
Random Quasi Intersections with Applications to Instant  
Machine Learning  

Alexei Mikhailov and Mikhail Karavay 
Institute of Control Problems, Russian Acad. of Sciences, Profsoyuznaya Street, 65, Moscow, Russia 

Keywords: Machine Learning, Inverse Sets, Inverse Patterns, Pattern Indexing, Quasi Intersections. 

Abstract: Random quasi intersections method was introduced. The number of such intersections grows exponentially 
with the increasing amount of pattern features, so that a non-polynomial problem in some machine learning 
applications emerges. However, the paper experimentally shows that randomness allows finding solutions to 
some visual machine learning tasks using a random quasi intersection-based fast procedure delivering 100% 
accuracy. Also, the paper discusses implementation of instant learning, which is, unlike deep learning, a non-
iterative procedure. The inspiration comes from search methods and neuroscience. After decades of 
computing only one method was found able to deal efficiently with big data, - this is indexing, which is at the 
heart of both Google-search and large-scale DNA processing. On the other hand, it is known from 
neuroscience that the brain memorizes combinations of sensory inputs and interprets them as patterns. The 
paper discusses how to best index the combinations of pattern features, so that both encoding and decoding 
of patterns is robust and efficient. 

1 INTRODUCTION 

Most machine learning methods make use of iterative 
training, gradient descend and many adaptive 
coefficients resulting in slow learning. At the same 
time, human brain can often memorize new visual 
patterns at first glance. This paper investigates how to 
build non-iterative, instant learning by partly 
borrowing ideas from text search engines (Brin and 
Page, 1998). For some previous work on numerical 
data indexing please refer to (Sivic and Zisserman, 
2009,  Mikhailov et al., 2017, Mikhailov and 
Karavay,  2021). However, the novelty of the 
approach discussed in this paper comes from the 
suggested method of random quasi intersections, 
which makes indexing of noisy, numerical patterns a 
possibility. Random quasi intersections (hereinafter 
referred to as quasi intersections) emerge as a result 
of random pairing of close elements of two sets that 
are defined in a metric space. Depending on 
applications, quasi intersections can aid machine 
learning leading up to 100% accurate classification. 
Besides, quasi intersections allow for pattern 
inversion that drastically cuts down the 
computational complexity leading to instant non-
iterative learning. Similar to deep learning, quasi 

intersections can work on raw features for some 
computer vision application. Whereas the classical 
intersection size of sets ,  X Y is defined as the 
number of pairs of identical elements 

| |   |{ ( ,  ) :  } |X Y x X y Y x y= ∈ ∈ =  

the quasi intersection size is defined as the number of 
pairs of close elements 

    | |   | { ( ,  ) :  |  -  |   }eX Y x X y Y x y e= ∈ ∈ ≤      (1) 

The definition (1) simultaneously produces many 
potential quasi intersections of different sizes 
between sets ,  X Y since many combinations of 
mating pairs are possible.  

Example 1. Let  {1,  2},     {2,  3},    1X Y e= = = . 
Here, there exist two quasi intersections: 

- single pair (2, 2) quasi intersection is all there is 
since the pair (1, 3) does not qualify: |1 - 3| > 1; 

- two pair quasi intersection is also possible since both 
pairs (1, 2), (2, 3) do qualify. 

The specific intersection size emerges only after a 
specific pairing of elements of two sets is completed, 
that is, one combination of pairs is created. Here, the 
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exclusion rule applies, which states that each element 
in one set cannot pair simultaneously with more than 
one element from the other set. 

Another reason for introduction of the non-
standard definition (1) is as follows. In machine 
learning applications, when patterns are classified in 
accordance with their similarities, the intersection 
sizes must be stable. The term e  specifies acceptable 
variability of sets’ elements. With classical 
intersections, even though the identity 
|{ } { } |   |{ } |x x x=  is true, a small noise e  can 
render the classical intersection empty: 
|{ } { } |   0x x e+ = . But, the quasi intersection 
{ } { }ex x e+  can restore the original intersection 
size |{ } { } |   |{ } |ex x e x+ = if elements are 
properly paired. Then, for instance, the Jaccard 
similarity ( , ) | | / | |J X Y X Y X Y=   (Jaccard, 1901) 
can be used for classification purposes. 

