
Lightweight Software Language Processing Using Antlr and CGTL

Kevin Lano a and Qiaomu Xue
King’s College London, London, U.K.

Keywords: MDE, MDE Usability, Language Engineering.

Abstract: Software complexity has become a significant social problem, which MDE endeavours to alleviate, however
MDE approaches and tools often introduce additional complexity which prevents general software practition-
ers from benefiting from MDE solutions. In this paper we present an alternative approach for MDE in the
domain of language processing, using lightweight tools (Antlr and CGTL) suitable for general industrial use.
We evaluate the approach on tasks of DSL definition, software abstraction, and program translation, based on
our experience with industrial applications of MDE.

1 INTRODUCTION

The agility and flexibility of MDE tools and meth-
ods has been identified as a key issue in improving
the uptake of MDE by industry (Abrahao et al., 2017;
Bucchiarone et al., 2020; Whittle et al., 2017), how-
ever the principal emphasis of MDE tools has been
on providing powerful functionality, and they often
depend upon substantial technology stacks and have
complex GUIs. They have been orientated towards
use by researchers, rather than by practitioners (Clark
and Muller, 2012). In some cases there has been no
formal usability testing of the tools. From an indus-
try perspective, such tools can involve significant risk,
because they require a high degree of specialised ex-
pertise to use, and their long-term support may be
uncertain. In our experience of working with MDE
adopters in the finance industry, this sustainability is-
sue has been a key consideration which led compa-
nies to prefer simpler tooling which would be usable
by general software practitioners.

Software language processing tasks are essential
activities in MDE, and include: (i) definition of spe-
cialised domain-specific languages (DSLs) together
with supporting tools; (ii) abstraction of software in
3GLs to models; (iii) code generation of program-
ming language code from models; (iv) translation
from one software language to another.

From experience with industrial cases of DSL def-
inition and program translation we have evolved a
pragmatic language processing approach which is fo-
cussed on software language grammars and the pro-
cessing of parse trees from these grammars. An estab-

a https://orcid.org/0000-0002-9706-1410

lished tool for building grammars and parsers is Antlr
(Antlr, 2022a). This is a lightweight tool usable by
general software practitioners. There are Antlr gram-
mars for over 230 source languages, including all the
main 3GLs1. To process the parse trees produced by
Antlr, we use a special-purpose DSL, termed Con-
crete Grammar Transformation Language (CGTL).
This is a text-to-text transformation language based
on the CSTL code generator language of (Lano and
Xue, 2020), but has been generalised to process the
parse trees of any software language. CGTL is based
on concepts of language grammar and can be used
by developers without high software modelling ex-
pertise. We consider two principal use cases for the
combination of Antlr and CGTL: (i) the definition of
textual DSLs and tools to produce documentation or
code from DSL models; (ii) translation of programs
from one 3GL to another. Both tasks involve trans-
lating one software language L1 to another, L2, by
successive steps of parsing and processing (Figure 1).

We also investigate the application of the approach
for performing model transformations such as refac-
torings.

We address the following research questions:

RQ1. Can the Antlr and CGTL software language
processing approach be effectively used for DSL
definition and tooling?

RQ2. Can the approach be effectively applied to sup-
port program translation between 3GLs?

Section 2 describes our experience of the barri-
ers to introducing MDE in industry. Section 3 in-
troduces CGTL, Section 4 describes the use of Antlr

1https://github.com/antlr/grammars-v4

Lano, K. and Xue, Q.
Lightweight Software Language Processing Using Antlr and CGTL.
DOI: 10.5220/0011623000003402
In Proceedings of the 11th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2023), pages 19-30
ISBN: 978-989-758-633-0; ISSN: 2184-4348
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

19

Figure 1: Antlr/CGTL language processing process.

and CGTL for DSL definition and tooling, and Sec-
tions 5, 6 describe the use of Antlr and CGTL for pro-
gram abstraction and translation. Section 7 discusses
the use of Antlr/CGTL for general model transforma-
tion. Section 8 gives an evaluation, Section 9 com-
pares our approach with other related work, Section
10 discusses limitations and future work, Section 11
considers threats to validity, and Section 12 gives con-
clusions. The Appendix gives details of CGTL se-
mantics.

2 BARRIERS TO MDE
ADOPTION

Between 2019 and 2022 we advised a major finan-
cial services corporation on the adoption of MDE to
improve their software development and maintenance
processes. There appeared to be a strong business
case to support the adoption, in terms of rationalisa-
tion of assets and reduced time-to-market of products,
however there were substantial barriers: (i) lack of ex-
perience with MDE and lack of MDE skills; (ii) the
need for long-term support of MDE tooling; (iii) dis-
ruption of existing practices and organisational rela-
tionships.

To address these barriers, an approach was
evolved which used lightweight tooling (principally
Antlr) and simple DSLs, which could be used by gen-
eral software practitioners without advanced MDE
skills. The process was essentially the same as in
Figure 1. Based on this experience, we formalised
the CGTL language, and identified how this could be
used to support multiple MDE language processing
tasks.

3 CGTL AND CSTL

CSTL was created in order to provide a rapid means
of writing code generators from UML/OCL specifi-
cations to 3GLs (Lano and Xue, 2020). Our experi-
ence with writing large code generators in Java, OCL
(Lano et al., 2017) and EGL motivated the definition
of a simple and concise language to express code pro-
duction from models. Some example CSTL rules for
mapping binary expressions to Java are:

BinaryExpression::
_1 & _2 |-->_1 && _2
_1 or _2 |-->_1 || _2

Execution is based on pattern matching of source ele-
ments with the LHS of rules, and text substitution of
mapped target elements into the RHS of rules.

