
An End-to-End Encrypted Cache System with Time-Dependent Access
Control

Keita Emura1 a and Masato Yoshimi2

1National Institute of Information and Communications Technology (NICT), Japan
2TIS Inc., Japan

Keywords: Encrypted Cache System, Time-Dependent Access Control, Naor-Naor-Lotspiech Framework,
Implementation.

Abstract: Due to the increasing use of encrypted communication, such as Transport Layer Security (TLS), encrypted
cache systems are a promising approach for providing communication efficiency and privacy. Cache-22 is an
encrypted cache system (Emura et al. ISITA 2020) that makes it possible to significantly reduce communica-
tion between a cache server and a service provider. In the final procedure of Cache-22, the service provider
sends the corresponding decryption key to the user via TLS and this procedure allows the service provider
to control which users can access the contents. For example,if a user has downloaded ciphertexts of several
episodes of a show, the service provider can decide to provide some of the contents (e.g., the first episode)
available for free while requiring a fee for the remaining contents. However, no concrete access control method
has been implemented in the original Cache-22 system. In this paper, we add a scalable access control protocol
to Cache-22. Specifically, we propose a time-dependent access control that requires a communication cost of
O(logTmax) whereTmax is the maximum time period. Although the protocol is stateful, we can provide time-
dependent access control with scalability at the expense ofthis key management. We present experimental
results and demonstrate that the modified system is effective for controlling access rights. We also observe a
relationship between cache capacity and network traffic because the number of duplicated contents is higher
than that in the original Cache-22 system, due to time-dependent access control.

1 INTRODUCTION

Cache systems are vital to reduce communication
overhead on the Internet. However, it is not triv-
ial to provide cache systems over encrypted commu-
nications because a cache server (CS) must verify
whether it has a copy of a particular encrypted con-
tent, although information about the content is not re-
vealed due to encryption. Thus, due to the increasing
use of encrypted communication, such as Transport
Layer Security (TLS), encrypted cache systems are a
promising approach for providing communication ef-
ficiency and privacy.

Leguay et al. (Leguay et al., 2017) proposed an en-
crypted cache system called CryptoCache. Although
the contents are encrypted, CryptoCache allows users
requesting the same content to be linked. Thus,
Leguay et al. proposed an extension that prevents
this linkability by employing a public key encryption

a https://orcid.org/0000-0002-8969-3581

(PKE) scheme. Emura et al. (Emura et al., 2020b;
Emura et al., 2022) further extended CryptoCache by
proposing an encrypted cache system called Cache-
22. The Cache-22 system not only provides unlink-
ability without employing PKE, but also presents a
formal security definition in a cryptographic manner.

The Cache-22 system is briefly explained as fol-
lows and illustrated in Figure 1 in Section 2.1. It is as-
sumed that all communications are protected by TLS.
A tag is assigned to each content, and it is assumed
that no information about the content is revealed by
the tag (e.g., it can be generated using hash-based
message authentication code (HMAC), because it is
a pseudorandom function (Bellare, 2015)). The ser-
vice provider (SP) encrypts content and stores the ci-
phertext and corresponding tag on a CS. When a user
requests the content, the user sends a request to the
SP. Then, the SP sends the corresponding tag back to
the user. The user then sends the tag to the CS. If the
tag is stored on the CS, the CS sends the correspond-
ing ciphertext to the user and the user information to

Emura, K. and Yoshimi, M.
An End-to-End Encrypted Cache System with Time-Dependent Access Control.
DOI: 10.5220/0011617900003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 321-328
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

321

the SP. Finally, the SP sends the corresponding de-
cryption key to the user. Because the size of the tag is
much smaller than the size of the content (ciphertext),
the Cache-22 system makes it possible to significantly
reduce communications between a CS and the SP. Be-
cause the Cache-22 system can employ any cipher
suite, seven cipher suites, including National Institute
of Standards and Technology (NIST) Post-Quantum
Cryptography (PQC) candidates (Aragon et al., 2018;
Bos et al., 2018; Chen et al., ; D’Anvers et al.,) are
employed.

Adding Access Control to Cache-22: In the final
procedure of the Cache-22 system, the SP sends the
corresponding decryption key to the user. Emura et
al. (Emura et al., 2020b; Emura et al., 2022) claimed
that this procedure allows the SP to control which
users can access the contents. For example, if a user
has downloaded ciphertexts of several episodes of a
show, the SP can allow some of the contents (e.g., the
first episode) to be available for free while requiring a
fee for the remaining contents. However, the authors
did not provide a concrete access control method.

