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Neuromorphic Vision Sensors, which are also called Dynamic Vision Sensors, are bio-inspired optical sensors
which have a completely different output paradigm compared to classic frame-based sensors. Each pixel of
these sensors operates independently and asynchronously, detecting only local changes in brightness. The out-
put of such a sensor is a spatially sparse stream of events, which has a high temporal resolution. However, the
novel output paradigm raises challenges for processing in computer vision applications, as standard methods
are not directly applicable on the sensor output without conversion.

Therefore, we consider different event representations by converting the sensor output into classical 2D frames,
highly multichannel frames, 3D voxel grids as well as a native 3D space-time event cloud representation. Us-
ing PointNet++ and UNet, these representations and processing approaches are systematically evaluated to
generate a semantic segmentation of the sensor output stream. This involves experiments on two different
publicly available datasets within different application contexts (urban monitoring and autonomous driving).
In summary, PointNet++ based processing has been found advantageous over a UNet approach on lower reso-
lution recordings with a comparatively lower event count. On the other hand, for recordings with ego-motion
of the sensor and a resulting higher event count, UNet-based processing is advantageous.

1 INTRODUCTION

The Dynamic Vision Sensor (DVS), which stems
from the research field of neuromorphic engineering,
emulates key aspects of the human retina. This results
in a basically different output paradigm compared to
classic image sensors. A DVS does not operate at a
fixed frame rate. Only local brightness changes in the
scene are detected and directly transmitted. For this
purpose, the pixels of a DVS work independently and
asynchronously from each other. An output is gener-
ated as soon as a change in brightness above a defined
threshold has been detected.

In this context, the triggering of a single DVS-
pixel is called an “event”. Each of these events is
a tuple (x,y,¢,p) which contains information about
the spatial (x,y) position of the active pixel in the
sensor array, a very precise timestamp ¢ of trigger-
ing and a polarity indicator p, which encodes the di-
rection of the brightness change (from bright to dark
or vice versa). The output of a DVS is therefore an
information-rich, sparse stream of events with a vari-
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able data rate that depends directly on the change in
the scene. An example of this stream is shown in Fig-
ure 1.

This DVS operating paradigm results in advanta-
geous characteristics, in terms of high time resolution,
low data redundancy and power consumption and a
very high dynamic range, which can be very useful
in outdoor measurement scenarios like monitoring or
autonomous driving.

The output of a Dynamic Vision Sensor is fun-
damentally different from a standard camera due
to the described operation paradigm (synchronous
and dense frame vs. asynchronous sparse event
stream). Therefore, well-established computer vision
approaches are not direct and natively applicable. In
this work, we evaluate different event representations
and deep learning networks to generate a multi-class
semantic segmentation of DVS event data.

For this challenge, we consider variants of con-
verting the DVS stream into single or multi-channel
images, a 3D voxelization approach as well as the di-
rect interpretation of the event stream as a 3D event
point cloud. We summarize our main contributions as
follows:
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(a) Observed stimulus

(b) Triggered DVS-Event
Stream

Figure 1: Visualization of DVS output concept (event po-
larity is color-coded; “on” in green and “off” in red).

* consideration of 3D DVS space-time event cloud
processing (Wang et al., 2019) and the extension
of (Bolten et al., 2022) to another dataset in the
application field of autonomous driving

* a systematic comparison of single-channel and
high-multichannel 2D event representation, as
well as 3D event stream voxelization

* and evaluation of a UNet (Ronneberger et al.,
2015) network structure to generate a semantic
segmentation on these representations.

The pre-processed datasets as well as the gener-
ated network predictions are available for download'
to support further comparisons and research.

The rest of this paper is structured as follows. Sec-
tion 2 outlines related work on semantic segmenta-
tions of neuromorphic event data. The evaluated event
representations and deep learning approaches are ex-
plained in Section 3. Section 4 presents the used
datasets, the performed data pre-processing, the train-
ing configurations and summarizes the evaluation re-
sults we obtained. Finally, a brief summary is pro-
vided in Section 5.

