
Features Normalisation and Standardisation (FNS): An Unsupervised
Approach for Detecting Adversarial Attacks for Medical Images

Sreenivasan Mohandas and Naresh Manwani
Machine Learning Lab, International Institute of Information Technology, Hyderabad, India

Keywords: Adversarial Attacks, Adversarial Defenses, Multivariate Gaussian Models, Medical Applications, Features
Normalization, and Standardization.

Abstract: Deep learning systems have shown state-of-the-art performance in clinical prediction tasks. However, current
research suggests that cleverly produced hostile images can trick these systems. Deep learning-based medical
image classification algorithms have been questioned regarding their practical deployment. To address this
problem, we provide an unsupervised learning technique for detecting adversarial attacks on medical images.
Without identifying the attackers or reducing classification performance, our suggested strategy FNS (Features
Normalization and Standardization), can detect adversarial attacks more effectively than earlier methods.

1 INTRODUCTION

Deep learning-based medical imaging systems have
significantly improved the accuracy and efficiency of
clinical prediction tasks, thanks to the development of
deep learning algorithms and the availability of high-
quality labeled medical imaging datasets. For exam-
ple, (Daniels and Metaxas, 2019) extracts features
from X-rays for lung disease categorization, (Shaffie
et al., 2019) uses computed tomography (CT) scans to
detect lung cancer, and (Reda et al., 2018) uses mag-
netic resonance imaging (MRI) scans to establish an
early diagnosis of prostate cancer. Several healthcare
start-ups, including Zebra Medical Vision and Aidoc
have recently secured FDA certifications for their AI
medical imaging systems. According to these FDA
clearances, deep learning-based medical imaging sys-
tems could shortly be used for clinical diagnosis.

Parallel to advancements in deep learning-based
medical imaging systems, so-called adversarial im-
ages have shown flaws in these systems in various
clinical areas (Finlayson et al., 2019). Adversarial im-
ages are purposely generated inputs to deep learning
models to deceive image categorization. The method
falsely labels ”Pleural Thickening” as ”Pneumotho-
rax” when only minor perturbations are added to a
clean X-ray image. As a result, users of such sys-
tems may be exposed to unforeseen harmful scenar-
ios, such as diagnostic errors, medical reimbursement
fraud, and so on, if sufficient safeguards are not in
place. As a result, an adequate defense strategy must

be devised to deploy these devices securely.
Several defensive strategies have been offered in

response to the threat. Adversarial training, which
enlarges the training dataset with adversarial images
to improve the resilience of the trained Convolutional
Neural Network (CNN) model, is a standard method
in the natural imaging domain. Many diverse ad-
versarial images are included in the training dataset,
which can dramatically reduce classification accu-
racy. (Ma et al., 2021) develops a logistic regres-
sion classifier based on characteristics extracted from
a trained CNN model to distinguish adversarial im-
ages from clean images. However, the usefulness of
this approach is limited to a set of predefined attack
methods. These issues are addressed in the following
way.

(Taghanaki et al., 2018) adds a radial basis map-
ping kernel to CNN models, which translates data
onto a linearly well-separated manifold to improve
class separation and lessen the impact of perturba-
tions. Global dependencies and contextual informa-
tion can be leveraged to strengthen resilience, accord-
ing to (He et al., 2019). To guard against adversar-
ial attacks, they suggest a non-local context encoder
in medical picture segmentation systems. Although
both strategies improve robustness by changing the
network design, the trade-off between accuracy and
robustness (Zhang et al., 2019) may degrade system
performance in practice.

This paper proposes a robust adversarial image
detection technique that effectively counters adver-
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sarial attacks on deep learning-based medical image
classification systems. We focus on unsupervised
anomalous detection utilizing features retrieved from
a trained CNN classifier, as inspired by (Zheng and
Hong, 2018) and (Li and Zhu, 2020). Our method
successfully detects adversarial images and can effec-
tively defend against unseen attacks, whether white-
box or black-box, because it makes no assumptions
about prior attack method knowledge. To demonstrate
the success of our suggested defense strategy, we con-
duct extensive experiments using a publicly available
X-ray dataset. We have considered the X-ray dataset
to validate our algorithm. As per (Shi et al., 2022),
X-ray and color fundus photographs are common di-
agnostic and prognostic imaging modalities in patient
care.

2 BACKGROUND

In this section, we provide background information
and a review of related studies on adversarial attack
and defense mechanisms. Let X ⊆Rd be the instance
space and Y = {+1,−1} be the label space. Let
x∈X be an example and y be its actual label. Let clas-
sifier f : X → Y is such that f (x) = y. The purpose of
adversarial attacks is to find an example x∗ ∈ X in the
neighborhood of x that is misclassified by the classi-
fier f (i.e., f (x∗) ̸= y). There are two types of hos-
tile examples: non-targeted and targeted examples. A
non-targeted adversarial example x∗ is produced by
adding minor noise to x without changing the label,
yet misleads the classifier as f (x∗) ̸= y. A targeted
adversarial example tries to trick the classifier by pro-
ducing a specific label as f (x∗) = y∗, where y∗ ̸= y
is the adversary’s target label. In most circumstances,
the adversarial noise’s Lp norm must be less than a
∥x∗−x∥p ≤ ε for some ε > 0, and p ∈ {0,1,2, ...}.
We will now discuss different adversarial attacks con-
sidered in our experimental analysis.

