge-coverage in Fig-
ure 7. As we observe, R1 outperforms the other con-
figurations by reaching an average edge-coverage of
1291 (against 1277 for R2 and 1254 for R3).

RQ4: What Is the Overhead Introduced for
Generating Mutations Following Rainfuzz’s Rein-
forcement Learning Policy? We measure the num-
ber of times the fuzzer executes the PUT per unit of
time. For the random policy we observe an execu-
tion speed of 10624 execs/sec , for Rainfuzz (75%
randomness) we observe 5541 exec/sec, while for a
completely reinforcement learning policy (0% ran-
domness) we observe 2255 exec/sec. As we can see,
when following the reinforcement learning policy, we
execute the PUT at a speed 4,71 lower w.r.t. a com-
pletely random policy: this is the cost introduced by
the need of querying the policy model and training
it. The tuned version of Rainfuzz has an execution
speed that is 1,92 times lower than the random policy,
but our experimental evaluation (RQ1) shows that the
quality of the actions picked compensates the over-
head of choosing them.

RQ5: How Does Rainfuzz Perform with Respect
to AFL++? We want to compare Rainfuzz against
a real-world fuzzer (AFL++). Rainfuzz needs to re-
strict the size of the inputs generated when perform-
ing mutations because they need to fit into the neu-
ral network maximum size. In order to understand
the impact of this restriction, we build aflpp mod, a
version of AFL++ that restricts the size of inputs just
like Rainfuzz. We run three 24H long experiments

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

46

0 20000 40000 60000 80000
time [s]

800

900

1000

1100

1200

1300

1400

ed
ge

-c
ov

er
ag

e

Rainfuzz
AFL++
aflpp_mod

Figure 8: Average edge-coverage generated by Rainfuzz,
aflpp mod, AFL++.

0 20000 40000 60000 80000
time [s]

900

1000

1100

1200

1300

1400

1500

ed
ge

-c
ov

er
ag

e

Rainfuzz&aflpp_mod
AFL++&AFL++
aflpp_mod&aflpp_mod

Figure 9: Average edge-coverage generated by Rain-
fuzz&aflpp mod, aflpp mod&aflpp mod, AFL++&AFL++

for Rainfuzz, aflpp mod and AFL++; we plot the av-
erage edge-coverage in Figure 8. AFL++ generates
an average edge-coverage of 1465, aflpp mod 1352
and Rainfuzz 1291. The fact that AFL++ outperforms
aflpp mod shows the negative impact of restricting in-
put size. Rainfuzz is outperformed by both AFL++
and aflpp mod, but we find a more interesting result
in RQ6.

RQ6: Can the Union of AFL++ and Rainfuzz
(Running in a Collaborative Fuzzing Setting)
Outperform Two AFL++ Instances Running in
Parallel?. Collaborative fuzzing is a technique that
consists in running instances of different fuzzers in
parallel; this approach is often capable of exploit-
ing the strengths of different fuzzing approaches
(Güler et al., 2020). We refer to a setting where an
instance of a fuzzer F1 is ruan in parallel with F2
with F1&F2. We run three 24H long experiments
for Rainfuzz&aflpp mod, aflpp mod&aflpp mod,
AFL++&AFL++; we plot the average edge-coverage
in Figure 9. Rainfuzz&aflpp mod generates an
average edge-coverage of 1473, AFL++&AFL++
1414 and aflpp mod&aflpp mod 1359.

0 20000 40000 60000 80000
time [s]

400

600

800

1000

1200

ed
ge

-c
ov

er
ag

e

Rainfuzz&aflpp_mod
AFL++&AFL++
aflpp_mod&aflpp_mod

Figure 10: Average edge-coverage generated by Rainfuzz,
aflpp mod, AFL++.

0.0 0.5 1.0 1.5 2.0
actions 1e6

1000

1200

1400

1600

1800

2000

2200

2400

av
er

ag
e

re
wa

rd

Rainfuzz
random

Figure 11: Average reward generated by Rainfuzz, using
file as PUT.