A naive solution is to add an authentication pro-
tocol, such as classical ID/password authentication,
before the SP sends the corresponding decryption key
to the user. This method is effective; however, it is not
scalable. That is, the SP must send the decryption key
individually for N users, which leads to a communi-
cation cost ofO(N).

1.1 Our Contribution

In this paper, we add a scalable access control pro-
tocol to the Cache-22 system. Specifically, we pro-
pose time-dependent access control, which requires
a communication cost ofO(logTmax) using the Naor–
Naor–Lotspiech (NNL) framework (Naor et al., 2001)
whereTmax is the maximum time period. In the orig-
inal NNL framework, each user is assigned to a leaf
node of a binary tree which provides broadcast en-
cryption in which the encryptor specifies who can de-
crypt the ciphertext. In our proposed protocol, each
time period is assigned to a leaf node (multiple users
are assigned to the same node if they have the same
access rights). Briefly, letTI= [1,Tmax] be a time in-
terval whereTmax ∈ N and assume thatTmax = 2m for
somem∈ N. Then, each timet ∈ TI is assigned to a
leaf node of a binary tree that has 2m leaves. This time
period indicates how long the content is available. For
example,t can represent a day, a week, a month, and
so on. The SP encrypts each content according to the
time it is available. This NNL-based time-dependent
control technique has been employed in other cryp-
tographic primitives, such as attribute-based encryp-

tion for range attributes (Attrapadung et al., 2016) and
group signatures with time-bound keys (Emura et al.,
2020a). However, to the best of our knowledge, no
encrypted cache system with this technique has been
proposed so far.

2 PRELIMINARIES

2.1 Cache-22 System

In this section, we introduce the Cache-22 system.
A tag is assigned to each content, and it is as-
sumed that no information about the content is re-
vealed by the tag. The SP encrypts the content and
stores a tag and ciphertext pair on the CS. In the
implementation proposed by (Emura et al., 2020b;
Emura et al., 2022), there are multiple CSs due to
the color-based cooperative cache system (Nakajima
et al., 2017). For the sake of simplicity, we con-
sider the case of a single CS. We assume that all
communications between a user, CS, and SP are en-
crypted with TLS. Let(Enc,Dec) be a IND-CPA se-
cure SKE scheme, where for a keyk ∈ K and a
messageM ∈ M , Deck(C) = M holds, whereC←
Enck(M), K is the key space, andM is the message
space. Here, IND-CPA stands for indistinguishability
under chosen-plaintext attack. The upper-order 128
bits of tag are used as the initial vector (IV) for AES-
GCM (Iwata and Seurin, 2017). Then,IV is not reused
for other encryption since the tag is pseudorandom.
Let CacheTbl be the cache table managed by the
CS which has the structureCacheTbl = {(tagi ,Ci)},
and is initiated as/0. Although we simply denote
CacheTbl = {(tagi ,Ci)} here, we can employ any
cache system. We also assume that a user knows the
content namec name, and that the SP can decide the
corresponding contentcontenti ∈ M from c name.
The flow of the Cache-22 system is illustrated in
Figure 1, and the formal description of the system
is provided as follows. The Cache-22 system con-
sists of (GenTable,ContentRequest,SendContent,
CacheRequest,SendKey,ObtainContent). It should
be noted that the SP sends the corresponding decryp-
tion key to a user via theSendKey algorithm. Because
the SP needs to know the destination, each user sends
own identityID to the CP in theSendContent proto-
col.

• GenTable(1κ
,1λ

,SetOfContents): The table gen-
eration algorithm (run by the SP) takes as in-
put security parametersκ,λ ∈ N and a set of
contentsSetOfContents = {contenti}ni=1. Ran-
domly choosekc,i ← K and computetagi ←
HMACkhmac

(contenti) for each contenti ∈ M .

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

322

Figure 1: Cache-22 System (Emura et al., 2020b; Emura et al.,2022).

RetrieveIV from tagi , and encryptcontenti such
that Ci ← Enckc,i (IV,contenti). Output a table
ConTbl= {(contenti , tagi ,Ci ,kc,i)}.