Example 2. For intuitively similar sets 
{100,150,200}X =  and   {199,  151,  101}Y = , 

classical intersection size is equal to 0. However the 
non-standard definition (1) restores the intersection 
size to | |   3 at 1eX Y e= = .  

The main results of the paper are provided in 
Section 2. The Section 3 describes basics of 
applications of quasi intersections to machine 
learning, which is illustrated by two examples. 
Section 3.3 presents an introductory example of 
classification of visual patterns and Section 3.4 
considers using quasi intersections for 1100 
commercial trademarks image classification. Finally, 
the Appendix Section discusses the basics of pattern 
inversion techniques that are employed together with 
the quasi intersections method. 

2 RESULTS  

a) A novel definition of the quasi intersection was 
introduced, which is a specific pairing of close 
elements. 
b) At an arbitrarily large e , the number of quasi 
intersections grows exponentially as !n  
c) Two pattern recognition experiments of quasi 
intersection-based machine learning show 100% 
accuracy achieved at testing (ref. to Section 3.3, Table 
1, and Section 3.4, Table 2).  
 
 
 

3 QUASI INTERSECTIONS IN 
MACHINE LEARNING   

With the objective of pattern recognition by 
classification that is based on set similarities, it might 
seem reasonable to look for maximum or minimum 
quasi intersection sizes as a measure of set similarity. 
However, such approach is not feasible.  Indeed, for 
two sets with N  elements each, there exist !N  ways 
of pairing the sets’ element. This number can easily 
grow bigger than the number of atoms in the 
Universe. But, importantly, experiments show that  
as the feature set size goes beyond some  
50 – 100 features, the quasi intersection-based 
classification accuracy may approach 100%. It is a 
consequence of experimental results showing that the 
pairing of elements subject to condition | |  x y e− ≤  
can often be chosen randomly. 

3.1 Classification of Feature Sets  

Let { }X x=  be a set and { } ,  1,...,n nX x n N= = , be a 
collection of sets, where n -th set represents the n -th 
pattern class. Also, let the following non-standard 
intersection Jaccard measure  

( , ) | | ( | | | |-  | |)e n e n n e nJ X X X X X X X X= +   (2)  

be used to evaluate the similarity between patterns 
, nX X . Note that 0 ( , ) 1e nJ X X≤ ≤ . Then the 

unknown pattern X is assigned to the class n , such 
that 

1,...,
( , ) max ( , ),    if   ( , )e n e i e ni N

J X X J X X J X X t
=

= ≥  

where t  is a threshold at training. Otherwise, a new 
class name 1N N= +  is incrementally created and 
the unknown pattern X , which is now indexed as  

NX , becomes its representative. Note that the above 
procedure amounts to an unsupervised learning. 

3.2 Intersections vs. Frequencies 

Direct matching of an input pattern X  to all patterns
,  1,...,nX n N= , is computationally expensive. 

Fortunately, pattern indexing by pattern inversion 
provides way of calculating occurrence frequencies

,  1,...,nf n N= , of pattern classes in inverse data, 
e.g., inverse files, inverse patterns, inverse sets, etc. 
A strict formal definition of inverse data structures is 
provided in Appendix Section. The following identity  

                 | |  ,  1,...,e n nX X f n N= =                  (3) 
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makes possible the replacement of quasi intersection 
sizes for frequency. The identity is illustrated by the 
example provided in Figure 1 that shows red (R), 
green (G) and blue (B) curves intersecting at 3 points, 
where columns emerge that contain names of these 
curves. Obviously, the intersection size of G, B and 
G, R patterns is | |  2G B =  and | |  1G R = .  

 
Figure 1: Red (1), green (2) and blue (3) intersecting curves 
on ( ,x y )- coordinate plane. 

At the same time, a histogram h of names 
contained in the columns {2, 3} and {1, 2, 3], where 
the green curve intersects the other lines, has the 
samples  ( )  2h B =  and ( )  1h R = .  

Hence,  | |   ( )G B h B= and | |   ( )G R h R= , 

as it is stated in (3). Importantly, when columns 
are available, all intersection sizes can be obtained by 
scanning only three columns (in this example), even 
though curves may be represented by thousands of 
dots. Note that the above approach is similar to TF-
IDF method (Jones, 2004) developed for document 

search or information retrieval, where inverse 
document frequencies of the word across a set of 
documents are calculated. This is a typical method 
employed in search engines, where document name 
frequencies in fully inverted files are calculated.  

