Tracing Cryptographic Agility in Android and iOS Apps

Kris Heid®?, Jens Heider®®, Matthias Ritscher and Jan-Peter Stotz

ATHENE - National Research Center for Applied Cybersecurity,
Fraunhofer Institute for Secure Information Technology SIT, Rheinstrafie 75, 64295 Darmstadt, Germany

Keywords:

Abstract:

Cryptography, Agility, Android, Static Analysis.

Cryptography algorithms are applicable in many use cases such as for example encryption, hashing, signing.

Cryptography has been used since centuries, however some cryptography algorithms have been proven to be
easily breakable (under certain configurations or conditions) and should thus be avoided. It is not easy for
a developer with little cryptographic background to choose secure algorithms and configurations from the
plenitude of options. Several publications already proved the disastrous cryptographic quality in mobile apps
in the past. In this publication we research how cryptography of the top 2000 Android and iOS applications
evolved over the past three years. We analyze at the example of the weak AES/ECB mode how and why apps
changed from an insecure to a secure configuration and vice versa.

1 INTRODUCTION

Cryptography already accompanies humankind since
centuries. First well known Caesar cipher dates back
to 100BC and was then used to secure communi-
cation. This encryption method and many newer
methods are nowadays crackable. Such crypto-
graphic methods are either broken through mathemat-
ical workarounds or through the constantly increasing
processing power of modern computers, which allow
many complex mathematical operations in shorter
time. Thus, from time to time cryptographic algo-
rithms have to be updated to maintain their security
today and in the near future. This is where cryp-
tographic agility comes into play, which describes a
practice paradigm where interfaces support multiple
cryptographic algorithms which in turn allows an easy
upgrade to new, secure standards.

For programming languages, this means that there
is an API given which is constant and cryptographic
algorithms are easily exchangeable during initializa-
tion.

Previous works(Chatzikonstantinou et al., 2016;
Wickert et al., 2021) have shown that it is not easy
for developers to choose secure cryptographic config-
urations. Oftentimes, boilerplate code from developer
forums(Braga and Dahab, 2016a) is copied and there-
with outdated cryptographic configurations. How-

https://orcid.org/0000-0001-7739-224X
@ nhttps://orcid.org/0000-0001-8343-6608

38

Heid, K., Heider, J., Ritscher, M. and Stotz, J.
Tracing Cryptographic Agility in Android and iOS Apps.
DOI: 10.5220/0011620000003405

ever, outdated cryptography can not simply be banned
in the APIs since legacy code must be supported. It
is also sometimes complex to detect a cryptographic
misuse. For example, initializing a cryptographic al-
gorithm once is fine, however using it a second time
with the same initialization vector is not secure.

As Section 2 will point out, a plenitude of works
already exist which highlight common insecure con-
figuration and pitfalls. Other works also monitor
current situation for misconfigured cryptography in
projects or apps. In this work we would like to fo-
cus on the change of cryptography algorithms from
insecure configurations to secure configurations and
sometimes even vice versa over time. Especially we
will focus on AES/ECB mode since it is a very com-
mon insecure algorithm. We analyze the used cryp-
tography of more than 4000 iOS and Android apps.
Test apps’ cryptography is analyzed in their current
version as well as the cryptography used three years
ago in 2019.

The remainder of this paper is structured as fol-
lows. Section 2 highlights related work in this area
and the unique selling points of our work. The used
analysis environment for iOS and Android apps is de-
scribed in Section 3 along with the selection process
for analyzed apps. Section 4 shows cryptography mis-
use in context of time. Different flaws are identified
along with common causes for misconfiguration. The
last section concludes the paper and proposes possible
future work.

In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 38-45

ISBN: 978-989-758-624-8; ISSN: 2184-4356

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

2 RELATED WORK

Related works in this area are separated into two main
categories. On the one hand, works that capture the
current situation in cryptography misuse by analyzing
existing apps. On the other hand, there are publica-
tions covering where the heavy cryptography misuse
comes from and how the problem can be tackled and
eliminated.