CGTL retains the same syntax and concepts as
CSTL, but instead of operating on UML/OCL model
data, it processes the parse trees or abstract syntax
trees (ASTs) of software languages – in principle for
any source language that has a grammar. The meta-
model of AST terms which we use to represent parse
trees is shown in Figure 2. The features map of
ASTTerm records information about the language ele-
ments represented by terms, such as their type. This
information can be set by CGTL actions and read by
CGTL conditions. Composite terms with tag tg and n
subterms are written as (tg t1 ... tn). Basic terms with
tag tg and value v are represented as (tg v).

Figure 2: Metamodel of parse trees.

The style of CGTL rules is closely related to the
form of standard BNF grammar productions. For ex-
ample, a CGTL rule to process the ASTs produced by
an Antlr grammar rule

parameterDecln:
type identifier;

would have a LHS consisting of two metavariables 1,
2 corresponding to the declaration type and identifier

parts. A complete CGTL rule could be:

_1 _2 |--> _2 : _1

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

20

This would transform a declaration int x into x :
int if there were no rules for types or identifiers. The
rule would be in a ruleset for parameterDecln:

parameterDecln::
_1 _2 |--> _2 : _1

Other alternative productions for parameterDecln
would be processed by other rules in the same rule-
set. For example, there could be a further production
to define default parameter values:

parameterDecln:
type identifier (’=’ expression)?;

This extended definition would be handled by two
rules:

parameterDecln::
_1 _2 = _3 |--> _2 : _1 := _3
_1 _2 |--> _2 : _1

More details of CGTL syntax and semantics are
given in the Appendix.

CGTL incorporates several extensions to CSTL:
(i) pattern-matching of a single variable against mul-
tiple subchildren of a parse tree; (ii) recursive appli-
cation of a ruleset; (iii) script parameters; (iv) nested
rule/script invocation in rule conditions; (v) dynamic
loading of scripts.

These changes, together with rule actions, mean
that CGTL is a Turing-complete language, thus it can
carry out more powerful language processing than
the original CSTL or other assignment-free languages
such as Antlr’s StringTemplate (Antlr, 2022b).

Dynamic loading means that when a script g is
invoked in a rule RHS as i‘g, the script g is loaded
from the cg directory, if it is not already in memory.

4 DEFINITION OF DSLs

DSLs have been widely used to specify specialised
software functionalities or categories of software ap-
plications, for example machine learning systems
(Zucker and D‘Leeuwen, 2020) and text processing
(Desai et al., 2016). Well-known notations such as
regular expressions and SQL can also be regarded as
DSLs. Use of a DSL to specify software reduces (in
principle) the effort required to analyse models and
generate code, compared to the use of more general-
purpose notations such as UML and OCL. However,
DSLs need careful design to ensure that their con-
structs are appropriate for the intended domain, and
can be used by the intended end users. A DSL often
needs to evolve, eg., to add new features or constructs.
While DSLs can be represented as metamodels, an-
other effective means for defining a textual DSL is

by a language grammar. Tools to process DSL mod-
els (expressed as texts conforming to the DSL gram-
mar) can operate on the parsed DSL syntax trees pro-
duced by a parser. In some cases it is possible to per-
form processing during parsing by attaching actions
to the production rules of the grammar. For example,
Antlr provides an action notation to perform process-
ing during parsing, however this approach has limited
functionality, and results in the execution order of ac-
tions being tied closely to that of parsing.

In order to decouple parsing and processing, we
defined the dedicated CGTL language and associated
tools to process parse trees of any language, and to
produce text in a wide range of formats, including
documentation, HTML, XML or programming lan-
guage code. The structure of the CGTL scripts for a
language L will generally follow the structure of the
grammar for L. Each grammar category r of L will
have a corresponding ruleset r:: in a script for L, to
process L ASTs with tag r. Each grammar produc-
tion p of r should have a corresponding rule of r::
which can process L elements parsed using p. Us-
ing the antlr2cstl script, given an Antlr grammar file
LParser.g4 for L, an outline CGTL script can be auto-
matically produced with the appropriate rulesets and
rule LHSs to process trees produced by LParser.g42.
The DSL tool designer then needs to complete the rule
definitions to achieve the required transformation.

5 LANGUAGE TRANSLATION

The management and maintenance of software, es-
pecially of legacy software, has become a signifi-
cant social problem (Agarwal et al., 2022) which
costs increasing human and financial resources to
tackle. Critical software systems exist in antiquated
languages such as COBOL or old versions of C, and
need to be modernised in order that they can be ef-
fectively used and maintained. The costs and time
required for manual software modernisation can be
prodigious. For example, migration of 35 million
lines of a critical banking system written in Python
2.7 to Python 3 took over 3 years of effort at JP Mor-
gan (Sanders, 2019). Automated program transla-
tion is therefore an attractive alternative to manual
translation or redevelopment of software assets. To
support such capabilities we used CGTL to imple-
ment abstraction transformations from Java, C, Visual
Basic 6 (VB6), Cobol85 and JavaScript programs to
UML/OCL.

To translate programs of source language L1 to

2Antlr’s grammar is itself defined by an Antlr grammar.

Lightweight Software Language Processing Using Antlr and CGTL

21

programs of target language L2, we use an Antlr
parser for L1 to produce parse trees, which are then
input to an abstraction transformation for L1, written
using CGTL. The output is a UML/OCL specifica-
tion in textual form, consisting of class specifications
with data features and operations, and use cases defin-
ing global processing, such as application initialisa-
tion. The specification may utilise the operations of
OCL libraries. We have provided additional libraries
to represent program semantics for aspects such as
files, dates, exceptions and iterators, which are not
present in standard OCL (Section 6). Forward engi-
neering using CGTL code generators or other MDE
code generation techniques is then employed to map
the abstracted specification to the target language L2.

We use the AgileUML (Eclipse Agile UML
project, 2022) and Eclipse OCL (Eclipse, 2022) ver-
sions of OCL to represent program semantics. To de-
fine program executable behaviour, we adopt the Ag-
ileUML textual notation for UML structured activi-
ties. This is similar to the extended OCL of (Buttner
and Gogolla, 2014), and observes a strict hierarchi-
cal relation between expressions and statements, ie.,
statements cannot occur as subparts of expressions.