2 RELATED WORK

Although Dynamic Vision Sensors are a relatively
new type of sensor technology, they are already being
used in a variety of applications. For example, this
includes real-time vibration measurements and con-
trol applications (Dorn et al., 2017) related to indus-
trial applications, applications in the context of au-
tonomous driving (Chen et al., 2020) or the use in
space surveillance applications (McMahon-Crabtree
and Monet, 2021). The goal of this work is to derive a
semantic segmentation of the DVS event stream. This
means that a object class label will be assigned to each
DVS event.

Uhttp://dnt.kr.hsnr.de/DVS-UNetSemSeg/

In (Sekikawa et al., 2019) the authors have intro-
duced the so-called EventNet. It is as neural network
designed for the processing of asynchronous event
streams in an event-wise manner which is capable to
produce a semantic segmentation. Their approach is
based on an adaption of a single PointNet structure
(Qi et al., 2017a) which is made real-time capable by
recursive processing of events and precomputed look-
up tables. By design it is not capable to extract hier-
archical features from the data. For this reason, and
because we are not targeting real-time capability, we
did not consider this approach further. Instead, we ex-
amine PointNet’s successor, PointNet++ in its vanilla
form.

The EvDistill approach presented by (Wang et al.,
2021) is based on a student-teacher network de-
sign to overcome the hurdle of missing large-scale,
qualitatively labeled datasets. A teacher network is
trained on large-scale, labeled image data where the
student network learns on unlabeled and unpaired
event data by knowledge distillation. Because not all
datasets considered in our work provide classical im-
ages (source modality) for the teacher, we have not
considered this approach further.

An Xception based encoder-decoder architecture
is used in EV-SegNet by (Alonso and Murillo, 2019)
to obtain a semantic segmentation. For this purpose, a
dense 6-channel 2D frame representation of the event
stream is used. They also provide a labeled dataset
from the autonomous driving domain. We use this
dataset and compare our UNet-based results with their
results.

In (Bolten et al., 2022) an evaluation of a semantic
event-wise segmentation utilizing different data scal-
ing variations and network configurations based on
PointNet++ is presented. In our work, we extend
this comparison to another dataset. Furthermore, we
consider more event representations and replace their
MaskRCNN based 2D reference processing to UNet
based approaches.

In the literature, DVS event streams are often pro-
cessed by converting them to classic 2D frame rep-
resentations, which are then further processed using
well-known off-the-shelf computer vision techniques.
For example, frame conversion is performed in (Chen
et al., 2019; Jiang et al., 2019; Wan et al., 2021), and
then a Yolo-based approach is used. Furthermore, a
variety of other possible event representations have
developed. A larger set of these representations will
be considered and examined in this study. There-
fore, further details as well as literature references are
given in the following Subsection 3.1.
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(d) Plain 3D (x,y,t)
space-time event cloud

Figure 2: Graphical rendering of the considered basic event representations ideas.

PROPOSED METHOD

The DVS event representations used in this work as
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1 as the 2D and 3D deep learning network struc-

tures are presented and outlined in the following.

3.1

Event Representations

The event output stream from a Dynamic Vision Sen-
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is often converted into alternative representations
processing. In our work, we consider the subse-
nt 2D as well as 3D representations and compare
achieved results in the subsequent processing.

Frame Representation: The DVS event stream
is converted to classic 2D frame representations
by projection along the time axis. Typically, ei-
ther a fixed time window or a fixed number of
events is considered to construct the frame (Liu
and Delbriick, 2018). For this conversion, there
are a variety of encoding rules that also aim to
consider the time resolution included in the DVS
stream (Lagorce et al., 2017; Mitrokhin et al.,
2018).

As a baseline for comparing the following encod-
ings, we consider only the binary projection of the
event stream as a pure 2D frame encoding in this
work (compare with Figure 2a), resulting in a rep-
resentation of shape (x x y x 1).

Iti-Channel 2D Frame Representation: Within
this projection of the DVS stream, classical 3-
channel RGB images could also be generated, e.g.
by color coding of the event polarities. In addi-
tion, there are also various other approaches that
encode different aspects of the DVS stream in
non-intuitive multichannel images. The “Merged-
Three-Channel” representation defined in (Wan
et al., 2021) is an example of such an encoding.
In this representation, information about the event

frequency, the timestamps and continuity are rep-
resented in individual image channels.