RQ7: Is the Configuration of Rainfuzz We
Tuned Against Libjpeg-Turbo Still Effective
if the PUT Changes?. We are interested in find-
ing out if the tuning phase we did is robust, and
can still be effective if the PUT changes; we re-
peat the same set of experiments we ran for RQ6
but using file as PUT, Figure 10 shows the
results. Rainfuzz&aflpp mod generates an aver-
age edge-coverage of 1319, AFL++&AFL++ 1317,
aflpp mod&aflpp mod 685. As we can observe, Rain-
fuzz&aflpp mod still outperforms the other two con-
figurations, but just by a very small amount.

We are also interested in visualizing the effective-
ness of the reinforcement learning policy over the ran-
dom policy. We take the rewards generated by the
Rainfuzz instance of Rainfuzz&aflpp mod. We plot
them in Figure 11.

5.1 Threats to Validity

Edge-coverage over time is a metric that is subject
to a discreet amount of variance, and results may
vary a lot due to random chance. For this reason,
we repeated our experiment three times, and we ana-
lyzed the average edge-coverage observed to draw our

Rainfuzz: Reinforcement-Learning Driven Heat-Maps for Boosting Coverage-Guided Fuzzing

47

conclusions. To definitely confirm the results of our
work, it’s probably necessary to repeat experiments
more than three times. Moreover, we analyzed the
robustness of the tuned version of Rainfuzz in RQ7,
by observing how Rainfuzz performs against a differ-
ent PUT then jibjpeg-turbo: file. To confirm the
robustness of Rainfuzz it is probably necessary to ex-
periment against a much larger variety of PUTs.

6 RELATED WORKS

Previous attempts tried to use different machine learn-
ing techniques to build heat-maps. In (Rajpal et al.,
2017) the authors experiment with neural network
models capable of predicting heat-maps given an in-
put. Data on the effectiveness of mutations is col-
lected by running a standard gray-box fuzzer (AFL),
and then the neural network is trained using that data,
in a supervised learning setting. The model is then
used to predict what bytes are useful to mutate, and
mutations that don’t stress those bytes are vetoed. In
(She et al., 2019) a neural network model is used
to predict the resulting edge coverage given the in-
put. An adversarial machine learning technique is
then used, to detect the input byte with the highest
gradient associated with it. This is equivalent to detect
the byte that, if mutated, has the highest probability to
cause a change in the output coverage predicted by the
model; if the model is accurate enough, this change
should also be reflected in the coverage of the actual
program. This byte is then used as an offset to per-
form a number of mutations. Both these approaches
have the drawback that they must be preceded by a
phase where data is collected and used for training a
model. As the fuzzing process goes on, new program
behaviours are discovered, and the model gets quickly
outdated; since this approaches are based on the effec-
tiveness of the model, a new training phase needs to
be taken in order to update the model. This alterna-
tion between training and fuzzing phases introduces
significant overhead.

Also reinforcement learning has been applied to
fuzzing. In (Böttinger et al., 2018) the authors explore
the possibility of making mutations more efficient by
modelling the fuzzing process as a full reinforcement
learning problem:

• inputs are the states of the MDP.

• an action corresponds to randomly select a sub-
string within the input, and to perform a single
mutation on such a sub-string. The mutation is
chosen accross several available mutations (e.g.,
Delete, Shuffle, Random bit-flips, etc.).

• They experiment with two types of reward: Dis-
covered Blocks and Execution time.