Starting off in 2013, first publications focused on
the topic of cryptography misuse in mobile applica-
tions. One of the first and also well known publica-
tion by Egele et al.(Egele et al., 2013) covers the topic
very well. More than 11.000 Android apps were stat-
ically analyzed with their CryptoLint tool. Results re-
vealed that around 87% of these apps violate the cryp-
tographic algorithm’s security due to misuse or mis-
configuration. This work also proposes a list of rules
or common pitfalls with cryptography which is used
to check the apps for misconfiguration. Chatzikon-
stantinou (Chatzikonstantinou et al., 2016) and Lazar
(Lazar et al., 2014) confirm previous results though
a static and dynamic analysis. In 2018, the pro-
posed rules and pitfalls are projected on iOS applica-
tions by Feichtner et al.(Feichtner et al., 2018). Even
though iOS apps are programmed in another lan-
guage, namely Objective-C and Swift and not Java
like in Android, the results are similar. Around 82%
of all checked apps contained misuse. These publica-
tions proved the disastrous cryptography state on the
mobile platforms.

The aftermath of these results were several pub-
lications that tried to identify the cause of the prob-
lem. Hazhirpasand et al.(Hazhirpasand et al., 2019)
tried to correlate developer’s experience with the
cryptography quality, but could not see a relation.
Acar et al.(Acar et al, 2017) compared differ-
ent python APIs through a field study by assign-
ing developers cryptography tasks with different li-
braries. They concluded that simple APIs avoid
misuse through a narrow decision space, but the
main factor for secure cryptography is identified as a
good documentation with code examples. Wickert et
al.(Wickert et al., 2021) investigated python’s crypto-
graphic API and came to the conclusion, that in con-
trast to Java with 87%, only 52% of the statically an-
alyzed projects contained cryptography misuse. They
concluded that the python API seems to be easier to
use.
Different publications (Braga and Dahab, 2016b;
Fischer et al., 2017; Meng et al., 2018) iden-
tified bad code quality of code snippets in on-
line forums, which were copied and pasted to
projects as a severe source of cryptography misuse.

Tracing Cryptographic Agility in Android and iOS Apps

Fischer et al.(Fischer et al., 2017) identified that al-
most all (98%) of all copied code snippets contained
cryptography misconfiguration or misuse.

Gao et al.(Gao et al., 2019) was the first work to
look at the time flow on how apps changed from
misconfigured cryptography to secure configurations.
Their initial theory, that app developers update cryp-
tographic API usage to fix misuse, proved to be
mostly wrong. In their observations, updates fixing
cryptographic misuse seemed unintentionally, only to
be re-introduced by later updates. Their work comes
very close to our approach.

2.1 Contribution

Our work differentiates from previous work by:

* Observe the change in cryptography misuse in a
larger time span of three years instead of making
only a current snap-shot like other works(Egele
et al., 2013; Chatzikonstantinou et al., 2016; Fe-
ichtner et al., 2018).

e We first give an overview and then focus on one
specific misuse to find detailed traces of its origin,
instead of a very broad analysis (Gao et al., 2019).

e Comparing numbers of outdated cryptography
modes in own/custom app code versus third party
library code for a representative example.

Through such a focused process we are able to specif-
ically identify causes for misconfigured cryptography.
The majority of the discovered weaknesses should
be solvable by only a few responsible developers as
stated in future work.

3 ANALYSIS ENVIRONMENT

We use static analysis methods to discover the used
cryptographic algorithms, modes and key lengths for
i0S and Android apps. The Android environment
is based on soot(Lam et al., 2011; Vallée-Rai et al.,
1999) and the iOS analysis uses angr(Shoshitaishvili
et al., 2016; Stephens et al., 2016; Shoshitaishvili
et al., 2015) in combination with IDA Pro’s’ Find-
Crypt2 plugin®.

3.1 Android Analysis

The analysis environment loads the app with soot and
searches for usage of Cipher.getInstance (String
transformation, ...) to find the cryptographic

Thttps://hex-rays.com/ida-pro/
Zhttps://hex-rays.com/blog/findcrypt2/

39

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

algorithm and KeyGenerator.init (int size) to
find the encryption key size. Respective methods to
find used hashing and signature algorithms were used
as well. Third party security providers like the com-
monly used Bouncy Castle® are registered in the app
but used over the same API as the shipped security
providers. This makes recognizing third party library
algorithms also well recognizable with our approach.
The used soot tool also offers the technique of sym-
bolic execution to resolve method arguments that are
not directly provided but reside inside a field or are
dynamically built.