Within our work, we aim to better represent and
exploit the temporal context of the DVS stream.
Therefore, we consider as an input encoding
a highly multidimensional representation of the
DVS data. Here, the time component of the signal
is separated and stored in many channels during
projection, resulting in a representation of shape
(X X Y X fchannel)- A visualization is given in Fig-
ure 2b.

3D Voxel-Grid Representation: Another approach

to maintain and better preserve the high temporal
resolution of the DVS event stream is the inter-
pretation as a 3D spatio-temporal volume. Vox-
elization of this volume encodes the distribution
of events within the spatio-temporal domain (Zhu
et al.,, 2019; Chaney et al., 2019). This type of
representation is also often used as an intermedi-
ate encoding to convert the event stream into other
forms, such as graphs (Deng et al., 2022).

We form time voxels per pixel in our work, as we
discretize the time dimension per pixel into fi,
bins to include and consider fine spatial structures.
This discretization leads to a data representation
of shape (X X y X fpin X 1) which encodes the oc-
currence of an event per voxel. A visualization is
given in Figure 2c.

3D (x,y,t) Space Time Event Cloud Representa-

tion: In the previously described representation
as a voxel grid, the sparsity of the event stream is
lost in the encoding. This property and the high
resolution of the time information is preserved
when interpreting the DVS data as a 3D (x,y,t)
space-time event cloud. In this way, the spatio-
temporal information is directly encoded as geo-
metric neighborhood information (compare with
Figure 2d).
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(a) Farthest Point
Sampling (input from
Figure 2d)

Neighborhood selections

(b) Subset of Ball-Query (c) Abstracted Event Set (d) Abstracted Event Set

of Layer 1 Layer 2

Figure 3: Summary of PointNet++ processing concept.

By applying point set processing methods, such
as PointNet++ (Qi et al., 2017b), DVS data can be
processed directly (Wang et al., 2019; Sekikawa
et al., 2019; Mitrokhin et al., 2020; Bolten et al.,
2022).

3.2 Network Architectures

In this work we compare 3D and 2D event representa-
tions and processing approaches using the following
deep learning networks:

PointNet++. Hierarchical feature learning
PointNet++ (Qi et al., 2017b) learns a spatial en-
coding of point cloud data. For this purpose, the
input data is hierarchically divided and summa-
rized. By the respective application of a simple
PointNet (Qi et al., 2017a) as a feature extractor,
local and global features are built and combined.
This results finally in a representation of the entire
point cloud.

This hierarchical process is realized by so called
Set Abstraction Layers (SA) of the network. First
representative centroid points of local regions
are selected by a farthest point sampling (Figure
3a). Subsequently local neighboring points are
selected around these centroids. By default, this
is performed via a ball query which finds an up-
per limited set of points within a defined radius
(Figure 3b). The extracted pattern feature vectors
of these local regions will be geometrically repre-
sented by the centroid coordinates (Figure 3c for
the first and 3d for the subsequent second layer).
This approach to create common structure parti-
tions allows sharing the weights of the feature ex-
tractors per network layer. This leads to relatively
small networks.

In the case of semantic segmentation, the resulting
features are finally interpolated by a Feature Prop-
agation Layer (FP) to produce point-wise values.

UNet. Convolutional Networks for Biomedical Im-
age Segmentation

The UNet architecture (Ronneberger et al., 2015)
has its origin in medical image segmentation,
but was successfully applied to a various field
of applications (Pohle-Frohlich. et al., 2019;
McGlinchy et al., 2019; Liu and Qian, 2021). It
is a convolutional neural network that produces a
precise pixel-by-pixel segmentation.

The architecture follows a division into an en-
coder and a decoder part. Within the encoder, spa-
tial resolution is reduced by convolution and max-
pooling, while the number of feature channels is
increased. This extracts high-resolution and deep
features about the context. In the second part, the
decoder, the original resolution is restored by up-
sampling. By increasing the resolution of the out-
put in this way, the decoder learns to create an out-
put with precise localization. UNet architecture
combines the feature channels from this down and
upsampling by skip connections, allowing the net-
work to propagate and combine context and local-
ization information.

The visualization of an example configuration is
given in Figure 5.

4 EXPERIMENTS

Initially, the used datasets are introduced and the per-
formed data preprocessing is summarized. In the fol-
lowing, the hyper-parameters and the specific network
layer and training configurations are presented. Sub-
sequently the description of the used metric, as well
as the achieved results, including a brief discussion
and summary is given.