2.1 Fast Gradient Sign Method (FGSM)

To demonstrate that the high-dimensional linearity
of deep neural networks causes adversarial cases to
emerge, Goodfellow (Goodfellow et al., 2015) de-
vised the Fast Gradient Sign Method (FGSM) tech-
nique. The fundamental idea behind the approach
is to produce adversarial perturbations following the
deep learning model’s maximum gradient change di-
rection, then add the perturbations to the image to cre-
ate adversarial examples.

xadv = x+ ε∗ sign(∇xL(x,y))

This strategy can be seen as a straightforward one-
step method for maximizing the inner portion of the
saddle point formulation. The FGSM algorithm’s
benefit is that it is a single-step attack with a quick
attack speed. Still, the attack success rate is lesser
than iterative attack algorithms like PGD and BIM.

2.2 Project Gradient Descent (PGD)

A more strong adversary is the multi-step variation,
which is projected gradient descent (PGD) on the neg-
ative loss function. PGD (Madry et al., 2018) perturbs
a clean data x for T steps with smaller step sizes. Af-
ter each step of perturbation, PGD projects the ad-
versarial example back onto the ε-ball of x if it goes
beyond:

xi = xi−1 +α∗ sign(∇xL(xi−1,y))

where α is the step size, and xi is the adversar-
ial example at the i-th step (x0 = x). The step size
is usually set to ε/T ≤ α < ε for overall T steps of
perturbations.

2.3 Basic Iterative Method (BIM)

Basic iterative method (Kurakin et al., 2017) is an ex-
tension of FGSM. It applies FGSM multiple times
with a small step size α while clipping it to keep in
the constraint budget. It initializes adversarial exam-
ple with x0 = x

xi =Clip [xi−1 +α.sign(∇xL(xi−1,y))]

where i denotes the iteration number for iterative at-
tack and the Clip function clips all the values between
0 and 1.

2.4 Momentum Iterative Fast Gradient
Sign Method (MIM)

MIM (Akhtar and Mian, 2018) improves the con-
vergence of the PGD algorithm by using momen-
tum. MIM generates adversarial examples by using
the momentum-based iterative algorithm. Applying
momentum gradient and providing techniques to es-
cape from the poor local maximum during iterations.
The momentum gradient m can be calculated as:

mi+1 = µ∗mi +
(∇δL( fθ(xi +δ),yi))

∥(∇δL( fθ(xi +δ),yi))∥L1

where ∇δ shows the gradient function and µ is the de-
cay factor. Initially, xi−1 is the original input and m0 is
set to previous iteration value (Mohandas et al., 2022).
In each iteration, xi is updated as

xi = xi−1 + ε∗ sign(mi+1)
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The adversarial disturbance produced by the Deep-
Fool assault is relatively minor when compared to
FGSM, and other attacks (Liang et al., 2022). We
restricted our scope to iterative methods as they have
high success rates than others.

The adversarial image is created by subtly altering
the original image; as a result, the perturbations ap-
pear as noise at the pixel level, obstructing human de-
tection. On the other hand, such noise is visible at the
feature level of CNN models. According to (Huang
et al., 2017), adversarial perturbations are difficult to
detect by human eyes, resulting in significant noise
at the feature level. Furthermore, the convolution-
pooling techniques performed in CNN models during
forward propagation might increase this” noise,” re-
sulting in misclassification. On the other hand, be-
cause the size of perturbations rises layer by layer,
high-level characteristics can easily distinguish be-
tween clean and adversarial images (Xie et al., 2019).

3 PROPOSED METHOD -
FEATURES NORMALISATION
AND STANDARDISATION (FNS)

We propose a new adversarial image detection mod-
ule for the medical image classification system, in-
dependent of the attacker’s method, and doesn’t re-
quire model retraining. Figure 1 shows the pro-
posed method where a Multivariate Gaussian Model
(MGM) is created with the extracted features of clean
(original) images just before the classification layer
of DenseNet-121 (Huang et al., 2017). We have con-
sidered the output of the last Dense block for model-
ing MGM as the high-level characteristics can be dis-
tinguished easily between clean and adversarial im-
ages as per (Xie et al., 2019). As mentioned in Fig-
ure 1, these extracted features were normalized and
standardized before the creation of MGM. Once the
model is created, it is used to identify the clean and
adversarial images during the testing phase, as shown
in Figure 2. Only clean images are passed to the clas-
sification layer of DensetNet-121 for disease classifi-
cation.

