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Abstract:  Quorum Planted Motif Search (qPMS) is a specialized field of PMS which provides matching outputs only 
if the search motif appears in q% of the results. Designing qPMS models is a multidomain task, that 
involves collection of application-specific datasets, pre-processing of these datasets for identification of 
frequent patters, matching of these patterns, and contextual post-processing operations. Due to large-length 
sequences, the search process is highly complex, and requires dataset-specific optimizations. To perform 
these optimizations, a wide variety of tools are developed by researchers and each of them vary in terms of 
their qualitative & quantitative characteristics. Most of these models are non-reconfigurable, and can be 
used only for specific datasets, while others present highly complex search mechanisms, which limits their 
applicability. To overcome these limitations, this text proposes design of a Map Reduce Model for solving 
Quorum Planted Motif Search for high-speed deployments. The proposed model initially stores input 
genomic sequences via a Map Reduce framework, which assists in faster search via use of unique entity-
level keys for different sequence types. These keys are stored via the Apache Hadoop framework, which 
assists in improving search performance under large dataset scenarios. Due to use of Map Reduce, the 
model is capable of higher scalability, better flexibility, low delay, and security via parallel processing 
operations. This was possible due to pre-processing of input DNA sequences and reducing them into index-
based searchable formats. The model also deploys a Genetic Algorithm (GA) for identification of optimum 
Q values for enhanced accuracy under different use cases. It was tested for protein & DNA sequences, and 
its performance was evaluated in terms of accuracy, retrieval delay, precision, & throughput parameters, and 
compared with various state-of-the-art models under different use case scenarios. Based on this comparison, 
it was observed that the proposed model was capable achieving 3.5% higher accuracy, 9.4% lower delay, 
2.9% higher precision, and 8.5% higher throughput under different scenarios. Due to these advantages the 
proposed model is capable of deployment for a wide variety of real-time use cases.  

1 INTRODUCTION 

Design of Quorum based Planted Motif Search 
(QPMS) requires researchers to integrate multiple 
data representation & search models for improving 
performance under different use cases. These use 
cases include, genomic searches, DNA 
representational searches, protein sequence analysis, 
etc. A typical PMS Model (Semwal et al.,2022) that 
uses 𝑙, 𝑑-mers for feature extraction is depicted in 
figure 1, wherein Firefly Algorithm is used with 
Freeze Techniques for optimization of motif search 
process. The model initially converts DNA 
sequences into static search sequences based on 
common pattern analysis. These sequences marked  
as ‘local freeze’ sequences, and are used for the 

search process. To perform this search process, 𝑙 
gram matching is used, where 𝑑 sequences are fused 
together to form final ‘global freeze’ sequence sets. 
These sets are presented at the output, and are used 
for representation of search results under different 
use cases. 

To perform this search, a score is evaluated via 
equation 1, 

𝑆 = ෍ ෍ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑄(𝑖, 𝑗), 𝑆(𝑖, 𝑗))ାௗ
௝ୀିௗ

ା௟
௜ୀି௟  (1)

Where, 𝑄 & 𝑆 represents input query, and the 
sequence to be used for matching purposes. This 
model uses Jaccard similarity index, which is 
optimized via use of Firefly optimizations, thereby 
increasing overall complexity of such deployments.  
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Figure 1: Design of a Firefly based Model for QPMS 
applications. 

To reduce this complexity, next section discusses 
design of various PMS Models (Xiao et al, 2021; Yu 
et al, 2019; Li et al, 2021) and evaluates them in term 
of their application-specific nuances, contextual 
advantages, functional limitations, and deployment 
based future research scopes. Based on this 
discussion, it was observed that most of these models 
are non-reconfigurable, and can be used only for 
specific datasets, while others present highly complex 
search mechanisms, which limits their applicability. 
To overcome these limitations, section 3 proposes 
design of a Map Reduce Model for solving Quorum 
Planted Motif Search for high-speed deployments. 
The proposed model was evaluated in terms of 
accuracy, precision, delay & throughput parameters, 
and compared with various state-of-the-art models, 
which assists in validating its performance under real-
time use cases. Finally, this text concludes with some 
context-specific & performance-specific observations 
about the proposed model, and recommends methods 
to further improve its performance levels for different 
application scenarios. 