4.1 Datasets

In comparison to classical frame-based computer vi-
sion, there is currently a significantly lower number of
event-based datasets available. This is particularly ev-
ident with the requirement for annotations at the level

171



VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

(a) (b) DOG (c) (d) (e) BIRD
PERSON BICYCLE SPORTS-
BALL

(f) INSECT (g) TREE (h) TREE (i) RAIN (j) BACK-
CROWN SHADOW GROUND

Figure 4: False-color DVS-OUTLAB class examples (re-
produced from (Bolten et al., 2022) with permission from
the authors).

of semantic segmentation.

Most large-scale datasets like GENI (de Tourne-
mire et al., 2020) or even smaller datasets (Miao et al.,
2019) contain object labels only at the level of pro-
vided bounding boxes to achieve an object detection,
but do not provide labels for a semantic segmentation.

We therefore limited our comparison to the two
datasets below, which provide those annotations in a
multi-class scenario.

DVS-OUTLAB: This dataset (Bolten et al., 2021)
contains recordings of a DVS-based long-time
monitoring of an urban outdoor place. For this
purpose, three CeleX-IV sensors (Guo et al.,
2017) were used. These recordings offer a total
spatial resolution of 768 x 512 pixels.

The dataset contains semantic label annotations
for about 47k regions of interest, separated into
70/15/15% sets for test, train and evaluation. Each
region of interest with a spatial size of 192 x 128
pixels contains events and labels for a sequence of
60ms length of the underlying DVS event stream.

The labeling takes 10 different classes into
account, including different object classes, as
well as environmental noise originating from the
outdoor-setup of the measurement (compare with
Figure 4). The labels are provided on a per event-
basis.

Subset of DDD17 Sequences: The authors of the

Ev-SegNet approach (Alonso and Murillo, 2019)
published with their work a subset of the DDD17
dataset (Binas et al., 2017) extended by semantic
labels.
The DDD17 dataset contains sequences of record-
ings obtained from a moving car in traffic (com-
pare to Figure 6). These recording were taken
with a DAVIS346B Dynamic Vision Sensor, of-
fering a spatial resolution of 346 x 260 pixels. The
data was cropped to 346 x 200 pixels, as the lower
60-pixel rows included the dashboard of the car.
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The dataset contains 15950 sequences for train-
ing and 3890 for testing, each corresponding to
a 50ms section of the event stream. For these
sequences, the authors automatically generated
pixel-wise semantic labels based on gray-scale
images from the DAVIS sensor by applying a
CNN. Thereby six different classes were consid-
ered: (1) construction/sky, (2) objects (like street
signs or light poles), (3) nature (like trees), (4) hu-
mans, (5) vehicles and (6) street. These labels are
provided as dense 2D frames.

4.2 Data Preprocessing

The following pre-processing was performed to pre-
pare the datasets and generate the presented event rep-
resentation:

Subset of DDD17 Sequences: The DVS event data
was published by (Alonso and Murillo, 2019) in
the form that only a 2D frame representation of
the event stream is directly available. Further-
more, the generated labels are also only avail-
able in the form of 2D frames. Thus, they
are not directly usable for the generation of our
proposed multi-channel, voxel or 3D space-time
event cloud representation.

Therefore, utilizing the native DDDI17 event
stream recordings, we first propagated the labels
of the EvSegNet subset back to the original event
stream. This results in annotations per event in
the form of (x,y,7,p,label). For each 50ms of
the event stream the corresponding 2D label was
transferred to all underlying events at the same
spatial position within this time window.

DVS-OUTLAB: The labeling of this dataset is al-
ready available in the form of a semantic annota-
tion per event. Therefore, no adaption of the label
representation was necessary.

The 3D (x,y,t) space-time event cloud representa-
tion is built natively direct from the event stream. For
the remaining 2D and voxel representations, an inter-
mediate numpy-array was calculated. For this pur-
pose, a 3D voxel histogram was generated per pixel-
position, splitting the time axis into 64 components
(tchannel and tpiy in Figure 2). The labels were trans-
formed into an equivalent voxel form. By applying
numpy-operations a convenient transformation into
the proposed 2D representations is possible?. This
pre-processed data is available for download.