3.2 iOS Analysis

Used Cryptography in iOS apps are on the one hand
discovered via IDA Pro’s FindCrypt2 plugin. Find-
Crypt2 has a large list of magic constants which al-
most all cryptographic algorithms use in the program
body. Occurrences of these constants are found and
an association with the respective cryptographic al-
gorithm can be made. However, this approach does
not provide information about the used cryptographic
configuration and does not find calls to cryptographic
APIs. Therefore, apps are additionally loaded into the
angr analysis framework for an investigation of calls
to cryptographic API calls, such as calls to Common
Crypto library and CryptoKit. Parameters of crypto-
graphic API calls are then resolved with symbolic ex-
ecution.

3.3 App Selection Process

We select the most popular 2000 apps (top apps) from
each Google Play and Apple’s App Store as represen-
tatives to be tested since they have widespread usage
among consumers. From this group, we select apps
which already existed three years ago, since it is our
goal to find changes throughout the years. We chose
three years to have a sufficiently large time span for
new app versions containing fundamental changes.
Also, the existence and continuous updates of an app
in the stores for at least three years are hints for some
professionalism during development. However, go-
ing further back than three years would shrink the
app selection to a point which would not allow well-
founded statements. 64.1% of the top 2000 iOS apps
existed three years ago and 31.4% of the Android top
2000 apps have a three-year-old version. One can see,
that there is a much higher fluctuation in Android top
apps. We assume that it is easier for apps to rise to the
top apps in Google Play, but we can’t verify our as-
sumption since the exact calculation metric for both

3https://www.bouncycastle.org/

40

stores remains secret. In the following we refer to
those apps as consumer apps since we also have a sec-
ondary group called business apps.

We run an automated app test service where cus-
tomers are able to manually upload custom apps to
be tested. These business apps can either be public
apps also available in public app stores or apps exclu-
sively available to a customer. Companies using such
services usually aim to secure their employee’s mo-
bile devices through tests for security vulnerabilities.
We assume that such business apps meet higher secu-
rity and therewith cryptography standards and would
very well reflect apps often used in a business envi-
ronment. In total, we have 142 Android and 478 10S
business apps with a 2022 version and a three years
old counterpart. The larger number of iOS business
apps might be since iOS is widely used in business
environments.

4 EVALUATION

We focus on hashing and encryption algorithms in
this evaluation. For both methods, we evaluate the
past usage of cryptographic methods against today’s
usage. Especially, we are interested in the change
from outdated methods such as MD5 or AES/ECB
towards state-of-the-art methods such as SHA-256 or
AES/CBC.

4.1 Hashing Functions

Hashing functions such as MD5* and its predeces-
sors as well as SHA1(Wang et al., 2005) are long
known to be insecure and prone to collision attacks.
It is advised® to move to more secure alternatives like
SHA?224 or up to SHA512.

We analyze the used hashing functions in business
apps and the top apps for iOS and Android to see the
current situation. We compare the 2019 with the 2022
versions of the apps to visualize if a trend for cryp-
tographic agility can be traced. The results are dis-
played in Figure 1.

To our surprise, outdated SHA1 and MDS5 hashing
is still found in 70% to 80% of the analyzed apps and
thus the most used hashing algorithms in iOS and An-
droid in both, the top and business app groups. Even
the long outdated MD2 algorithm is still used in 5%
to 10% of all apps. These are alarming news with re-
spect to security. SHA256 is the only used, yet secure
algorithm which is as widespread as MD5 and SHA.

“https://www.kb.cert.org/vuls/id/836068
Shttp://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-131a.pdf

I 39 %
I 37 %

SHAS L ———— 5
N 70

I 207

I 2%
SHA33 o 100

I (9%

Tracing Cryptographic Agility in Android and iOS Apps

Android Top 2019
= Android Top 2022
Android Business 2019
== Android Business 2022
i0S Top 2019
= i0S Top 2022
i0S Business 2019
= 108 Business 2022

N 5
Y 75

SHAZS6 o ¢/
I

I 23 %

I 6%
SHA224 o .

W 2%

S 6
Y

S H A | S /.
N .

N 7 1 %

MD5 = AL

86%

I EL _FHNWYLILLILS=T =L 39«

81%

N, 070

I (0%

5%
MD2 s 59

I 5%

Figure 1: Percentage of apps using the specified hashing functions in top and business apps (2019 VS 2022).

If we now compare hashing in top and business
apps, one can see that business apps use more up to
date hashing algorithms. However, also fewer busi-
ness apps use secure hashing functions. This leads
to the conclusion that business apps use less hashing
functionality in general.