5.1 Abstraction of Expressions and
Statements

Programming language expressions can be abstracted
to OCL expressions using a CGTL script. In many
cases there are direct translations from program con-
structs to corresponding OCL expressions, for exam-
ple, C and Java array accesses and bitwise negation
operator expressions translate directly to OCL equiv-
alents:

expression::
_1 [_2] |-->_1->at(_2 + 1)

˜ _1 |-->-(_1 + 1)

However in some cases it is necessary to interpret
the source language elements using further semantic
details, if there is no exact equivalent of the source
element in OCL. For example, the isalpha and isdigit
C functions on characters can be interpreted as:

isalpha (_1) |-->
(_1)->byte2char()->isMatch("[a-zA-Z]")

isdigit (_1) |-->
(_1)->byte2char()->isMatch("[0-9]")

The main forms of programming language state-
ments also translate directly into the pseudocode no-
tation of UML activities used in AgileUML, eg., for
C we have:

selectionStatement::
if (_1) _2 |-->

if _1\n then\n _2\n
else skip ;\n

if (_1) _2 else _3 |-->
if _1\n
then\n _2\n
else\n (_3)\n

However, statements with unstructured control flow,
such as goto, labelled break/continue, and switch
statements, need to be transformed into structured
forms via the abstraction process.

5.2 Abstraction of Features and Classes

Application-specific classes defined in a program are
mapped to corresponding classes in the UML/OCL
representation, with their data features and meth-
ods mapped to attributes and operations in UML. C
structs, VB6 and Cobol85 records and JavaScript con-
structor functions are also abstracted as UML classes.
Enum definitions are abstracted as enumerated types.
The CGTL rules to perform this abstraction for C in-
clude:
structOrUnionSpecifier::
struct _1 { _2 } |-->class _1\n{_2\n}\n\n
union _1 { _2 } |-->class _1\n{_2\n}\n\n
struct _1 |-->_1
union _1 |-->_1

structDeclarationList::
* |-->*
_1 |-->_1

enumSpecifier::
enum _1 { _2 } |-->enumeration _1\n{_2\n}\n\n
enum _1 |-->_1

enumeratorList::
_1 |-->_1
* |-->*

enumerator::
_1 = _2 |-->_1
_1 |-->_1

enumerationConstant::
_1 |--> literal _1;\n

These rules preserve the structure of the source
program in the abstracted representation, facilitating
traceability.

In the case of C, VB6, Cobol85 and JavaScript
there may be data and operations with a global scope.
These are represented as features of a new class rep-
resenting the entire program.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

22

6 OCL EXTENSION LIBRARIES

OCL extensions and libraries are provided in order to
represent common programming language aspects as
follows (Lano et al., 2022):

• First-class function types Function(S,T) are
added, together with λ-abstraction expressions
lambda x : T in expr and application operator
f→apply(x).

• Library component OclDate is added to represent
dates and times.

• Facilities for byte processing and number for-
mat conversions are added in library component
MathLib. MathLib also supports random number
generation and bitwise and/or/xor operations.

• OclType is extended to enable inspection of the
data and behaviour features of each OclType in-
stance.

• Exception handling is represented by
try catch finally statements and a class
OclException of exceptions, together with
subclasses for more specialised forms of excep-
tion, such as IndexingException.

• A library class OclIterator is defined which sup-
ports the creation of iterators for collections. This
is also used to represent generator functions and
database result sets.

• A library class OclFile to represent files and
streams.

• OclProcess supports the creation of threads and
OS processes and querying the environment.

• OclDatasource models SQL databases, TCP
sockets and HTTP connections.

7 MODEL TRANSFORMATIONS

General model transformation (MT) tasks include
mapping from models of one language L1 to mod-
els of another, L2, or refactoring (updating in-place)
a model of a single language. The usability of MT
languages such as ATL, QVTr and ETL has been
questioned (Burgueno et al., 2019b), and the level of
industrial adoption of these languages remains low.
Effective use of an MT language requires detailed
knowledge of the structure of models for the source
and target languages involved, ie., knowledge of their
metamodels. Model data is typically a graph struc-
ture, with intricately interlinked elements. MT rules
need to navigate and assemble such links in the cor-
rect way.

CGTL could be applied to MT tasks by: (i) pro-
ducing an AST from a source language model; (ii)
processing the AST using CGTL rules; (iii) pars-
ing the text result into the target language using a
parser/model assembler which creates a target model
from target language text.

The advantage of this scheme is that the CGTL
rules can express the key idea of the transformation,
without needing to navigate or assemble models. The
rules do not depend on the metamodel features. The
task of ensuring consistent target model structure is
delegated to the model assembler. The disadvantage
is the additional processing cost of AST production
and target language parsing.

An example of a simple refactoring transforma-
tion is expression simplification/normalisation, which
can be expressed for OCL expressions by the CGTL
rules:

OclBasicExpression::
_1 |-->_1

OclBinaryExpression::
0 + _1 |-->_1
_1 + 0 |-->_1
_1 + _1 |-->(_1 * 2)
_1 + _2 |-->(_1 + _2)
_1 - 0 |-->_1
_1 - _1 |-->0
_1 - _2 |-->(_1 - _2)
1 * _1 |-->_1
_1 * 1 |-->_1
_1 * _1 |-->(_1)->sqr()
_1 * _2 |-->(_1 * _2)

This transforms an input expression such as x∗x+x∗
x into ((x)→sqr()∗2).

To express this as a model refactoring in a MT
language such as ATL, ETL or QVTr would be
non-trivial, because the pattern matching and re-
arrangement of links between elements would need to
be handled explicitly. For example, the rule replacing
1∗ 1 by (1)→sqr() could be defined in ATL as:
rule ReplaceMultBySqr {
from be : IN!OclBinaryExpression (

be.operator = ’*’ and
be.left.toString() = be.right.toString())

to be1 : OUT!OclUnaryExpression (
operator <- ’->sqr’,
argument <- be.left,
argument.hasBracket <- true,
container <- be.container

) }

Knowledge of the exact names, types and multiplic-
ities of metamodel features is necessary in order to
write such rules. Indeed this tight dependence of

Lightweight Software Language Processing Using Antlr and CGTL

23

transformation rules on the metamodel could lead to
high maintenance costs if the metamodel changes.