However, search engines will not work for pattern 
recognition applications where textual inputs are 
replaced with noisy numerical data.  That is, not just 
inverse document frequency of the word may change 
depending on the currently available document 
collection, but the word itself may completely 
disappear because of even a small noise.  

In case of numeric patterns, the objective is to 
index each pattern by its features, for instance, the 
edge pattern on the plain – by ( , )x y - coordinates of 
its dots. Then pattern identities would replace page 
numbers of the back-of-book-index, where each set 

, y{ }xn  contains identities of patterns that share the 
coordinate pair ( , )x y . 

3.3 Introductory Example of  
Indexing-Based Pattern 
Recognition  

Let consider a pattern recognition example where 
elements of feature sets are 2D-features, which are 
( , )x y - coordinates of dark (below a certain grey 
level) dots, that is, pixel coordinates are used as raw 
features of image objects. Figure 2 shows an example, 
where the shapes 1 - 8 are used for training and the 
distorted shapes 1a - 8a are used for testing. Note that 
for recognition of distorted objects 1a - 8a the 
classification system should be invariant with respect 
to scaling and orientation. 

 
Figure 2: Pictures 1 – 8 (Wikipedia, 2022) were used for learning (single image per pattern class), pictures 1a – 8a (Wikipedia, 
2022) are used for testing. Pictures 1b, 3b, 7b, 8b show outputs of a scale normalization algorithm when it takes in pictures 
1, 3, 7, 8, respectively.  
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Invariance with respect to scaling was achieved 
by the normalization, whereby left-hand, right-hand, 
upper and lower boundary coordinates 

min max min max, , ,x x y y  were found and ( ,x y ) -
coordinates of object’s dots were normalized to the 
range 128D =  as follows 

min max min*( ) /( )x D x x x x= - -  

min max min*( ) /( )y D y y y y= - -  

Invariance with respect to orientation was 
achieved by learning the objects 1 – 8 at a single view 
angle and multiple recognition of objects 1a – 8a  at 
angles 0º through 360°, step 1º.   

A notation for inverse patterns was introduced, 
which is an indexed set { }xn or , y{ }xn , where the set 
element n  is the name of a pattern class and the 
indexes x , y  are the feature values. The notation  

, y{ }xn  helps to conveniently represent the algorithm 
that calculates occurrence frequencies ,  1,...,nf n N=
, of names in columns. Let , ,  1,...,l lx y l L=  be the 
coordinates of dark dots, where L is the number of 
dark dots in the current image (image 1 through 8). 
Then name occurrence frequencies are best obtained 
as samples of the histogram  

Algorithm 1: Name histogram evaluation. 

,1,..., ,  , [ , ],  { } :
l lx r y sl L r s e e n n + += ∀ ∈ − ∀ ∈  

1n nf f= +  

If classification of the current input image fails, 
that is,

1,...,
max ( ) < i ni N

f t
=

, then the new image class is 

introduced, 1N N= + , and the columns are updated 
using the Algorithm 2. 

Algorithm 2: Updating of columns. 

 , , { } { } ,  1,...,
l l l lx y x yn n N l L= =  

Here the initial conditions are 
1N = , , , { } {1} ,  1,...,

ll l lx y x yn l L= =  

But, the algorithm 1 cannot work properly as it 
violates the exclusion rule from Section 1. That is, the 
element ,  l lx y  of the current input pattern may be 
accidentally compared within the loop , [ , ]r s e e∀ ∈ −  
to more than one element of a previously stored 
pattern (and visa versa). This is why columns and 
class names must be inhibited once they have been 
accessed, which is achieved by replacing histogram 
algorithm 1 with the algorithm that inhibits patterns 
by flagging dirty names 0 1n nflag flag= → =  and 
columns  , , 0    = 1x y x ycol col= → . Then the 
algorithm 1 can be re-written as Algorithm 3. 

Algorithm 3: Histogram evaluation with inhibition. 