If we now look at the evolution of the top apps on
Android and iOS from 2019 to 2022, we can see that
the usage of MD5 and SHA1 mostly remains constant
with only slight variations. On Android, the SHA2
family and especially SHAS512 usage increased. In the
case of SHAS12, the usage in apps doubled, which
is at first sight a positive trend. However, since the

usage of outdated algorithms remains constant, one
must say, that only more hashing algorithms are used
and secure algorithms are not replacing the outdated
ones. On i0S, the situation is vice versa: The usage
of the SHA?2 family even declines which leads to the
assumption that less hashing is used on iOS.

In conclusion, one can say that even though An-
droid developers embracing the SHA?2 family, out-
dated hashing functions constantly and heavily re-
mains in Android and iOS apps.

41

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

1%
3DES o o

W 2%

M 3%
DES s 147
I (0%

I, 3 7o

Android Top 2019
= Android Top 2022
Android Business 2019
== Android Business 2022
iOS Top 2019
= iOS Top 2022
iOS Business 2019
i0S Business 2022

A o ————
I 5

Figure 2: Percentage of apps using the specified encryption functions in top and business apps (2019 VS 2022).

4.2 Symmetric Encryption Algorithms

In this section we research the usage of symmetric
encryption algorithms. Figure 2 shows which encryp-
tion algorithms are used in apps. As one would ex-
pect, AES is the most widely used symmetric encryp-
tion algorithm. DES and 3DES are mostly used in
around 3% of the analyzed apps. One exception is
DES in Android which still seems very popular with
a usage in around 12% of the tested apps. Through-
out the years, DES and 3DES usage remains mostly
constant. However, looking at AES usage over time,
one can see that the usage in Android increases in the
latest app versions, while at the same time the AES
encryption in iOS decreases. The decrease of cryptog-
raphy usage in iOS matches with the observations in
Section 4.1. Especially on Android, a discrepancy be-
tween business and top apps becomes obvious. Busi-
ness apps seem to use less AES and slightly more
DES encryption.

4.3 Deepdive: ECB Usage

Usage of the ECB mode is a very common weak-
ness when applying cryptography. ECB mode out-
puts the same ciphertext for the same plaintext (when
the same key is used). This means that pattern are
not hidden very well and one could draw conclusions
on the plaintext. With other techniques like CBC or
CTR mode, succeeding block’s encryption depend on
one another, which introduces randomness and hides
pattern. We are aware that under certain conditions
the usage of ECB mode is fine, but we advise against
using it since secure conditions might easily become
insecure during app upgrades, code restructuring and

42

new requirements.

We visualize the usage of insecure ECB mode ver-
sus other modes in Figure 3. In the visualization we
lay focus on the explicit transition of used secure and
insecure modes from 2019 to 2022. Figures 3a to 3d
represent the different app groups for Android, i0S
and business or top apps.

Looking at the transitions for Android top apps
in Figure 3a, we see that 48.9% ECB mode usage in
2019 shrinks to 32.3% in 2022, which is very positive.
One can also see that many apps shift from ECB mode
to other secure modes. However, a small percentage
of apps used secure cryptography in 2019, are now us-
ing ECB in 2022. Android business apps in Figure 3b
used much less ECB in 2019 compared to top apps
and the ECB usage didn’t decrease as drastically as
with the Android top apps. We also find a flow from
2019 ECB to 2022 non-ECB as well as from 2019
ECB to 2022 non-ECB. The flow from 2019 ECB to
2022 non-ECB is much smaller compared to the An-
droid top apps group.

The situation on iOS looks much different. Fig-
ure 3¢ shows that out of the top apps on i0S, only 12%
use ECB mode in 2019 and the majority uses secure
alternatives. These numbers are similar for iOS busi-
ness apps. However, after three years, things didn’t
turn out well for iOS apps. With 16% for top apps and
12% on business apps in 2022, more apps are using
insecure ECB mode compared to 2019. Even though
numbers increased on iOS, ECB usage on Android is
still far more widespread, but decreases.

The total usage of cryptography is the highest for
Android top apps, with only 2.5% of all apps using
no cryptography. The other groups like Android busi-
ness, i0S busines and iOS top apps contain 10% apps

Tracing Cryptographic Agility in Android and iOS Apps

(a) Android top apps. (b) Android business apps.

(c) iOS top apps. (d) iOS business apps.

Figure 3: ECB mode usage transitions from 2019 to 2022.

43

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

without cryptography. Especially for i0S, we see a
trend that many apps that used secure cryptography
in 2019 don’t use cryptography any more in 2022.