The technique used to solve the reinforcement learn-
ing problem is deep Q-learning: the deep Q-network
observes a portion of the input i (the sub-string s′),
and estimates the value function Q(s′,a), for each ac-
tion a; they use an ε− greedy policy to choose the
next action to take. Finally, the experimental evalu-
ation compares the approach against a baseline cre-
ated using the random policy. The metric they use
is the cumulative reward generated by the two poli-
cies, proving that the reinforcement learning policy
chooses higher reward functions. However, this eval-
uation has a limitation. The metric used during ex-
perimental evaluation shows an interesting theoreti-
cal result, but does not provide evidence of the ef-
fectiveness of the approach in a real-world scenario:
overheads introduced by the reinforcement learning
approach might defeat the purpose; edge-coverage
over time is the right metric to use if we want to
test the effectiveness of a fuzzer in a real-world sce-
nario. For completeness we cite (Zhang et al., 2020),
another approach that uses reinforcement learning in
fuzzing. The formalization of the problem is very
similar to the one used in (Böttinger et al., 2018). The
main difference is related to the algorithm they use for
solving the reinforcement learning problem, an actor-
critic technique: Deep Deterministic Policy Gradient.
Their experimental evaluation explores many hyper-
parameters combinations, but ultimately uses a met-
ric similar to the one used in (Böttinger et al., 2018),
proving a result that is theoretically interesting, but
with no direct impact on real-world fuzzing.

7 FUTURE WORKS

A key role in Rainfuzz is played by the reward func-
tion, which evaluates the effectiveness of the muta-
tions taken in a given position within the input. In
our implementation, we experiment with three reward
functions, but there is space for more approaches. We
propose the creation of a reward function that weights
edges differently based on their rarity: a mutation that
allows increasing the hit count on edges that are not
seen very often should be rewarded more than a mu-
tation that allows increasing the hit count on edges
that are already stressed very frequently by the cur-
rent input-corpus. This idea of taking into account the
rarity of edges was already explored in the context of
seed scheduling (Böhme et al., 2016) with great re-
sults; we believe that shifting this concept in the con-
text of rewarding mutations is very promising.

The NN architecture we use in Rainfuzz has a

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

48

fixed input size, forcing us to restrict the size of mu-
tated inputs. There is space for experimentation to
overcome this issue by using different NN architec-
tures. Probably recurrent NNs are a suitable choice,
but it faces the challenge of modeling a variable-
length policy.

An important component of Rainfuzz is the set of
position-specific mutations (Section 4.2) correspond-
ing to a single action. The mutations we use are
inspired by random-position mutations that are used
within AFL++; it might be interesting to experiment
with different sets of position-specific mutations and
study how they influence the performance of fuzzing
based on the input format of the PUT.

8 CONCLUSIONS

In this paper, we propose an innovative fuzzing ap-
proach that builds heat-maps using reinforcement
learning, aiding the mutation strategy and overcom-
ing the issue of alternating training phases to fuzzing
phases. We implemented our approach by means of
Rainfuzz, and we tuned it by trying different con-
figurations (RQ2, RQ3). We tested the validity of
our approach (RQ1) by comparing Rainfuzz against
an equivalent fuzzer that uses a fully random policy,
showing that Rainfuzz performs better both in terms
of average reward per action and in terms of edge-
coverage. We tested Rainfuzz against a state-of-the-
art fuzzer (AFL++), with poor results (RQ5); but we
showed that Rainfuzz and AFL++ running in a col-
laborative fuzzing setting obtain the best performance
(RQ6). We confirmed the robustness of Rainfuzz by
showing that the previous results still apply if the PUT
changes (RQ7). Finally, we concluded by providing
some ideas to extend and improve the approach we
proposed.

ACKNOWLEDGEMENTS

Lorenzo Binosi acknowledges support from TIM
S.p.A. through the PhD scholarship.

REFERENCES

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney,
W., Horgan, D., TB, D., Muldal, A., Heess, N., and
Lillicrap, T. P. (2018). Distributed distributional de-
terministic policy gradients. CoRR, abs/1804.08617.

Böhme, M., Pham, V., and Roychoudhury, A. (2016).
Coverage-based greybox fuzzing as markov chain. In

Weippl, E. R., Katzenbeisser, S., Kruegel, C., Myers,
A. C., and Halevi, S., editors, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28,
2016, pages 1032–1043. ACM.