• ContentRequest(User(c name, ID),SP(ConTbl)):
TheContentRequest protocol between a user and
the SP takes as input a content namec name and
the user identityID from the user, and takes as
inputConTbl from the SP.

1. The user sends(c name, ID) to the SP via a se-
cure channel.

2. The SP decidescontenti from c name,
and retrieves the corresponding
(contenti , tagi ,Ci ,kc,i) fromConTbl.

3. The SP sendstagi to the user via the secure
channel.

• SendContent(User(tagi , ID),CS(CacheTbl)):
The content sending protocol between a user and
the CS takes as input(tagi , ID) from the user, and
takes as inputCacheTbl from the CS.

1. The user sends a request(tagi , ID) to the CS
via a secure channel.

2. The CS checks whethertagi is stored in
CacheTbl.

– If yes, the CS retrieves(tagi ,Ci) from
CacheTbl by usingtagi , sendsCi to the user
via the secure channel, and sends(tagi , ID) to
the SP via the secure channel.

– If no, the CS runs theCacheRequest protocol
with the SP (which is defined later), obtains
Ci , stores(tagi ,Ci) to CacheTbl, and sendsCi
to the user via the secure channel.

• CacheRequest(CS(tagi , ID),SP(ConTbl)): The
cache request protocol between the CS and the SP

takes as input(tagi , ID) from the CS, and takes as
inputConTbl from the SP.

1. The CS sends(tagi , ID) to the SP via the secure
channel.

2. The SP retrieves(contenti , tagi ,Ci ,kc,i) from
ConTbl by usingtagi , and sendsCi to the CS
via the secure channel.

• SendKey(ID,kc,i): The key sending algorithm run
by the SP takes as input(ID,kc,i). Sendkc,i to the
user whose identity isID via the secure channel.

• ObtainContent(tagi ,Ci ,kc,i)): The content ob-
taining algorithm run by a user takes as input
(tagi ,Ci ,kc,i). Retrieve IV from tagi . Output
contenti ← Deckc,i (IV,Ci).

As mentioned in the introduction, there is room for
adding an access control system before running the
SendKey algorithm.

2.2 NNL Framework

In this section, we introduce the NNL framework
which is called the complete subtree method. LetBT
be a binary tree withN leaves. For a leaf nodei, let
Path(i) be the set of nodes from the leaf to the root.
Let RSet be the set of revoked leaves. For non leaf
nodex, let xleft be the left child ofx andxright be the
right child ofx.

1. InitializeX,Y← /0.

2. For alli ∈ RSet, addPath(i) to X.

3. For all x ∈ X, if xleft 6∈ X then addxleft to Y. If
xright 6∈ X then addxright to Y.

4. If |Rset|= 0 then add the root node toY.

5. OutputY.

An End-to-End Encrypted Cache System with Time-Dependent Access Control

323

Figure 2: Cache-22 System with Time-Dependent Access Control.

We denoteY ← CompSubTree(BT,RSet). In the
proposed time-dependent access control, a time pe-
riod is assigned to a leaf, although each user is as-
signed to a leaf node in the original complete subtree
method. Moreover, each leaf is sequentially revoked
from the leftmost node. Then, the size ofY is esti-
mated as|Y|= O(logN) whereN := Tmax in our pro-
tocol, which is scalable regardless of the number of
revoked users in the system.

3 CACHE SYSTEM WITH
TIME-DEPENDENT ACCESS
CONTROL

In this section, we present our proposed protocol with
time-dependent access control. Each content is en-
crypted with a time periodt, and if a user is assigned
to a time periodt ′, then that user is allowed to ob-
tain contents encrypted witht, wheret ≤ t ′. For the
sake of simplicity, we assume that the access rights of
all users are determined in advance. As a remark, we
may be able to assume that all contents are encrypted
and the SP stores all ciphertexts to the CS regardless
of whether they are requested by a user or not. Then, a
request sent by a user will always be successful (cache
hits). However, this situation is unrealistic because
the storage size of the CS will drastically increase.
Thus, the SP adds new contents after receiving a user
request.