In terms of expressiveness, CGTL is only able to
inspect local data of one AST and its subparts, and
cannot search global data, such as all instances of a
metaclass. Thus model transformation rules which
depend upon two or more input parameters, or which
need to refer to E.allInstances() for a metaclass E
could not be expressed as CGTL rules.

8 EVALUATION

In this section we evaluate our approach with re-
spect to the research questions of Section 1. All
artefacts used in this evaluation are provided at zen-
odo.org/record/7414171.

8.1 RQ1: DSL Definition and Support

We evaluate the approach by defining two DSLs: (i)
for natural language processing (NLP) in require-
ments formalisation (RF); (ii) for mobile app speci-
fication.

8.1.1 Natural Language Processing for
Requirements Formalisation

NLP is a key technique for many applications which
process or produce natural language text or speech. In
particular, NLP has been used for the formalisation of
software requirements expressed in natural language
documents (Burgueno et al., 2021; Zaki-Ismail et al.,
2022; Zhao et al., 2020). Based on a systematic sur-
vey of NLP research in this area, we identified pro-
cessing steps, actions and data which are widely used
in NLP for RF, and codified these as a simple DSL
with a syntax based on SQL.

NLP activities operate on datasets of elements
such as texts or ASTs, and can be categorised as:

• Dataset loading and saving, or checkpoint cre-
ation and saving during a protracted process.

• Applying a transformation to each dataset element
to produce a new dataset, eg., to tokenise raw text
elements into sequences of sentences or words, or
to apply part-of-speech (POS) tagging to words.

• Filtering a dataset to remove elements that fail to
satisfy a criterion, eg., to remove items that do not
have a correct grammatical structure to be valid
sentences.

• Analysing the accuracy of some classification
procedure on a dataset, wrt a reference classifi-
cation.

Processing pipelines including these activities can be
defined in our DSL by a sequence of SQL-like state-
ments.

For example, to apply POS-tagging to a set of sen-
tences dset extracted from a text file, and select the
sentences containing a verb, we could write:
create temporary table wdset as

select x, pos_tag(x) from dset ;
create temporary table vbset as

select sq from wdset
where hasVerb(sq) ;

A subset of the SQLite.g4 Antlr grammar (857
LOC) is used for the NLP DSL. A CGTL script
nlp.cstl is defined to translate DSL specifications to
Python (with NLTK used for NLP process steps).
This consists of 112 lines of CGTL code and took 2
person days to develop and test.

The CGTL rules to process the DSL statements
and translate them to Python include:
select_stmt::
_1 |-->_1

simple_select_stmt::
_1 |-->_1

select_core::
select _1 , _2 from _3 |-->

[_2 for _1 in _3]

select distinct _1 from _2 where _3 |-->
set({_1 for _1 in _2 if _3})

select _1 from _2 where _3 |-->
[_1 for _1 in _2 if _3]

For the above example, the result of executing the
CGTL script is:
wdset = [pos_tag(x) for x in dset]
vbset = [sq for sq in wdset if hasVerb(sq)]

The DSL has been tested with a wide range of
NLP pipelines including POS-tagging, chunking, en-
tity extraction and the derivation of UML use cases
from informal user stories. Table 1 shows the Python
code generation time for the test cases of DSL mod-
els. The generated code size is 4KB in each case.

An alternative OCL-based NLP grammar (379
LOC) has also been developed3, together with a
CGTL file nlp1.cstl (89 LOC).

8.1.2 Mobile App Specification

This DSL provides facilities for defining classes with
attributes, and stereotypes identifying the location

3Using the OCL grammar at https://github.com/antlr/
grammars-v4/tree/master/ocl

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

24

Table 1: CGTL performance on NLP cases.

Case Model size Generation time
NLP Pipeline 1 12 LOC 0.3s
NLP Pipeline 2 17 LOC 0.4s
Use case derivation 22 LOC 0.3s
Entity extraction 22 LOC 0.3s
NLP Pipeline 5 24 LOC 1s
NLP Pipeline 6 24 LOC 2.8s
NLP Pipeline 7 12 LOC 0.85s
Regex matching 10 LOC 0.1s
Fuzzy similarity 12 LOC 0.7s
Average 17.3 LOC 0.75s

(remote or local) and persistence of the class data.
Global functionalities of the system are defined as
use cases. The DSL tools specified in CGTL scripts
map the class definitions to SQLite databases (for lo-
cal persistent classes) or to Firebase cloud datastores
(for remote persistent classes) and data access objects
to interface to these implementations. The use case
definitions become operations of a business tier fa-
cade component, and are also used to produce Swif-
tUI views (screens) that trigger the business tier op-
erations. Value objects are used to transfer business
data between tiers. The DSL grammar is defined by
the Antlr 4 grammar Mobile.g4 (274 LOC), and took
2 person days to write and test. The CGTL scripts
consist of 15 separate scripts with a total of 1870
LOC and took 8 person days to write and test. The
scripts are organised on the basis of the different tar-
get files which are generated: each script produces a
specific component within the app architecture, such
as a model facade, value object class, database in-
terface or UI screen. To avoid duplication of com-
mon script tasks, such as mapping OCL expressions
to Swift code, these are factored out into a separate
script called from the component production scripts.

The DSL and tools were tested with a wide range
of mobile app specifications including finance and
health apps. Table 2 gives the size and code gener-
ation time for the test cases.