Böttinger, K., Godefroid, P., and Singh, R. (2018). Deep
reinforcement fuzzing. In 2018 IEEE Security and
Privacy Workshops, SP Workshops 2018, San Fran-
cisco, CA, USA, May 24, 2018, pages 116–122. IEEE
Computer Society.

Chen, C., Cui, B., Ma, J., Wu, R., Guo, J., and Liu, W.
(2018). A systematic review of fuzzing techniques.
Comput. Secur., 75:118–137.

Fioraldi, A., Maier, D., Eißfeldt, H., and Heuse, M. (2020).
AFL++ : Combining incremental steps of fuzzing re-
search. In Yarom, Y. and Zennou, S., editors, 14th
USENIX Workshop on Offensive Technologies, WOOT
2020, August 11, 2020. USENIX Association.

Google (2016). HonggFuzz. https://honggfuzz.dev/.
Güler, E., Görz, P., Geretto, E., Jemmett, A., Österlund, S.,

Bos, H., Giuffrida, C., and Holz, T. (2020). Cupid :
Automatic fuzzer selection for collaborative fuzzing.
In ACSAC ’20: Annual Computer Security Applica-
tions Conference, Virtual Event / Austin, TX, USA, 7-
11 December, 2020, pages 360–372. ACM.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2016). Con-
tinuous control with deep reinforcement learning. In
Bengio, Y. and LeCun, Y., editors, 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

LLVM (2017). libFuzzer. http://llvm.org/docs/LibFuzzer.
html.

Manès, V. J. M., Han, H., Han, C., Cha, S. K., Egele, M.,
Schwartz, E. J., and Woo, M. (2021). The art, science,
and engineering of fuzzing: A survey. IEEE Trans.
Software Eng., 47(11):2312–2331.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforce-
ment learning. CoRR, abs/1602.01783.

Rajpal, M., Blum, W., and Singh, R. (2017). Not all
bytes are equal: Neural byte sieve for fuzzing. CoRR,
abs/1711.04596.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. (2015). Trust region policy optimization.
CoRR, abs/1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. CoRR, abs/1707.06347.

She, D., Pei, K., Epstein, D., Yang, J., Ray, B., and Jana,
S. (2019). NEUZZ: efficient fuzzing with neural pro-
gram smoothing. In 2019 IEEE Symposium on Secu-
rity and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, pages 803–817. IEEE.

Wang, J., Duan, Y., Song, W., Yin, H., and Song,
C. (2019a). Be sensitive and collaborative: An-
alyzing impact of coverage metrics in greybox

Rainfuzz: Reinforcement-Learning Driven Heat-Maps for Boosting Coverage-Guided Fuzzing

49

fuzzing. In 22nd International Symposium on Re-
search in Attacks, Intrusions and Defenses, RAID
2019, Chaoyang District, Beijing, China, September
23-25, 2019, pages 1–15. USENIX Association.

Wang, Y., Jia, P., Liu, L., and Liu, J. (2019b). A system-
atic review of fuzzing based on machine learning tech-
niques. CoRR, abs/1908.01262.

Zalewski, M. (2016). AFL: American Fuzzy Lop
- Whitepaper. https://lcamtuf.coredump.cx/afl/
technical details.txt.

Zhang, Z., Cui, B., and Chen, C. (2020). Reinforcement
learning-based fuzzing technology. In Barolli, L.,
Poniszewska-Maranda, A., and Park, H., editors, In-
novative Mobile and Internet Services in Ubiquitous
Computing - Proceedings of the 14th International
Conference on Innovative Mobile and Internet Ser-
vices in Ubiquitous Computing (IMIS-2020), Lodz,
Poland, 1-3 July, 2020, volume 1195 of Advances in
Intelligent Systems and Computing, pages 244–253.
Springer.

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

50