1,..., ,  , 0, , [ , ],nl L n flag r s e e= ∀ = ∀ ∈ −  

,{ }
l lx r y sn n + +∀ ∈  

          ,if 0 and 0nl lx r y scol flag+ + = =  

          ,1,  1,  1n n nl lx r y sf f col flag+ += + = =  

Recognition accuracy (%) for distorted patterns 1a - 
8a (Figure 2) at different neighborhood radiuses e is 
provided in Table 1 

Table 1: Recognition accuracy %. 

e (pixels) 0 1 2 3 4 

% 50 100 100 100 87.5 

 
Figure 3: Some typical examples of commercial trademarks. Upper row images were used for training and bottom row images 
were used for testing. 
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Table 2: Recognition accuracy at testing of 1100 distorted commercial trademarks retrieved from (GoogleDrive, 2022). 

e 0 1 2 3 4 
% 98 100 100 100 99.2 

 
 

3.4 Using Quasi-Intersections for 
Commercial Trademark Image 
Database  

The same system was also trained on a database of 
commercial trademarks, retrieved from 
(GoogleDrive, 2022), which contains 1100 edge 
images, each comprising 160 x 120 pixels (upper row 
on the Figure 3 shows a few typical images out of 
1100 images from this database). The training was 
performed at 0e = . Next, 1100 distorted images 
were used for testing (bottom row on the Figure 3 
shows typical examples of distorted images and Table 
2 shows the recognition accuracy. 

The training time was shown to be about 3 
seconds per 1000 images (pre-stored in RAM) on a 
single core 1.6 GHz Intel Pentium CPU, which 
amounts to 3 milliseconds per image. Although this 
indexing-based non-iterative learning is impressively 
fast, the burden of rotational invariance slows down 
the recognition time by the factor of 360 amounting 
to about 1 second per image).Pattern clustering may 
emerge at learning if 0e > . But, the discussion of it is 
beyond the scope of this paper. 

4 DISCUSSION   

Whereas a classic intersection of two sets always 
produces a single set, the quasi intersection definition 
produces a multitude of possible intersections. But, 
there is no way of knowing in advance which one of 
them will emerge. Analogously, in quantum 
mechanic, it is the quantum measurement that 
localizes a particle, whose potential positions are 
described by the wave function. And it is impossible 
to predict, which slit the photon will go through until 
a detector tells which way the particle had chosen. 
Besides, the exclusion rule, whereby no two elements 
of one set can simultaneously pair with one element 
of the other set, reminds of Pauli Exclusion Principle 
according to which no two identical fermions in any 
quantum system can be in the same quantum state. 

The discussed instant learning, like deep learning, 
can work on raw features, which are image pixels, 
meaning that no feature engineering is needed.   

 

However, the scope of possible applications of 
instant learning is not known as yet.    

Implementation of quasi intersections implies 
inhibition. Without inhibition the pattern scores 
easily overflow expected levels, which resemble 
brain circuitry organization, where excitatory neurons 
are often accompanied by inhibitory neurons. 

The objective of this paper is not a discussion of a 
best way of implementing an image learning system, 
but a proof-of-the-concept of quasi intersections 
method. A better way of image recognition would be 
a two or more level approach, where level 1 classifies 
local features and level 2 classifies histograms of 
classes of local features. Then subsets of histogram 
samples will represent parts of input objects, which 
resembles the activation pattern of the inferotemporal 
brain region (Tsunoda et al., 2001). However, when 
patterns are represented by feature vectors, rather 
than feature sets, inhibition is not needed. The basics 
of feature vectors’ indexing are provided in the 
Appendix section. 
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APPENDIX 

A.1 Patterns are Represented by 
Feature Vectors 

For feature vectors, there is no need to inhibit 
accessed columns, even though the non-standard 
intersection definition (1) is used. Figure A.1 
illustrates the above statement. 

In Figure A.1 example, x-coordinates of colored 
marks represent component values of red, green and 
blue 11-dimensional vectors, and k-coordinates 
represent vectors’ component indexes. For instance, 
the cell (15, 1) contains two vector names

, 15, 1{ } {1,3}x kn = . The cell (14, 4) contains the name 
of the 2nd vector and the cell (7, 3) contains names of 
1st and 2nd vectors.  