Let Tmax be the maximum time period where
Tmax ∈N and assume thatTmax = 2m for somem∈N.
Each time periodt ∈TI= [1,Tmax] is assigned to a leaf
node. If a user is assigned to a time periodt, Path(t)

denotes the set of nodes from the leaf node (which
is assigned tot) to the root node. LetCacheTbl be
initialized as /0. In the original Cache-22 system,
each tag is generated by the corresponding content
such astagi ← HMACkhmac

(contenti). In our pro-
posed system, one content is multiply encrypted due
to the NNL framework. To clarify which ciphertext
should be sent to a user, each tag is generated by
both the corresponding content and the correspond-
ing index (determined by the NNL framework) such
astagi, j ← HMACkhmac

(contenti || j).
The proposed Cache-22 system with

time-dependent access control consists of
(KeyGen,SendKey,GenTable,ContentRequest,
CacheRequest,SendContent,ObtainContent) as il-
lustrated in Figure 2. Unlike to the original Cache-22
system, in the proposed system, all keys are generated
in advance, i.e., they are independent of the contents.
Thus, we add theKeyGen algorithm. Moreover,
for a user with identityID, the SP sends keys in
accordance with the user’s access rights. Thus, we
run the SendKey algorithm before theGenTable
algorithm.

• KeyGen(1m): The key generation algorithm takes
as a security parameterm ∈ N. For j =
1,2, . . . ,2m+1−1, randomly choosekc, j ←K and

output{kc, j}
2m+1−1
j=1 .

• SendKey(ID, t,{kc, j}
2m+1+1
j=1): The key sending

algorithm run by the SP takes as input(ID, t,

{kc, j}
2m+1+1
j=1). For all j ∈ Path(t), sendkc, j to the

user with identityID via a secure channel.

• GenTable(1κ
,1λ

,{kc, j}
2m+1+1
j=1 ,SetOfContents):

The table generation algorithm (run by the SP)

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

324

takes as input security parametersκ,λ ∈ N,

a set of keys{kc, j}
2m+1+1
j=1 , and a set of con-

tents SetOfContents = {contenti}
n
i=1. For

i = 1,2, . . . ,n, let ti ∈ [1,Tmax] be the time
period of contenti . For all j ∈ Path(ti),
compute tagi, j ← HMACkhmac

(contenti || j), re-
trieve IV j from tagi, j , and encryptcontenti
such that Ci, j ← Enckc, j (IV j ,contenti).
Output a table ConTbl = {(contenti ,
{(tagi, j ,Ci, j ,kc, j)} j∈Path(ti))}.

• ContentRequest(User(c name, t, tcurr),
SP(ConTbl)): The ContentRequest proto-
col between a user and the SP takes as input a
content namec name, the time period of the user
t, and the current time periodtcurr from the user,
and takes as inputConTbl from the SP.

1. The user runs Y ←
CompSubTree(BT, [1, tcurr−1]) whereBT is a
binary tree with 2m leaves. IfY∩Path(t) = /0,
then abort.

2. The user choosesj ∈Y∩Path(t).
3. The user sends(c name, j) to the SP via a se-

cure channel.
4. The SP decides contenti from

c name and retrieves the correspond-
ing (tagi, j ,Ci, j) from ConTbl where
tagi, j ← HMACkhmac

(contenti || j).
5. The SP sendstagi, j to the user via the secure

channel. If there is no such entry, then return
error.

• SendContent(User(tagi, j),CS(CacheTbl)): The
content sending protocol between a user and the
CS takes as inputtagi, j from the user, and takes
as inputCacheTbl from the CS.

1. The user sends a requesttagi, j to the CS via a
secure channel.

2. The CS checks whethertagi, j is stored on
CacheTbl.

– If yes, the CS retrieves(tagi, j ,Ci, j) from
CacheTbl by usingtagi, j , sendsCi, j to the user
via the secure channel.

– If no, the CS runs theCacheRequest proto-
col with the SP (which is defined later), ob-
tainsCi, j , stores(tagi, j ,Ci, j) toCacheTbl, and
sendsCi, j to the user via the secure channel.

• CacheRequest(CS(tagi, j),SP(ConTbl)): The
cache request protocol between the CS and the
SP takes as inputtagi, j from the CS, and takes as
inputConTbl from the SP.

1. The CS sendstagi, j to the SP via the secure
channel.

2. The SP retrieves the corresponding(tagi, j ,Ci, j)
from ConTbl by usingtagi, j , and sendsCi, j to
the CS via the secure channel.