From all observations in Figure 3 we find the
transitions from secure (non-ECB) to insecure (ECB)
cryptography and vice versa very interesting. Under-
standing reasons for the transitions could give hints
on how developers could be lead towards better cryp-
tography standards. The transitions from ECB to
non-ECB and non-ECB to ECB is significantly strong
in Android top apps in Figure 3a, thus we analyze
these apps deeper. For this reason, we manually de-
compile the respective Android apps. Then we ana-
lyze in which class or library cryptography with ECB
was used and what changed in the respective class or
library to not use ECB anymore.

To our surprise, it is often not directly the app
developer who’s to blame. In 95% of all cases, the
transition from ECB to non-ECB is triggered by an
included third party library on Android. However, if
we now analyze the transition from non-ECB to ECB,
we observe that with only 13% the transition is trig-
gered through own app code and in 87% of the cases
through a third party library. However, what is posi-
tive is that the total number of own code changes from
ECB to non-ECB (40 occurrences) is much larger
than vice versa (10 occurrences). Thus, app devel-
opers rather introduce secure cryptography than inse-
cure cryptography configurations.

In the next step, we analyze ECB to non-ECB
transitions in iOS top apps. Libraries are identified
on iOS by finding duplicate method calls in the com-
piled executable among all apps. Those method calls
consist of method name and class name by conven-
tion. This method is very primitive and by design
only works for popular libraries and is thus rather an
estimation. With 32%, own code changes and with
68% library changes are the transition cause towards
secure cryptography (ECB — non-ECB). The transi-
tion from non-ECB towards ECB are with 30% and
70% in the same range.

Unfortunately, identifying libraries and library
versions on i0S (swift/Objective-C) apps is much
more complex than on Android (Java) and worth an
own publication for itself. Also, we didn’t find ex-
isting, good tools for this job. Thus, for the library
analysis, we stick to Android apps, where a simple
decompilation reveals the package names of the in-
cluded libraries.

We looked at the different Android third party li-
braries which cause the transition from an insecure
to a secure cryptography mode and vice versa. The
results are shown in Table 1. The transition from
ECB to non-ECB in Table 1b is pretty clear, 98%

44

Table 1: Libraries triggering transition non-ECB/ECB on
Android.
(a) 2019 non-ECB to 2022 ECB.

| percentage | library ‘

29% | Google GMS Ads

19% | unknown

12% | fm.icelink

10% | com.microsoft.identity

10% | org.apache.commons
7% | com.instabug
5% | com.google.crypto.tink
8% | various others

(b) 2019 ECB to 2022 non-ECB.

| percentage | library \

98% | Google GMS
2% | unknown

of the apps discontinued using ECB due to not us-
ing Google GMS Advertisement library anymore. In
2% of the apps, the respective library was not iden-
tifiable due to obfuscation. Table 1a shows which li-
braries triggered the ECB usage in 2022 apps. Lead-
ing with 29% is Google GMS Advertisement library
followed by Icelink (12%), Microsoft Identity (10%)
and Apache Commons (10%). We analyzed respec-
tive apps deeper in order to see if ECB was introduced
through a third party library update or just by adding
a new third party library with ECB usage. In fact, in
92% of the cases libraries with ECB usage were added
and only in 8% of the cases a third party library up-
date introduced ECB.

In conclusion one could say that in case of ECB
usage, mostly libraries contain or introduce weak
cryptography. This indicates how important the selec-
tion of suitable libraries can be for the development of
secure software. However, own code changes outside
common libraries are often more related to the key
functionality of the app and in the category of own
code we have definitely seen an improvement in se-
cure cryptographic configurations.

S CONCLUSION & FUTURE
WORK

More than 4000 iOS and Android apps were analyzed
for misconfigured cryptography from 2019 and 2022
in this publication to research aspects of their crypto-
graphic agility. We have shown that the majority of
apps still use insecure cryptography. The trend over
the past years unfortunately shows no significant drift
towards secure algorithms on the broad front. Some

single aspects like ECB usage on Android point into
the right direction. Our detailed analysis in finding
causes of the ECB usage on Android brought us to the
conclusion that this flaw is mostly introduced through
the usage of third party libraries during app develop-
ment. The app developers themselves are mostly not
directly responsible for misconfigured cryptography.
The trend shows that on custom code insecure cryp-
tographic modes have been removed more often than
they were newly introduced, which is a positive de-
velopment.