The vector coordinate values are 

(15,13,7,1,17,6,18,3,15,20,11)redx =  (1st)
 
 

(6,13,7,14,7,17,21,6,20,12,21)greenx =   (2nd)
 

(15,13,3,7,7,7,21,8,4,8,14)bluex =  (3rd)
 

(6,13,3,13,7,17,21,8,4,9,13)blackx =  

In K -dimensional space, the similarity between 
vectors ,  nx x  can be evaluated as the intersection with 
the size | |  ,  1,...,e n nX X f n N= = . For vectors, 
this is always a single intersection because there 
exists only one way of counting coordinate pairs. It is 
an implication of the following two properties of 
distinct vectors with integer components ( D is the 
range of component values, any cell and its content is 
referred to as a column). Given N memorized vectors 

(a) For each dimension k  (for each horizontal 
line), any two columns do not intersect 

, ,{ } { } ,  ,x k y kn n x y D= ∅ ∀ <  

(b) For each dimension k , the sum of column 
heights is equal to the number N of memorized vectors  

1

,
0
|{ } |

D

x k
x

n N
−

=

=  

It follows from (a), (b) that intersection sizes 
| |nx x 
 of the input vector 1( ,..., ,..., )k Kx x x x= with 

memorized vectors ,  1,...,nx n N= , are equal to 
frequencies nf  of vector indexes in corresponding 
columns 

| |  ,  1,...,n nx x f n N= = 
  

Computation of frequencies requires a definition 
of inverse patterns that contain names of pattern 
classes, feature sets or feature vectors. 

 
Figure A.1: Feature vectors plain. 
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A.2 Inverse Sets Definition 

Given a collection of distinct sets
{ } ,  1,...,n nX x n N= = , inverse set { }xn  contains 

indexes of sets that share the element x  

1
{ } { : },  

N

x n n
n

n n x X x X
=

= ∈ ∈  

The sets/inverse sets transform  

1
{ } ,  1,...,   { } ,  

N

n x n
n

x n N n x X
=

= ↔ ∈  

is a one-to-one correspondence. 
Example. Given a collection of two sets

1 2{ , , } ,  { , , }a b c b c d , inverse sets are  
{1} ,  {1,2} ,  {1,2} ,  {2}a b c d  

A.3 Inverse Patterns Definition 

Let vectors in a K-dimensional space 
, ,  1,..., ,  1,...,n kx k K n N= = , differ in, at least, one 

component , ,,  :  | |n k m kn m k x x e∀ ∃ − > . Given N
such vectors, the inverse patterns are defined as 

, { } { :  | | },  ,  1,...,x k kn n x x e x D k K= − ≤ ∈ =  

Here D is the range of vector components’ values. 
Calculation of frequencies can be done by scanning 
the content of K  columns only, – even though 
millions of base vectors may be given. This 
replacement of similarities for frequencies minimizes 
computational complexity of classification. 
Frequencies are best obtained as samples of the 
histogram of names found in inverse sets. In vector 
case 

, ,  [ , ],  { } :  1n nkx r kk r e e n n f f+∀ ∀ ∈ − ∀ ∈ = +  (A.1)

Here ( ,  1,..., )kx x k K= =  is the input vector. The 
input vector x  is assigned to the most similar, that is,  
most frequent class 

1,...,
:  max ( ),    if    n i ni N

n f f f t
=

= >  (A.2)

where t  is the recognition threshold.  Properties 
(a), (b) imply that, in vector case, maximal frequency 
cannot exceed K . 

 
 

A.4 Unsupervised Learning 

Unsupervised learning starts with recognition. If 
input vector  x  is successfully recognized using the 
algorithm (A.1) and the expression (A.2), then 
proceed to next input vector. If recognition fails, then 
the number of classes is increased by 1 and the 
collection of inverse patterns is updated by inserting 
into the collection the name of the new class  

1) 1N N= +  

2) 
k, ,  { } { } ,  1,...,

k kx k xn n N k K= =  

Initial conditions are: 1N = , 

 , , { } {1} ,  1,...,
k kx k x kn k K= =  

Once the learning is done, the columns are no 
longer updated. In case of supervised learning, the 
teacher can introduce a look-up table 

( ),  1,...,m class n n N= =   that relates created and 
given classes.  

A.5 Computational Complexity 

Computational complexity of the frequency 
algorithm (A.1) is proportional to the average height 
of non-empty columns 

, , 
( , )

1 |{ } |,  {( , ) :{ } }
| | x k x k

x k C
h n C x k n

C ∈

= = ≠ ∅  

In turn, column height is inverse proportional to 
variability radius e. The greater the radius e, the 
bigger the generalization ability. As a result, less 
classes N  will be created, the average column height 
will be reduced, which, in turn, decreases the 
computational time. But, on the other hand, this 
positive trend is limited by the declining 
discriminating power of the system. 
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