• ObtainContent(tagi, j ,Ci, j ,kc, j)): The content ob-
taining algorithm run by a user takes as input
(tagi, j ,Ci, j ,kc, j). RetrieveIV j from tagi, j . Out-
putcontenti ← Deckc, j (IV j ,Ci, j).

As a side effect, users do not need to send their iden-
tity to the CS in the proposed system. In contrast, in
the original Cache-22 system, users must send their
identity to the CS because the SP must send the cor-
responding decryption key to the user, and the CS thus
needs to forward the identity to the SP to provide the
destination. The proposed system can thus help hide
the user’s identity from the CS and preserve privacy.

4 IMPLEMENTATION AND
RESULTS

4.1 Cipher Suite

First, we decide the underlying cipher suite as

• TLS Kyber ECDSA WITH AES 256 GCM SHA256

We employed Kyber (Crystals-Kyber) (Bos et al.,
2018) which was selected for NIST PQC standardiza-
tion in July 2022. Kyber (Crystals-Kyber) is a lattice-
based scheme and is secure under the MLWE assump-
tion where MLWE stands for the module learning
with errors. In our implementation, we employed Ky-
ber512 to provide 128-bit security. Specifically, we
installed the X25519Kyber512Draft00key agreement
in our experiment. As in the original Cache-22 sys-
tem, the proposed system can employ other PQC such
as BIKE (Aragon et al., 2018), NTRU (Chen et al.,),
and SABER (D’Anvers et al.,).

We also considered the underlying SKE scheme
and hash function to be secure against the Grover al-
gorithm (Grover, 1998), we expanded the key length
twice and employed AES256 (specifically, AES-
GCM-256) and SHA256. As a remark, as in the orig-
inal Cache-22 implementation, we did not consider
post-quantum authentication.1

1We refer the comment by Alkim et al. (Alkim et al.,
2016), “the protection of stored transcripts against future
decryption using quantum computers is much more urgent
than post-quantum authentication. Authenticity will most
likely be achievable in the foreseeable future using proven
pre-quantum signatures and attacks on the signature will
not compromise previous communication”.

An End-to-End Encrypted Cache System with Time-Dependent Access Control

325

Table 1: Libraries included in the modules.

Version Description
Go go1.18.6-devel-cf Custom Go language (github.com/cloudflare/go, 2022)
CIRCL v1.2.0 Collection of PQC primitives
labstack/echo v4.9.0 WebAPI Framework
syndtr/goleveldb v1.0.0 Non-volatile key-value store to configure LRU cache
math/rand Standard Zipf function to generate content requests by user

Table 2: Host configuration.

Specifications Description

Instance type c5.4xlarge up to 0.856 [USD/hour]
vCPU [Core] 16 Intel Xeon Platinum 8275CL @ 3.00GHz
Memory [GiB] 32
Network [Gbps] up to 10
Operating system Amazon Linux 2 Kernel 5.10.135-122.509
Number of hosts 3 for CS, SP, and User

Table 3: Experimental Setup.

Number of SPs 1
Number of CSs 1

Number of users

2,048
(We uniformly assigned users to

each effective leaf node defined by
CompSubTree)

Number of requests in eacht 217= 131,072 (each user requests 64 contents)
Number of contents 65,535
Cache capacity in CS 4,096, 8,192 and 16,384
(Maximum number of stored contents)
Size of each content [MB] 1

Popularity of content

Zipf function in Go standard librarymath/rand
with argumentss= 3,v= 3,000.
The arguments are determined

by the cache hit ratio when it becomes 75%
of the cache capacity 4,096.

Tmax 16 (depth of the binary tree is 5)

4.2 Implementing Components

To evaluate the cache system with the mechanism
described in Section 3, we experimentally imple-
mented a cache system that provides time-dependent
access control. The cache system is an extended ver-
sion of the Cache-22 system to enable the encryp-
tion and decryption of contents with multiple keys.
Three types of program code sets were implemented,
namely, SP, CS, and User, which correspond to the
components in Figure 2. All modules in these com-
ponents were written in the Go language using several
libraries, as described in Table 1. We employed a cus-
tom Go language (github.com/cloudflare/go, 2022)

that used CIRCL (Faz-Hernández and Kwiatkowski,
2019) patched by Cloudflare to introduce PQC primi-
tives in addition to conventional TLS algorithms such
as ECDSA and RSA.