2The fast transformation from 3D voxels to the pro-
posed 2D frame representations could be done by simple
reshape and/or amax operations.
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Figure 5: UNet 2D configuration example for DVS-OUTLAB dataset (10 object classes plus the “void” for regions without

any event).
Table 1: PointNet++ configuration summary (compare to syntax used in (Qi et al., 2017b)).
SA(2048,9.6,[32,32,64]) — SA(256,28.8,]64,64,128]) —
DVS-OUTLAB | PNet++(4096, 3L) | SA(16,76.8,[128,128,256]) — FP([256,256]) — FP([256,128]) —
FP([128,128,128,128,10])
PNet++(4096, 5L) | SA(2048,17.3,]32,32,64]) —
DDD17 PNet++(8192, 5L) | SA(4096,173,[32,32,64]) —~ ~ "~~~ "7~

followed by

SA(64,103.8,[256,256,512]) — SA(16,138.4,[512,512,1024]) —
FP([256,256]) — FP([256,128]) — FP([256,256]) —
FP([256,128]) — FP([128,128,128,128,6])

The division into 64-time components is selected
so that in the subsequent logic of UNet processing,
the choice of the input dimension as a power of two
leads to integer dimensions in the downsampling and
upsampling logic. Furthermore, the spatial resolution
was extended by zero-padding into quadratic inputs
for the UNet processing. This results in 192 x 192
pixel resolution for the DVS-OUTLAB data and to
346 x 346 pixel for the DDD17 subset. In the repre-
sentations, the presence or absence of events per spa-
tial position is encoded by the numerical value 255 or
0.

Moreover, we created and tested two variations
for each of the datasets. One plain version, that in-
cludes all events and one that was spatio-temporal
pre-filtered to reduce included sensor background
noise and to estimate the effects of noise reduction
for the semantic processing. For this purpose, a time
filter was applied to remove all events that were not
supported by another event at the same (x,y) coor-
dinate within the previous 10ms. This type of filter
has shown a reasonable trade-off between noice re-
duction and preservation of object events (compare to
performed evaluation in (Bolten et al., 2021)).

4.3 Training

The following network layer configurations and train-
ing hyper-parameters were used in our experiments:

PointNet++. For the PointNet++ training configura-

tion we followed the selected hyper-parameters
from (Bolten et al., 2022). This results in us-
ing the Adam optimizer with a learning rate of
0.001 and an exponential decay rate of 0.99 ev-
ery 200.000 trainings steps. The batch size was
set to 16 space time event clouds.

For the DVS-OUTLAB dataset we follow also
their data patching and scaling scheme (ST . ),
layer depth and set abstraction configuration. In
case of the DDDI17 data, we adapted the net-
work configuration due to the larger spatial input
dimension (346 x 200 pixel vs 192 x 128 pixel
per region) to address the resulting higher event
count. Additional we trained and tested two Point-
Net++ configurations with a previous subsam-
pling to 8192, respectively 4096 events.

The specific PointNet++ configuration used for
training is summarized in Table 1.

UNet. The UNet trainings were carried out utilizing
an Adam optimizer with a learning rate of 0.001
and an exponential decay with a rate of 0.99 af-
ter each epoch. The batch size was set to 6 sam-
ples. A sparse categorical cross entropy weighted
by the class occurrence frequency was chosen as
the loss function to address the class imbalances
included in the datasets.

In all performed UNet experiments the model is
built with a depth of 4 layers and a number of 16
filters in the first block, which are multiplied by
2 in each subsequent block. The kernel size in
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(a) 2D Labels

(c) 2D Labels

(d) Corresponding Events

Figure 6: Ev-SegNet DDD17 subset: dense label compared
to sparse event stream.

the 2D or respective 3D-convolutions were set to
three. A used 2D UNet example configuration is
shown in Figure 5 as reference.

4.4 Metric

In the literature, and this is also the case for event
cameras as in (Alonso and Murillo, 2019), the eval-
uation is often performed on the basis of dense 2D
frames. For each 2D pixel of the annotation the cor-
responding pixel value of the network prediction is
considered and compared. But this type of evaluation
ignores the basic property of a Dynamic Vision Sen-
sor that the produced event stream is spatially sparse.
This is clearly illustrated by Figure 6, which shows
two scenes from the DDD17 data subset. In Subfig-
ure (a, b) a scene with limited or without movement is
shown, whereas Subfigure (c, d) displays a scenes of
higher speed. Within a slow scene only a few events
are triggered and even with faster movements, there
are many areas where no or only a few events were
triggered as well.