In comparison, a similar DSL definition using
Xtext and Xtend took over 2 person months to de-
velop, due to the high complexity involved in writ-
ing correct Xtext grammars, which combine parsing
and semantic analysis. From a DSL grammar, Xtext
produces a metamodel for the DSL, together with a
DSL parser, however this dual interpretation of an
Xtext grammar has deficiencies in terms of the quality
of the metamodel and the reusability of the grammar
(Izquierdo and Molina, 2014).

Overall we can conclude for RQ1 that the com-
bination of Antlr and CGTL is effective for defining
text-based tools for DSL processing, since the effort
required for writing grammars and CGTL scripts is

Table 2: CGTL performance on mobile app cases.

Case Model size Generated CG
(LOC) code size time

Person app 1 32 28KB 0.8s
Student app 60 39KB 1.47s
Person app 2 40 29KB 1s
Person app 3 46 30KB 1.2s
BMI app 15 14KB 1.1s
Health app 40 22KB 1.96s
Bond app 120 23KB 23.6s
Person DB app 34 32KB 6.6s
Student DB app 60 60KB 15.2s
Student app 60 50KB 7.5s
cloud + DB
Average 50.7 32.7KB 6.05s

relatively low, and the efficiency of script execution is
satisfactory for practical use. The expertise required
to define CGTL scripts is (i) understanding of the
source language grammar structure; (ii) understand-
ing of the target platform syntax and semantics; (iii)
knowledge of the CGTL syntax. There is no need to
understand the metamodels of the source or target lan-
guages.

8.2 RQ2: Program Translation

To answer RQ2 we develop and evaluate example ab-
straction translations from Java 6/7, JavaScript, C,
Cobol85 and Visual Basic 6 to UML/OCL. These are
then applied to over 400 examples, including real-
world programs from finance applications.

8.2.1 Translation Accuracy

We apply the Java 6/7 to UML/OCL abstraction
mapping to 100 Java cases, consisting of 61 exam-
ples of Java library facilities (from java.io, java.lang,
java.math and java.util), 34 examples of Java lan-
guage features, and 5 cases of complete Java appli-
cations, including three cases taken from a package
of financial software (bond valuation: Bondapp; yield
curve computation: NSapp; CDO risk evaluation:
CDOapp). We also applied the C to UML/OCL ab-
straction to 70 C examples, consisting of 14 statement
examples, 36 declaration/type examples and 20 exam-
ples exercising the full range of standard C libraries.
We applied the VB6 to UML/OCL abstraction to 100
VB6/VBA examples, including extracts from a large
suite of bond pricing functions executed within Excel.
We applied the Cobol85 abstraction to 85 cases, 64
concerning statements and 21 other language aspects.
Finally, we applied the JavaScript to UML/OCL ab-
straction mapping to 85 JavaScript cases, consisting

Lightweight Software Language Processing Using Antlr and CGTL

25

of 49 language construct examples and 36 data struc-
ture examples.

From the abstractions we then performed forward
engineering to Python, Swift, C#, C++, Java 8, C and
Go (in the case of the Java 6/7 examples), to Swift,
C# and Go (for the C examples), to Python (for the
JavaScript and VB6 examples) and Java (for Cobol85
cases).

To evaluate the correctness of the translations, we
run equivalent tests on the original source program
and translated target for each case, and compute the
percentage of test results which agree. The same test
values/parameters are used for both source and target
programs. The test agreement percentage is shown in
the cells of Table 3. There are a total of 439 tests for
the Java 6/7 cases, 147 for the C cases, 197 for the
VB6 cases, 183 for Cobol85 and 162 for JavaScript
(JS). This measure of accuracy is the same as the com-
putational accuracy measure used by (Lachaux et al.,
2020).

Table 3: Evaluation cases: accuracy.

Target Source language
lang. Java C JS VB6 Cobol
Python 93% – 95% 82% –
Swift 96% 84% – – –
C# 96% 90% – – –
Go 90% 91% – – –
Java 8 98% – – – 88%
C++ 93% – – – –
C 86% – – – –
Averages 93% 88% 95% 82% 88%

It can be seen that translations involving a large se-
mantic distance between the source and target (such
as C to Swift) are generally less accurate than those
between similar languages (such as Java to C#). Nev-
ertheless the accuracy is quite high, and for the in-
dustrial cases all numerical computations were trans-
lated without error. In contrast to these results, the
java2python tool only achieves an accuracy of 38.3%
on the Java to Python examples of (Lachaux et al.,
2020), and transcoder achieves 68.7% accuracy, us-
ing 463 tests.

In terms of the efficiency of the translation pro-
cess, the abstraction stage is comparable to code gen-
eration. Table 4 shows the time taken for this step, and
for code generation, for the Java application cases.
The Swift and J8 code generators use CSTL. The
Python code generator is written in OCL.

8.2.2 Completeness

Completeness of the translation approach can be
measured in terms of the percentage of the Java,

Table 4: CGTL performance on Java 6/7 application cases.

Case Abstraction CG Time (ms)
Time (ms) Python Swift J8

Bondapp 964 0 2032 256
app6 353 5 2783 219
NSapp 641 3 2022 220
CDOapp 1338 7 3683 1515
CorrCalc 4079 0 2443 198
Average 1475 3 2593 481.6

JavaScript, VB6, Cobol85 and C grammar rules, in-
cluding rule variants, which have corresponding ab-
straction rules in our reverse-engineering scripts.

Table 5 shows the percentages of Antlr Java
parser grammar rules which have corresponding ab-
straction rules, for each of the main syntactic di-
visions of Java. For C, 138 of the 153 grammar
rules/cases of (Kernighan and Ritchie, 1988) are cov-
ered (90%), and 158 of 179 library operations (88%).
For JavaScript, 258 of 324 grammar rules/rule options
are covered (80%), and 39 of 53 library components.
For VB6, 197 (86%) of the 229 statements, opera-
tions, functions and types of VB6 are represented. For
Cobol85, 31 of 35 core statement kinds are covered
(88%).

Table 5: Grammar rule coverage: Java.