We implemented the SP as a web server which
received requests from users to obtaintagi, j via
(c name, j) as illustrated in Figure 2. We also im-
plemented the CS as a web server to forward user re-
quests to the SP or to return cached encrypted con-
tents to users according totagi, j . User was a simula-
tion program to emulate many users to get encrypted
contents from the CS and decrypting them when they
had the corresponding decryption key. Although users
send requests for various contents, the popularity fol-

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

326

0

1

2

3

4

5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 k

ey
s

as
si

gn
ed

 to
 u

se
rs

C
ac

he
 H

it
R

at
e

Time

Cache Capacity 4,096 Cache Capacity 8,192 Cache Capacity16,384

Figure 3: Time Series of Cache Hit Ratio for Three Cache Capacities in CS.

lows a characteristic trend, such as Zipf’s law and
gamma distribution, especially in the case of video-
on-demand services (Cheng et al., 2013). Although
all components were parameterized to adapt to vari-
ous situations, we set up the experimental conditions
as presented in Table 3 for reasonable discussion.

As the underlying cache system, we employed the
Least Recently Used (LRU) cache system. That is,
ciphertexts generated in the past were unavailable at
the current time and were erased from the cache table
CacheTbl.

We set up several virtual machines on Amazon
Elastic Compute Cloud (EC2) with a uniform config-
uration, as displayed in Table 2. Each host ran SP and
CS processes. Many user processes were also run on
EC2 with the same configuration to emulate multiple
users sending requests to obtain contents from the CS.

4.3 Change in Network Traffic by
Introducing Time-Dependent
Access Control

A cache system is helpful to reduce traffic in a more
upstream network, such as that between the CS and
SP. There were two evaluation perspectives: (i) reduc-
tion in network traffic due to the cache system and (ii)
increase in network traffic due to the time-dependent
access control protocol. Figure 3 presents the time
series of the cache hit ratio for each cache capacity.
The three lines demonstrate that the cache capacity
explicitly contributed to the reduction in network traf-
fic. The condition of the popularity distribution in the

experiment is presented in Table 3.
At t1, all users hadk1 (which was assigned to the

root node) and could obtain all contents encrypted by
k1. This signifies that a user could always decrypt a
ciphertext that was stored due to a previous request
by another user. The cache hit ratio in this situation
was that same as that in a cache system without time-
dependent access control. The cache hit ratio was
greater than 70% in all cases, which demonstrates that
the network traffic was reduced due to the cache sys-
tem. The reduction in network traffic was approxi-
mately 50% when the cache capacity was 4,096 MB
(since the size of each content is 1 MB in our experi-
ment) which contained 6.25% of all contents. It could
be increased to over 70% when the cache capacity
was increased, such as to 8,192 MB and 16,384 MB,
which contained 12.5% and 25% of all contents, re-
spectively. This indicates that the network traffic can
be further reduced when time-dependent access con-
trol is employed.

Next, we discuss how the cache capacity affects
the hit ratio when employing time-dependent access
control. Due to time-dependent access control, for
every content, multiple encrypted data are generated
with different encryption keys. The number of keys
assigned to each content increases the number of du-
plicated contents. This situation may reduce the cache
hit ratio because a user may not be able to decrypt a
ciphertext that was stored due to a previous request by
another user. The cache hit ratio is increased when the
probability that the corresponding ciphertext is stored
on the CS increases. Thus, when a relatively large
number of keys are used for encryption, the low cache

An End-to-End Encrypted Cache System with Time-Dependent Access Control

327

capacity of the CS may cause an increase in the cache
miss rate, which increases the amount of traffic. The
cache capacity represents the effectiveness when em-
ploying time-dependent access control. This prompts
us to carefully selectTmax because it depends on the
depth of the binary tree and the number of keys used
for encryption, although it provides more fine-grained
access control.

5 CONCLUSION

In this paper, we add a time-dependent access control
protocol to the Cache-22 system and provide experi-
mental results. Due to the proposed time-dependent
access control, the number of duplicated contents is
higher than that in the original Cache-22 system. That
is, the proposed protocol is not only effective for con-
trolling access rights, but it also affects the relation-
ship between the cache capacity and network traffic.