Networks operating on a sparse representation,
such as the used PointNet++, cannot predict results
at positions where no events were triggered. There-
fore, a proper comparison on this dense 2D basis is
not possible. Furthermore, this type of 2D compar-
ison ignores the fact, that at one spatial (x,y) posi-
tion multiple events could have been triggered within
the selected time window. Therefore, we consider
in our evaluation only spatial positions where events
were triggered. Furthermore, the number of triggered
events for each predicted label is also taken into ac-
count.

In contrast to PointNet++, for the UNet based pro-
cessing approaches, it is possible that a class pre-
diction occurs at a spatial position where no DVS

174

Table 2: Weighted-Avg F1 results on DVS-OUTLAB
dataset.

2 = =
8 9 z = <
2 ~ g 8 T8 o
= o = = >8 o
) Ne 2 S g Z
Z M &b @) D o o

(a) PointNet++ reference results

PNet(4096,3L) | 0.968 0.816 0.853 | 0.936

(b) Unfiltered UNet results

UNet 2D 0951 0.842 0.764 | 0.902
UNet 2D 64ch 0.958 0.847 0.780 | 0.912
UNet 3D Voxel | 0.941 0.843 0.775 | 0.895

(c) Spatio-temporal filtered (time 10ms) UNet results

UNet 2D 0.925 0.838 0.757 | 0.868
UNet 2D 64ch | 0.938 0.850 0.826 | 0.897
UNet 3D Voxel | 0.928 0.843 0.809 | 0.883

event has been triggered (the “void” background). To
take account for this we perform the following simple
post-processing before evaluation:

If an object class prediction is made but no event
is present (pred # void A event = 0), this predic-
tion is interpreted as void and ignored. In case that
no object class prediction is made but an event is
present (pred = void A event # 0), this prediction is
re-interpreted and considered as the dominating back-
ground class for evaluation (class background for
DVS-OUTLAB, construction/sky for DDD17).

Considering the number of triggered DVS events
we then calculate the F1 score, which is described as
the harmonic mean of precision and recall:

TP
TP+0.5-(FP+FN)

To summarize the results, we also calculated weighted
averages taking the number of each class’s support
into consideration (Weighted-Avg F1).

For a fair comparison of the 3D and 2D methods
(different counts of predictions and therefore a higher
number of possible errors in case of higher output
dimension) we equalize all generated predictions for
evaluation. The 3D predictions are projected along
the t-axis by considering the most frequent prediction
at each spatial position for comparison with the 2D
results.

F1-Score =

4.5 Evaluation

The evaluation results of the PointNet++ processing,
as well as the results for the different event repre-
sentations in combination with the 2D and 3D UNet
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processing for the DVS-OUTLAB dataset are sum-
marized in Table 2. The PointNet++ based process-
ing achieves the better segmentation results on this
dataset compared to the 2D or 3D voxel UNet pro-
cessing. This is consistent to the PointNet++ and 2D
MaskRCNN comparison presented in (Bolten et al.,
2022).

The summary of results for the subset of labeled
DDD17 dataset sequences is given in Table 3. On this
dataset, PointNet++ processing achieves weaker re-
sults in contrast to the UNet variations and the dataset
authors’ Ev-SegNet reference. A noticeable differ-
ence exists here in the results of the class ”Objects”
in the PointNet++ based processing. This class of the
dataset contains, for example, lampposts, street signs
or traffic lights. Although the PointNet++ configura-
tions used here were adjusted in the number of points
to be considered in the input cloud and the first SetAb-
straction layer, as well as the layer count itself, this
suggests that such fine details were not fully captured.
Due to the high number of triggered events in the au-
tonomous driving context of this dataset (compared
to a static sensor in DVS-OUTLAB monitoring) and
the larger spatial input (346 x 200 pixel vs 192 x 128
pixel), the encode/decoder approach to UNet process-
ing seems to have an advantage.

The PointNet++ processing, on the other hand, re-
lies on considering sufficient representative events se-
lected by farthest point sampling and corresponding
neighborhood formation. Please compare to Figure 3,
especially (a) and b, which summarizes the basic idea
of PointNet++ processing.