2 LITERATURE REVIEW 

A wide variety of models are available for Motif 
Search, and each of them vary in terms of their 
internal performance & use case types. For instance, 
work in (Zhang et al, 2018) (Zhao et al,2021) 
discusses Discriminative Motif Learning Algorithm 
(DMLA), and Motif Based PageRank (MBP), which 
assists in integrating multiple datasets for searching 
different Motif types. But the model is highly context 
specific, this cannot be scaled for real time scenarios. 
To overcome this limitation, work in (Sun et al, 2019) 
proposes use of Time First Search (TFS), which 
reduces number of Motifs to be searched per query, 

thereby improving search speed, and scalability under 
multiple use cases. Similar models are discussed in 
(Xing et al,2020) (Yu et al,2021) (Chaudhry et 
al,2018) which propose use of Graph Neural 
Network, Artificial Generation of Searching 
Conditions, and Monte Carlo Tree Search which 
assists in improving its search performance via high 
density feature representations. Extensions to these 
models are discussed in (Nicolae et al,2015) (Yu et 
al,2019) (Shrimankar, 2019), which propose use of 
DNA (ℓ, d), Approximate qPMS (AqPMS), and DNA 
Regulatory Networks, which assists in enhancing 
search speed under multiple scenarios. These models 
are highly superior when applied to large-scale 
datasets, and thus can be used under different 
scenarios.  

Models that use Edit-distance based Motif Search 
(EMS) (Xiao P. et al,2021), Intrinsically Disordered 
Proteins (IDPs) (Schultz et al, 2022), Stochastic 
Search Models (Merlin et al, 2013), Motif Stem 
Search (MSS) (Yu et al, 2015), and Simple Motif 
Search (SMS) (Pathak et al, 2013), aim at reducing 
complexity of search under different use cases. These 
models are used when large search sequences are to 
be parsed, and their performance is to be evaluated 
under multiple use cases. Extensions to these models 
are discussed in (Reddy et al, 2010) (Kashiwabara et 
al,2018), which propose use of Particle Swarm 
Optimization (PSO), and Memetic Algorithm (MA), 
that introduce bioinspired computing models for 
continuous parametric tuning under different use 
cases. But these models vary widely in terms of their 
qualitative & quantitative characteristics and most of 
them are non-reconfigurable, thus, can be used only 
for specific datasets, while others present highly 
complex search mechanisms, which limits their appli-
cability. To overcome these limitations, next section 
proposes design of a Map Reduce Model for solving 
Quorum Planted Motif Search for high-speed deploy-
ments. The proposed model was evaluated in terms of 
accuracy, precision, recall, and delay metrics under 
multiple datasets, which will assist in validating its 
real-time performance levels for different use cases.  

3 DESIGN OF A MAP REDUCE 
BIOINSPIRED MODEL FOR 
SOLVING QUORUM PLANTED 
MOTIF SEARCH FOR  
HIGH-SPEED DEPLOYMENTS 

Based on the literature review, it can be observed 
that existing models vary in terms of their qualitative 
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& quantitative characteristics. There are a number of 
models that can only be used for specific datasets, 
while others have complex search mechanisms that 
limit their applicability. A Map Reduce Model for 
high-speed deployments of Quorum Planted Motif 
Search (QPMS) is proposed in this section to 
overcome these limitations. Figure 2 shows the 
model's flow, which uses a Map Reduce framework 
to store input genomic sequences and then uses 
unique entity-level keys for different sequence types 
to speed up search. The Apache Hadoop framework 
then stores these keys, which helps to improve 
search performance when dealing with large 
datasets. The model's parallel processing operations 
enable it to achieve greater scalability, better 
flexibility, lower latency, and increased security 
thanks to the use of Map Reduce. Input DNA 
 

 
Figure 2: Overall flow of the proposed model for 
optimized QPMS. 

sequences were pre-processed before being reduced 
to index-based searchable formats, allowing for this 
to be accomplished Additionally, the model uses a 
Genetic Algorithm (GA) to find the best Q values 
for different use cases. 

Collecting massive datasets that contain a wide 
variety of protein sequences, DNA sequences, and 
other genomic sets is the first step in the process of 
building the search corpus for the model. This step is 
part of the process of building the search engine.  

This corpus is stored via the Apache Hadoop in 
a Map Reduce format, which works via the 
following process, 
• Assign each symbol a unique numeric value via 

equation 2, 𝑁௩௔௟ = 𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ ൫1, 𝑁௦௔௠௣௟௘௦൯ (2)

Where, 𝑁௩௔௟ represents numerical value for each of 
the unique 𝑁௦௔௠௣௟௘௦ 
• Repeat this process for bigram, trigram, and N 

gram sequences 
• Store all sequence sets into the Map Reduce 

databases in the format depicted in reduce 
representation index of Map Reduce. 