The prototype implementation of the origi-
nal Cache-22 system considered multiple CSs and
employed the color-based cooperative cache sys-
tem (Nakajima et al., 2017), which associates servers
and caches through a color tag. In the Cache-22 sys-
tem with time-dependent access control, a key associ-
ated with a higher node (i.e., a node closer to the root)
is assigned to more users than a key associated with
a lower node (i.e., a node closer to a leaf). That is,
it should be effective to introduce multiple CSs that
store ciphertexts encrypted by keys associated with a
higher node. Confirming the effectiveness of intro-
ducing multiple CSs is left for future work.

ACKNOWLEDGEMENTS

This work was partially supported by JSPS KAK-
ENHI Grant Number JP21K11897.

REFERENCES

Alkim, E., Ducas, L., Pöppelmann, T., and Schwabe, P.
(2016). Post-quantum key exchange - A new hope.
In USENIX Security, pages 327–343.

Aragon, N., Barreto, P. S. L. M., Bettaieb, S., Bidoux,
L., Blazy, O., Deneuville, J.-C., Gaborit, P., Gueron,
S., Güneysu, T., Melchor, C. A., Misoczki, R., Per-
sichetti, E., Sendrier, N., Tillich, J.-P., and Zémor,
G. (2018). BIKE: Bit flipping key encapsulation.
https://bikesuite.org/files/BIKE.pdf.

Attrapadung, N., Hanaoka, G., Ogawa, K., Ohtake, G.,
Watanabe, H., and Yamada, S. (2016). Attribute-based

encryption for range attributes. InSecurity and Cryp-
tography for Networks, pages 42–61.

Bellare, M. (2015). New proofs for NMAC and HMAC:
security without collision resistance.J. Cryptology,
28(4):844–878.

Bos, J. W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J. M., Schwabe, P., Seiler, G., and Stehlé,
D. (2018). CRYSTALS - kyber: A CCA-secure
module-lattice-based KEM. InIEEE EuroS&P, pages
353–367. IEEE.

Chen, C., Danba, O., Hoffstein, J., Hulsing, A., Rijneveld,
J., Schanck, J. M., Schwabe, P., Whyte, W., Zhang,
Z., Saito, T., Yamakawa, T., and Xagawa, K. NTRU.
https://ntru.org/.

Cheng, X., Liu, J., and Dale, C. (2013). Understanding
the characteristics of internet short video sharing: A
youtube-based measurement study.IEEE Transac-
tions on Multimedia, 15(5):1184–1194.

D’Anvers, J.-P., Karmakar, A., Roy, S. S., and Vercauteren,
F. SABER. https://www.esat.kuleuven.be/cosic/
pqcrypto/saber/.

Emura, K., Hayashi, T., and Ishida, A. (2020a). Group
signatures with time-bound keys revisited: A new
model, an efficient construction, and its implementa-
tion. IEEE Transactions on Dependable and Secure
Computing, 17(2):292–305.

Emura, K., Moriai, S., Nakajima, T., and Yoshimi, M.
(2020b). Cache-22: A highly deployable encrypted
cache system. InISITA, pages 465–469. IEEE.

Emura, K., Moriai, S., Nakajima, T., and Yoshimi, M.
(2022). Cache-22: A highly deployable end-to-end
encrypted cache system with post-quantum security.
IACR Cryptology ePrint Archive, 220.

Faz-Hernández, A. and Kwiatkowski, K. (2019).Intro-
ducing CIRCL: An Advanced Cryptographic Library.
Cloudflare. Available at https://github.com/cloudflare/
circl. v1.2.0 Accessed Jun 2022.

github.com/cloudflare/go (2022). https://github.com/
cloudflare/go.

Grover, L. K. (1998). A framework for fast quantum me-
chanical algorithms. InACM STOC, pages 53–62.

Iwata, T. and Seurin, Y. (2017). Reconsidering the secu-
rity bound of AES-GCM-SIV.IACR Trans. Symmet-
ric Cryptol., 2017(4):240–267.

Leguay, J., Paschos, G. S., Quaglia, E. A., and Smyth, B.
(2017). CryptoCache: Network caching with confi-
dentiality. InIEEE ICC, pages 1–6.

Nakajima, T., Yoshimi, M., Wu, C., and Yoshinaga, T.
(2017). Color-based cooperative cache and its rout-
ing scheme for telco-CDNs.IEICE Transactions on
Information and Systems, 100-D(12):2847–2856.

Naor, D., Naor, M., and Lotspiech, J. (2001). Revoca-
tion and tracing schemes for stateless receivers. In
CRYPTO, pages 41–62.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

328