Category Grammar Abstraction Coverage
cases rules

Types 33 31 94%
Expressions 101 82 81%
Statements 76 72 95%
Declarations 176 160 91%
Total 386 345 89%

Overall we can conclude for RQ2 that the accu-
racy of the translation is high compared with other
translation approaches, and that the computational ef-
ficiency is satisfactory. The completeness for each
source language can be improved in principle by ex-
tending the coverage of language features and li-
braries. This may require the addition/extension of
OCL libraries, such as the definition of a component
to represent Excel functions and data in a platform-
independent manner.

9 RELATED WORK

MDE usability issues have been highlighted by sev-
eral studies of MDE in practice (Abrahao et al., 2017;
Whittle et al., 2017). In response to these identified
problems, different processes for using MDE have
been proposed, such as the combination of agile meth-

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

26

ods with MDE (Alfraihi and Lano, 2017). Automated
assistance for MDE processes, using AI techniques,
has also been proposed (Burgueno et al., 2021). In
particular, a promising approach for improving the us-
ability of MDE is modelling by-example (Burgueno
et al., 2019a; Lano et al., 2021; Lano and Xue, 2022).
Applied to DSL engineering, this concept includes the
automated learning of natural language to DSL map-
pings (Desai et al., 2016), and applied to model trans-
formation and code generator synthesis, it enables the
derivation of transformation/generator rules from rel-
atively small datasets of examples (Lano et al., 2021;
Lano and Xue, 2022). In the case of DSL tooling, the
example-based process has the drawback that there
may be ambiguous results for learnt mappings, which
must be resolved by the user (Desai et al., 2016). For
MT/code generator synthesis, there are limitations on
the form of rules which can be learnt: in particular,
CSTL rules involving actions cannot be learnt by the
process of (Lano and Xue, 2022).

A transformation language related to CGTL is
the Gra2MoL text-to-model language (Izquierdo and
Molina, 2014). This provides a facility to search and
extract information from ASTs, with benefits in terms
of conciseness and clarity compared to conventional
MT languages. CGTL can also define queries to nav-
igate deeply into AST terms, using called functions as
i‘f to test or extract information from a term bound

to i. This approach is heavily used in the mobile app
DSL (Section 8.1.2). Otherwise, GraMoL involves
model manipulation in the style of ATL rules, and
hence requires knowledge of the target metamodel.

Our program translation approach is related to re-
verse and re-engineering approaches which use a for-
mal intermediate language, such as (Bowen et al.,
1993; Liu et al., 1997). However, we use UML/OCL
as the intermediate representation, instead of a formal
specification language. This has the advantage of be-
ing more widely understood by software practitioners,
and more widely supported by tools.

10 LIMITATIONS AND FUTURE
WORK

The pattern-matching facilities of CGTL (on the LHS
of rules) are limited to the immediate subterms of the
input term. This could be extended, but would result
in increased execution time.

With regard to DSL definition and processing, we
restrict attention to textual DSLs. Currently our ap-
proach is geared to work with Antlr, but in principle
other parsing technologies could be used.

Modern programming languages such as Java

have extensive libraries and hence in these cases it is
infeasible to model the semantics of the complete lan-
guage including the libraries. Users of our translation
tools may extend the CGTL abstraction scripts as re-
quired to add semantics for specific program libraries.
Likewise, for COBOL, specific installations may use
local extensions of COBOL facilities, for which a cus-
tomised translation will need to be created.

An interesting area to pursue is the combination of
symbolic and non-symbolic machine learning to learn
program or language translations. Non-symbolic ML
could be more effective than symbolic ML in learning
large-scale translations involving thousands of special
cases (eg., abstractions of Java library operations).

11 THREATS TO VALIDITY

Threats to validity include bias in the construction of
the evaluation, inability to generalise the results, in-
appropriate constructs and inappropriate measures.

11.1 Threats to Internal Validity

11.1.1 Instrumental Bias

This concerns the consistency of measures over the
course of the analysis. To ensure consistency, all anal-
ysis and measurement was carried out in the same
manner by a single individual (the first author) on all
cases. The comparison with the results of (Lachaux
et al., 2020) used the same accuracy measure and a
similar test-based evaluation approach to the evalua-
tion in (Lachaux et al., 2020). Analysis and measure-
ment for the results of Tables 1, 2 were repeated in
order to ensure the consistency of the results.

11.1.2 Selection Bias

We chose mobile app specification and NLP spec-
ification as typical of the DSL modelling scenarios
that arise in practice. The evaluation cases were de-
signed to exercise all the significant choice points
within the CGTL scripts. With regard to program
translation, Java to C and JavaScript to Python are
commonly requested translations (eg., on stackover-
flow.com). COBOL to Java translation is of high sig-
nificance to business. We selected example cases for
evaluation of translation based on the grammars of the
source languages, in order to cover the widest pos-
sible range of grammar constructs and options. As
in (Lachaux et al., 2020), the translation examples
are mainly cases involving single methods/functions,
however some complete classes and complete real-
world applications have also been analysed.

Lightweight Software Language Processing Using Antlr and CGTL

27

11.2 Threats to External Validity

11.2.1 Generalisation to Different Samples

As discussed above, our approach is restricted to tex-
tual DSLs and text-based processing, thus it is not di-
rectly applicable to graphical DSLs. We considered
examples of the three main 3GL categories in our pro-
gram translation work: Java represents the category of
classical object-oriented languages, C, Cobol85 and
VB6 represent the category of procedural languages,
and JavaScript is representative of prototype-based
languages with implicit typing. Thus a wide spectrum
of programming languages has been considered, facil-
itating the generalisation of our work to other source
languages in these categories, such as C# and Python.
Other parsing tools could be used to produce ASTs,
and other MDE tools such as Papyrus (Papyrus, 2022)
used for forward engineering.