Before being modeled using MGM: y ∼ N (µ,Σ),
where y = H(x) represents the feature extracted us-
ing the final fully connected layer given a clean in-
put image x, the high-level feature distribution of
clean images is normalized and standardized. The
µ ∈Rd and Σ ∈Rd×d are mean vector and covariance
matrix, where d represents the dimension of MGM.
Considering features extracted from clean training

images Y = {y1, ...,yn}, estimate µ =
( 1

n

) n
∑

i=1
yi and

Figure 1: Proposed model for training MGM.

Figure 2: Testing phase.

Σ = 1
n

n
∑

i=1
(yi − µ)T(yi − µ)+λI, where λI is the non-

negative regularization added to the diagonal of the
covariance matrix and n is the number of input sam-
ples. After modeling MGM, for a given image (can
be clean or adversarial), compute the probability of
y∗ = H(x∗) belonging to the clean image distribution
by

p(y∗) =
1

(2π)
d
2 |Σ|

d
2

exp(
−1
2

(yi −µ)T
Σ
−1(yi −µ)).

However, in reality, p(y∗) is computationally ex-
pensive due to the high dimension (d = 1024) and be-
cause its value is so near to zero, arithmetic underflow
results. We re-parameterize the covariance matrix us-
ing Cholesky decomposition to get around these tech-
nical challenges, i.e., Σ = RRT and rewrite the proba-
bility density function into log form:

log p(y∗) =
1
2
[2× (

d

∑
i=1

Rii)+∥R−1(y∗−µ)||2 +d log2π]].

Finally, as shown in Figure 2, x∗ will be detected
as an adversarial image and rejected if log p(y∗) is
lower than a threshold. The threshold value is deter-
mined by considering 95% clean images during train-
ing.
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Figure 3: MGM model trained without FNS using 95% clean data (AA - Adversarial Attack) on X-ray dataset.

Figure 4: MGM model trained with FNS using 95% clean data (AA - Adversarial Attack) on X-ray dataset.

4 EXPERIMENTS

We verify the performance of our proposed defense
approach by conducting experiments on a large pub-
lic chest X-ray dataset. The NIH ChestX-ray14
(Goodfellow et al., 2015) contains 112,120 frontal-
view chest X-rays taken from 30,805 patients, where
around 46% images are labeled with at least one of 14
pathologies. The features extracted from the complete
clean training and validation datasets are used for

training and validating our proposed detection mod-
ule. We created an MGM (detection model) with the
features of 95% clean images and extracted the fea-
tures of FGSM, BIM, PGD, and MIM-based adver-
sarial attack images for the whole dataset. For gen-
erating PGD and BIM adversarial attack images, we
ran the iteration count of 7 (7 PGD steps). For gener-
ation MIM adversarial attack images, we considered
a decay factor of 0.1 and an iteration count of 3 (Mo-
handas et al., 2022).
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Table 1: F1 score in detecting Adversarial image for X-ray dataset, * refers the results captured from (Li and Zhu, 2020).

Approach Threshold value FGSM PGD MIM BIM

MGM without feature normalization 3260 88.5 92.18 92.13 92.18
MGM with feature normalization (our method) 882 100 100 100 100

Isolation Forest* - 83.8 87.4 87.4 87.4
One class Support Vector Machine* - 87 93.1 93.1 93.1

Figure 5: 2D t-SNE visualization of features X-ray images.

Figure 3 shows the distribution of log probability
scores of MGM (trained on the features of 95% clean
images) for the features from clean (100 % originals)
images, FGSM, BIM, MIM, and PGD-based adver-
sarial images. The zoomed-in version of images gives
more clarity about the interference of adversarial at-
tacks on original images. Figure 5 shows the visual-
ization of features extracted before the classification
layer of Densenet-121 for Original images, FGSM,
PGD, BIM, and MIM adversarial attacks.

To the best of our knowledge, data normaliza-
tion and standardization are applied at the input level
(layer 0) or the intermediate layer but not on the fea-
tures extracted before the classification layer of a neu-
ral network. We extracted the features (1000 features)
just before the classification layer of the DenseNet-
121 and performed normalization and standardization

of the features before generating an MGM. In our pro-
posed method, an MGM model is created with the
above normalized and standardized features with 95%
of clean images and randomly tested with 1000 clean
images, FGSM, BIM, MIM, and PGD adversarial at-
tack images. Figure 4 shows the distribution of log
probability scores of above MGM on clean images,
FGSM, BIM, PGD, and MIM attack images. From
the zoomed-in version of the images, it can noticed
that there is no interference of adversarial attack im-
ages on the original images. With a proper threshold
value, we can identify the adversarial images 100%,
as shown in Table 1. All the above experiments are
performed on an Nvidia T4 machine with CUDA Ver-
sion 11.2.
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5 CONCLUSIONS

This paper proposes a Feature Normalisation and
Standardisation unsupervised approach for detecting
adversarial images. This is very useful in real-life sce-
narios where it doesn’t require the attacker’s method
or retraining the model. We provide an experimen-
tal comparison of the iterative adversarial attack algo-
rithms on the X-ray dataset. The results show that our
proposed algorithm accurately determines adversarial
images. This can be extended for other medical im-
age datasets where one can use different models than
GMM to model the extracted features.
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