As future work, we see two actions to further im-
prove the situation. As a short term action, we’ll try to
reach out to developers of widely used libraries with
flaws to update their libraries. But this does not tackle
the problem on the long term. Developers currently
have little means to get insights to the security and pri-
vacy aspects of their used third party libraries. Third
party library sites like mavencentral.com only show
CVEs for direct vulnerabilities but not lighter secu-
rity or privacy issues. We aim to deliver such data
for common libraries and provide such information to
developers. App stores and development IDEs could
process such information and highlight flaws to de-
velopers during app development. We believe that
with such tight integration most flaws can easily be
avoided.

ACKNOWLEDGEMENTS

This research work was supported by the National
Research Center for Applied Cybersecurity ATHENE
and the Hessian Ministry of the Interior and Sports.

REFERENCES

Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D.,
Mazurek, M. L., and Stransky, C. (2017). Comparing
the usability of cryptographic apis. In IEEE Sympo-
sium on Security and Privacy (SP).

Braga, A. and Dahab, R. (2016a). Mining cryptography
misuse in online forums. In IEEE International Con-
ference on Software Quality, Reliability and Security
Companion.

Braga, A. and Dahab, R. (2016b). Mining cryptography
misuse in online forums. In 2016 IEEE International
Conference on Software Quality, Reliability and Secu-
rity Companion.

Chatzikonstantinou, A., Ntantogian, C., Karopoulos, G.,
and Xenakis, C. (2016). Evaluation of cryptogra-
phy usage in android applications. In Proceedings of
the 9th EAI International Conference on Bio-Inspired
Information and Communications Technologies (For-
merly BIONETICS). ICST.

Tracing Cryptographic Agility in Android and iOS Apps

Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C.
(2013). An empirical study of cryptographic misuse
in android applications. CCS. ACM.

Feichtner, J., Missmann, D., and Spreitzer, R. (2018). Auto-
mated binary analysis on ios: A case study on crypto-
graphic misuse in ios applications. WiSec *18. ACM.

Fischer, F., Bottinger, K., Xiao, H., Stransky, C., Acar, Y.,
Backes, M., and Fahl, S. (2017). Stack overflow con-
sidered harmful? the impact of copy&paste on an-
droid application security. In 2017 IEEE Symposium
on Security and Privacy (SP).

Gao, J., Kong, P, Li, L., Bissyandé, T. F., and Klein, J.
(2019). Negative results on mining crypto-api usage
rules in android apps. In 2019 IEEE/ACM 16th In-
ternational Conference on Mining Software Reposito-
ries.

Hazhirpasand, M., Ghafari, M., Kriiger, S., Bodden, E., and
Nierstrasz, O. (2019). The impact of developer experi-
ence in using java cryptography. In 2019 ACM/IEEE
International Symposium on Empirical Software En-
gineering and Measurement.

Lam, P., Bodden, E., Lhotdk, O., and Hendren, L. (2011).
The soot framework for java program analysis: a ret-
rospective.

Lazar, D., Chen, H., Wang, X., and Zeldovich, N. (2014).
Why does cryptographic software fail? a case study
and open problems. In Proceedings of 5th Asia-Pacific
Workshop on Systems, APSys *14. ACM.

Meng, N., Nagy, S., Yao, D. D., Zhuang, W., and Argoty,
G. A. (2018). Secure coding practices in java: Chal-
lenges and vulnerabilities. ICSE *18. ACM.

Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C.,
and Vigna, G. (2015). Firmalice - automatic detec-
tion of authentication bypass vulnerabilities in binary
firmware.

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N.,
Polino, M., Dutcher, A., Grosen, J., Feng, S., Hauser,
C., Kruegel, C., and Vigna, G. (2016). Sok: (state of)
the art of war: Offensive techniques in binary analysis.

Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R.,
Corbetta, J., Shoshitaishvili, Y., Kruegel, C., and Vi-
gna, G. (2016). Driller: Augmenting fuzzing through
selective symbolic execution.

Vallée-Rai, R., Co, P, Gagnon, E., Hendren, L., Lam, P,
and Sundaresan, V. (1999). Soot - a java bytecode op-
timization framework. CASCON °99, page 13. IBM
Press.

Wang, X., Yin, Y., and Yu, H. (2005). Finding collisions in
the full sha-1.

Wickert, A.-K., Baumgirtner, L., Breitfelder, F., and
Mezini, M. (2021). Python Crypto Misuses in the
Wild. ACM.

45