11.3 Threats to Construct Validity

11.3.1 Inexact Characterisation of Constructs

Our concepts of DSL processing and program transla-
tion are aligned to widely-used concepts in language
engineering. We have given a precise characterisation
of ASTs and CGTL via metamodels (Figures 2 and
3), and a detailed semantics of CGTL (Appendix).

11.4 Threats to Content Validity

11.4.1 Relevance

The Antlr and CGTL approach has been shown to
be applicable to the processing of typical textual
DSLs based on UML/OCL subsets or SQL-like no-
tations, and to the processing of programming lan-
guage source code for a range of languages, which
include three of the most-popular programming lan-
guages according to the TIOBE index. Thus the ap-
proach should be relevant to other similar tasks in
these domains.

In terms of usability, Antlr has an established his-
tory of use by numerous users over 15 years, and is
actively maintained. AgileUML has been used for
20 years (prior to 2019 it was called UML-RSDS) in
a wide range of educational, research and industrial
applications, by users with varied skill levels. Thus
there is evidence that these technologies are relevant
to improving MDE usability.

Our experience with MDE adoption in industry
(Section 2) indicated that grammar-based tools and
simple DSLs were more acceptable and relevant to

new adopters of MDE compared to metamodel-based
tools and mathematical languages such as OCL.

11.4.2 Representativeness

The 3GL code translation tasks we have examined
(translation of Java, C, VB6, Cobol85 and JavaScript)
are representative of typical program translation tasks
for 3GLs. Synthesis of executable code from DSL
specifications is also a representative task for DSL
processing.

11.5 Threats to Conclusion Validity

We used the concept of computational accuracy to
measure the quality of program translations. This
measure is also used by (Lachaux et al., 2020) and
appears to be more appropriate to software transla-
tion than measures such as the BLEU score, used in
machine translation of natural languages.

12 CONCLUSIONS

We have defined MDE techniques for DSL support
and program translation which should be usable by
general software practitioners. We have shown that
the techniques can be combined to effectively perform
typical language processing tasks such as generating
code from DSL models and abstracting information
from source code. We have also shown that certain
kinds of model transformation rule can be expressed
in CGTL.

The described approaches utilise lightweight tools
(Antlr and AgileUML) which have low resource util-
isation, and hence low environmental impact.

REFERENCES

Abrahao, S., Bourdeleau, F., Cheng, B., Kokaly, S., Paige,
R., Stoerrle, H., and Whittle, J. (2017). User experi-
ence for MDE. In MODELS 2017.

Agarwal, M., Talamadupula, K., Martinez, F., Houde, S.,
Muller, M., Richards, J., Ross, S. I., and Weisz, J. D.
(2022). Using document similarity methods to create
parallel datasets for code translation.

Alfraihi, H. and Lano, K. (2017). The integration of agile
development and MDE: a systematic literature review.
In Modelsward 2017.

Antlr (2022a). https://www.antlr.org.
Antlr (2022b). Antlr StringTemplate,

https://www.stringtemplate.org/about.html.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

28

Bowen, J., Breuer, P., and Lano, K. (1993). A com-
pendium of formal techniques for software main-
tenance. IEE/BCS Software Engineering Journal,
8(5):253 – 262.

Bucchiarone, A., Cabot, J., Paige, R., and Pierantonio, A.
(2020). Grand challenges in MDE: an analysis of the
state of the research. SoSyM, 19:5–13.

Burgueno, L., Cabot, J., and Gerard, S. (2019a). An LSTM-
based neural network architecture for model transfor-
mations. In MODELS ’19, pages 294–299.

Burgueno, L., Cabot, J., and Gerard, S. (2019b). The future
of model transformation languages: an open commu-
nity discussion. JOT, 18(3).

Burgueno, L., Clariso, R., Gerard, S., Li, S., and Cabot,
J. (2021). An NLP-based architecture for the auto-
completion of partial domain models. In CAiSE 2021,
pages 91–106. Springer.

Buttner, F. and Gogolla, M. (2014). On ocl-based imper-
ative languages. Science of Computer Programming,
92:162–178.

Clark, T. and Muller, P. (2012). Exploiting model-driven
technology: a tale of two startups. SoSyM, 11:481–
493.

Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare, A.,
Marron, M., Sailesh, R., and Roy, S. (2016). Program
synthesis using natural language. In ICSE 2016, pages
345–356.

Eclipse (2022). Eclipse OCL Version 6.4.0,
https://projects.eclipse.org/projects/modeling.mdt.ocl.

Eclipse Agile UML project (2022).
projects.eclipse.org/projects/modeling.agileuml,
accessed 18.5.2022.

Izquierdo, J. C. and Molina, J. G. (2014). Extracting models
from source code in software modernization. Software
Systems Modelling, 13:713–734.

Kernighan, B. and Ritchie, D. (1988). The C Programming
Language. Prentice Hall, 2nd edition.

Lachaux, M.-A., Roziere, B., Chanussot, L., and Lample,
G. (2020). Unsupervised translation of programming
languages. arXiv:2006.03511v3.

Lano, K., Kolahdouz-Rahimi, S., and Fang, S. (2021).
Model Transformation Development using Auto-
mated Requirements Analysis, Metamodel Match-
ing and Transformation By-Example. ACM TOSEM,
31(2):1–71.

Lano, K., Kolahdouz-Rahimi, S., and Jin, K. (2022). OCL
libraries for software specification and representation.
In OCL 2022, MODELS 2022 Companion Proceed-
ings.

Lano, K. and Xue, Q. (2020). Agile specification of code
generators for model-driven engineering. In 2020
15th International Conference on Software Engineer-
ing Advances (ICSEA), pages 9–15.

Lano, K. and Xue, Q. (2022). Code generation by example.
In Proceedings of the 10th International Conference
on Model-Driven Engineering and Software Develop-
ment (MODELSWARD), pages 84–92.

Lano, K., Yassipour-Tehrani, S., Alfraihi, H., and
Kolahdouz-Rahimi, S. (2017). Translating from

UML-RSDS OCL to ANSI C. In OCL 2017, STAF
2017, pages 317–330.