However, when considering the overall results on
the DDD17 subset, the given quality of the ground
truth label must be considered. These labels were
generated by (Alonso and Murillo, 2019) through an
automatic processing. Out of a total of nearly 12
hours of material from the DDD17 dataset, about 15
minutes were labeled in this way, and the GT labels
obtained are not completely accurate and consistent
over time. Figure 7 gives an example of included ar-
tifacts in the GT labels using two examples that are
separated by a short period of time. The annotations
of the included traffic sign and the tree (marked by
red arrows) varies, although, for example, the UNet
predictions are correct.

Overall, across both datasets, it can be observed
that UNet-based processing achieves better results
on unfiltered raw data than on spatio-temporal pre-
filtered data. In general, an improvement of the UNet
based results can be observed with an increase of
the dimensionality of the event representation used.
Whereas the use of the 3D voxel grid brings only mi-
nor differences in comparison.

Table 3: Results on subset of DDD17 dataset.
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(a) Ev-SegNet baseline (Alonso and Murillo, 2019), metric recalculated to match proposed evaluation

Ev-SegNet

[0916 0229 0.712 0.670 0.850 0.727 [ 0.696 0.876

(b) PointNet++ results

PNet(8192, 5L) 0.842 0.088 0.516 0398 0.743 0.619 | 0.534 0.771
PNet(4092, 5L) 0.840 0.103 0.521 0464 0.748 0.600 | 0.546 0.766
(c) Unfiltered UNet results
UNet 2D 0.886 0.266 0.686 0.577 0.835 0.703 | 0.659 0.829
UNet 2D 64ch 0.895 0.285 0.723 0.533 0.849 0.723 | 0.668 0.843
UNet 3D Voxel 0.898 0301 0.729 0.572 0.847 0.719 | 0.678 0.843
(d) Spatio-temporal filtered (time 10ms) UNet results
UNet 2D 0.882 0.265 0.673 0.557 0.846 0.660 | 0.647 0.826
UNet 2D 64ch 0.896 0289 0.713 0590 0.862 0.681 | 0.672 0.846
UNet 3D Voxel 0.895 0296 0.713 0.568 0.858 0.680 | 0.668 0.843
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Ev-SegNet

Unet 2D

Ev-SegNet

PNet (8192, 5L) PNet (4096, 5L)

Unet 2D 64ch Unet 3D

(a) Ground truth vs prediction at #;

PNet (8192, 5L) PNet (4096, 5L)

(b) Ground truth vs prediction at#; + 1.25 sec

Construction

Objects Nature

Human Vehicle Street

Figure 7: Visualization of GT labeling quality of DDD17 subset from (Alonso and Murillo, 2019) and predictions of trained
networks. Note the inconsistent GT labeling of the marked traffic sign and trees between the timestamps shown. (best viewed

in color and digital zoomed)

S CONCLUSION

The improvement in the UNet prediction quality us-
ing the highly multi-channel event representation over
the single 2D frame variant indicates a benefit of the
more complex representation. Whereas the use of 3D
voxel grids also achieves good results (compare ex-
emplarily with the results shown in Figure 7). Un-
fortunately, the associated UNet network structure is
larger due to the 3D convolutions and therefore slower
for inference.

The sensor property of a DVS to produce an out-
put stream that is spatially sparse becomes particu-
larly clear when statistically examining the used voxel
representation. Over the two complete data sets, only
about 0.45% of the voxels are populated by an event
(corresponding 99.55% of the voxels considered are
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empty). A classical UNet based on simple 3D con-
volutions already achieves good results on this voxel
representation - and this despite the fact that the ap-
plication of these convolutions quickly increases and
“blurs” the set of active (non-zero) features. There-
fore the usage of sparse convolutions (Graham and
van der Maaten, 2017) and the adaption of the UNet
network into a sparse voxel network for semantic seg-
mentation (Graham et al., 2018; Najibi et al., 2020) is
an interesting task for further work.

In summary, differences between the evaluated
network structures have also emerged. A PointNet++
based processing is better suited for scenes without
ego-motion of the sensor, whereas for moving sen-
sors and the inclusion of larger spatial input patches a
UNet based processing has shown advantages.
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