This structure is internally used by the Hadoop 
Framework to find matching between query input 
sequences and stored sequence sets. This matching 
is performed via a combination of Jaccard & Cosine 
Distance Metrics (DM), which is evaluated via 
equation 3, which combines these metrics in order to 
find top Q search sequences, 𝐷𝑀 = ෍ 𝐶௦(𝑄𝑢𝑒𝑟𝑦) ⋂ 𝐶௦(𝐼𝑛𝑝𝑢𝑡)𝐶௦(𝑄𝑢𝑒𝑟𝑦) ⋃ 𝐶௦(𝐼𝑛𝑝𝑢𝑡)    ൅ ∑ 𝐶௦(𝑄𝑢𝑒𝑟𝑦) ∗ 𝐶௦(𝐼𝑛𝑝𝑢𝑡)ඥ∑ 𝐶௦(𝑄𝑢𝑒𝑟𝑦)ଶ ∗ ∑ 𝐶௦(𝐼𝑛𝑝𝑢𝑡)ଶ 

(3)

Where, 𝐶௦(𝑄𝑢𝑒𝑟𝑦) 𝐶௦(𝐼𝑛𝑝𝑢𝑡) represents Map 
Reduced values for query & input sequences, which 
are evaluated via equation 1, and assist in improving 
overall search performance under different sequence 
types. The model selects a Q value via Genetic 
Algorithm (GA), that works as follows, 
• Initialize following optimization parameters of 

the model, 
o Total selected iterations for optimization (𝑁௜) 
o Total selected solutions for optimization (𝑁௦) 
o Rate at which the model learns via cognitive 

process (𝐿௥) 
o Maximum value of 𝑄 required for the 

optimization process (𝑀𝑎𝑥𝑄) 
• To start the optimization process, setup all 

solutions to be ‘mutate’ 
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• Scan all solutions for each of the iteration via 
the following process, 

o If current solution is setup as ‘to be 
crossover’, then skip it and go to next solution 
in sequence 

o For ‘mutated’ sequences, generate Q Value 
via equation 4, 𝑄 = 𝑆𝑇𝑂𝐶𝐻(𝐿௥ ∗ 𝑀𝑎𝑥𝑄, 𝑀𝑎𝑥𝑄) (4)

Where, 𝑆𝑇𝑂𝐶𝐻 represents a stochastic Markovian 
process used for generation of numbers between 
range sets. 
o Based on this Q Value, identify top Q 

matching sequences, and evaluate solution 
fitness via equation 5, 

𝑓 = 1𝑄 ∗ ෍ 𝑁𝐶௜𝑁𝑇௜
ொ

௜ୀଵ  (5)

Where, 𝑁𝐶 & 𝑁𝑇 represents Number of Correctly 
identified sequences, & Total Number of sequences 
extracted during the identification process. 
o Evaluate the fitness value for all solutions, and 

then calculate iteration fitness via equation 6, 

𝑓௧௛ = 1𝑁௦ ෍ 𝑓௜ ∗ 𝐿௥ேೞ
௜ୀଵ  (6)

o Scan each solution, and mark it as ‘mutate’ if 𝑓௜ ≤ 𝑓௧௛, else mark it as ‘crossover’, and go 
the next iterations 

• At the end of final iteration, identify Q Value 
with maximum fitness levels, and use it for the 
process 

Based on this process, values of Q are evaluated, 
which assists in improving classification accuracy 
for different dataset types. The accuracy levels along 
with precision, recall & delay needed for search is 
compared with various state-of-the-art models under 
different sequence types, and is evaluated in the next 
section of this text. 

4 RESULT ANALYSIS & 
COMPARISON WITH 
STANDARD METHODS 

Due to integration of GA with QMS and Map 
Reduce operations, the proposed model was 
observed to perform faster and showcase higher 
accuracy when compared with other models under 

different scenarios. This performance estimation was 
done for the following datasets, 
• David Reich Lab Dataset, which is available at 

https://reich.hms.harvard.edu/datasets 
• Structural Protein Sequences, available at 

https://www.kaggle.com/datasets/shahir/protein-
data-set 

• Plant Genomic Dataset, which is available at 
https://www.plantgdb.org/ 

When combined together, these datasets have n 
aggregated 200k DNA sequences, with unequal 
lengths, which makes them a perfect candidate for 
QPMS operations. The combination of datasets was 
done as follows, 
• Sequences were integrated to form a combined 

sequence set via aggregation operations 
• Classes of these sequences were arranged 

sequentially to obtain final search sets 

The full dataset was used for searching different 
Motifs, that varied in lengths from 20 characters to 
50 characters. These sequences were searched for 
different Test Set Sizes (TSS), and their accuracy 
performance was compared with DMLA (Zhang et 
al, 2018), AQ PMS (Yu et al, 2019) and PSO 
(Reddy et al,2010) which can be observed from table 
2 as follows: 

Table 2: Average search accuracy for different Test Set 
Sequences. 