Liu, X., Yang, H., and Zedan, H. (1997). Formal meth-
ods for the re-engineering of computing systems. In
Compsac ‘97.

Papyrus, E. (2022). Papyrus toolset,
https://www.eclipse.org/papyrus.

Sanders, J. (2019). https://www.techrepublic.com/article/
jpmorgans-athena-has-35-million- lines-of-python-
code-and-wont-be-updated-to-python-3-in-time.

Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H.,
and Heldal, R. (2017). A taxonomy of tool-related
issues affecting the adoption of MDE. Sosym, 16:313–
331.

Zaki-Ismail, A., Osama, M., Abdelrazek, M., Grundy,
J., and Ibrahim, A. (2022). Rcm-extractor: an au-
tomated nlp-based approach for extracting a semi-
formal representation model from natural language re-
quirements. AUSE, 29(1):1–33.

Zhao, L. et al. (2020). Natural language processing for re-
quirements engineering: a systematic mapping study.
ACM Computing Surveys.

Zucker, J. and D‘Leeuwen, M. (2020). Arbiter: a domain-
specific language for ethical machine learning. In
AIES ‘20.

APPENDIX

A CGTL script for processing a language L consists
of a group of rulesets, each ruleset has a name and
an associated sequence of rules, and processes syntax
trees with the same tag as the ruleset name. Figure 3
shows the metamodel of CGTL, adapted from that of
CSTL (Lano and Xue, 2020).

Figure 3: CGTL metamodel.

Ruleset names are usually the same as the source
language syntax categories defined in the L grammar.
A ruleset has the format:

rulesetName::
(rule\n)+

Lightweight Software Language Processing Using Antlr and CGTL

29

Individual rules in CGTL have one of the four
forms:
lhs |-->rhs
lhs |-->rhs<when> Conditions
lhs |-->rhs<action> Actions
lhs |-->rhs<when> Conditions <action> Actions

Conditions can test the syntactic category of elements
stored in CGTL variables, and other properties of
these elements. They have the syntax

(variable value,)* variable value

where a variable is i for integer i or i‘f for identifier
f . The value is an identifier p or a negated predicate:
not p.

The left hand side (LHS) of a rule is a schematic
representation of textual concrete syntax in the source
language L1, e.g., in a DSL or 3GL, and the right hand
side (RHS) is the corresponding concrete syntax in
the target language L2 which the LHS should translate
to. The LHS represents a parse tree t of L1 elements,
with its tokens corresponding to t.terms for compos-
ite t, or to t.value for basic t. Apart from literal text
concrete syntax items, the LHS may contain variable
terms 1, 2, etc, representing direct child subtrees of
the tree (the properties of these elements can be con-
strained by the optional rule condition), and the RHS
refers to the translation of these child elements also
by 1, 2, etc. The special variable ∗ denotes a list of
syntactic elements, and $ represents a script param-
eter. Specialised rules are listed before more general
rules. If no rule LHS matches a source parse tree then
the tree content is copied to the output, this can be
useful for debugging scripts.

One script g can be invoked from another, f , by
the notation i‘g in a rule of f . Control is transferred
to script g. In addition, the same notation can be in-
voked to apply a specific ruleset g within the same
script to i. These facilities enable modularisation of
CGTL code. Metafeatures such as the unparsed tex-
tual form of an element, or its inferred type, can also
be referred to via i‘rawText or i‘type. In comparison
with Xtend, EGL or other template-based languages,
there are no delimiters separating literal target lan-
guage text from template language text. An <action>
clause can be added to rules, to attach information
to elements (eg., inferred types of elements) that can
be read by subsequent rule applications. The action
clause has the same syntax as the conditions clause.

CGTL semantics is based on text matching and
substitution. The semantics defines the result cgtl(s, t)
of applying a CGTL script s to a composite or basic
AST term t:

cgtl(s, t) = cgtl(s, tg, t)

if t.tag = tg and s contains a ruleset tg::, otherwise
cgtl(s, t) = t. For a ruleset name tg of s,

cgtl(s, tg, t) = rhs[t′1, ..., t
′
n]

where t.tag = tg, each t′i is cgtl(s, ti), and the rule

lhs[_1,...,_n] |-->rhs[_1,...,_n]<when>
Conditions[_1,...,_n]

of tg:: is the first whose lhs matches t and whose
Conditions are true. If there is no such matching rule
then cgtl(s, tg, t) = t.

t matches lhs if t’s subterms t.terms match suc-
cessive tokens of lhs: symbol terms of t must equal
corresponding tokens of lhs, and non-symbol terms ti
are bound to corresponding variables i in the token
list of lhs. A variable ∗ binds to a list of successive
terms which occur between specific symbol terms. r
is then applicable to t if Conditions[t1, ..., tn] also hold.
In this case, the script s is applied to each of the ti to
produce t′i = cgtl(s, ti) if i occurs as a simple vari-
able expression on the RHS. However, if it occurs as
i‘f for ruleset name f , then t′i = cgtl(s, f , ti), and in

the case of a script name g: t′i = cgtl(g, ti).
A variable ∗ is replaced in rhs by the string

concatenation of the t′i of the terms bound to
it. Various built-in functions such as recurse and
first have specific denotations. Other metafea-
tures i‘f are evaluated as ASTTerm.features[ti +
””]→select(x | x→hasPrefix(f + ” = ”))→collect(y |
y→after(” = ”))→any(), in both the rhs and condi-
tions.

If a rule with actions Actions[1, ..., n] matches
term t, then the Actions are executed on the subterms
ti of t bound to the i. An action i p adds p to
ASTTerm.features[ti + ””] and an action i not p re-
moves p from ASTTerm.features[ti + ””]. An action
i‘f p adds f + ” = ”+p to ASTTerm.features[ti + ””]

and an action i‘f not p removes f + ” = ”+ p from
ASTTerm.features[ti + ””].

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

30