TSS A (%) 
DMLA 

(Zhang et 
al, 2018)

A (%) 
AQ PMS 
(Yu et al, 

2019) 

A (%) 
PSO 

(Reddy et 
al, 2010) 

A (%)
MRQ 
PMS 

25k 79.58 62.65 64.68 98.37
37.5k 79.82 62.85 64.88 98.67
5k0 79.95 62.94 64.98 98.82

62.5k 80.05 63.02 65.06 98.95
75k 80.09 63.06 65.10 99.00

87.5k 80.11 63.07 65.11 99.02
100k 80.11 63.08 65.12 99.03

112.5k 80.12 63.08 65.12 99.03
125k 80.12 63.08 65.12 99.04

137.5k 80.12 63.08 65.12 99.04
150k 80.18 63.13 65.17 99.11

162.5k 80.25 63.18 65.23 99.20
175k 80.33 63.25 65.29 99.30

187.5k 80.42 63.32 65.36 99.41
200k 80.52 63.40 65.45 99.53
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Figure 3: Average search accuracy for different Test Set 
Sequences. 

Based on this evaluation, and figure 3, it can be 
observed that the proposed model is capable of 
achieving 18.4% better accuracy than DMLA 
(Zhang et al, 2018), 25.5% higher accuracy than AQ 
PMS (Yu et al, 2019), and 23.9% better accuracy 
than PSO (Reddy et al,2010) under different test 
sequence sizes. This is due to combination of GA 
with multiple distance metrics, and use of Map 
Reduce, which assists in improving search 
performance under different scenarios. Similar 
evaluations for search precision can be observed 
from table 3 as follows: 

Table 3: Average search precision for different Test Set 
Sequences. 

TSS P (%) 
DMLA 

(Zhang et 
al, 2018) 

P (%) 
AQ PMS 
(Yu et al, 

2019) 

P (%) 
PSO 

(Reddy et 
al,2010) 

P (%) 
MRQ 
PMS 

25k 64.27 59.42 49.83 79.44 
37.5k 64.47 59.60 49.99 79.68 
5k0 64.57 59.70 50.06 79.81 

62.5k 64.65 59.77 50.12 79.91 
75k 64.68 59.80 50.15 79.95 

87.5k 64.70 59.82 50.16 79.97 
100k 64.70 59.82 50.16 79.97 

112.5k 64.70 59.83 50.17 79.98 
125k 64.71 59.83 50.17 79.98 

137.5k 64.71 59.83 50.17 79.98 
150k 64.75 59.87 50.21 80.04 

162.5k 64.81 59.92 50.25 80.11 
175k 64.87 59.98 50.30 80.19 

187.5k 64.95 60.05 50.35 80.28 
200k 65.03 60.13 50.42 80.38 

 
Figure 4: Average search precision for different Test Set 
Sequences 

Based on this evaluation, and figure 4, it can be 
observed that the proposed model is capable of 
achieving 15.9% better precision than DMLA 
(Zhang et al, 2018), 20.5% higher precision than AQ 
PMS (Yu et al, 2019) and 19.4% better precision 
than PSO (Reddy et al,2010) under different test 
sequence sizes. This is due to combination of GA 
with multiple distance metrics, and use of Map 
Reduce, which assists in improving search 
performance under different scenarios. Precision and 
recall values are observed to be lower than accuracy, 
which indicates that there are higher true negative 
instances, and lower false positive instances in the 
results. Similar evaluations for search recall can be 
observed from table 4 as follows: 

Table 4: Average search recall for different Test Set 
Sequences. 

TSS 
R (%) 
DMLA 

(Zhang et 
al, 2018) 

R (%) 
AQ PMS 
(Yu et al, 

2019) 

R (%) 
PSO 

(Reddy et 
al,2010) 

R (%) 
MRQ 
PMS 

25k 63.46 58.68 49.21 78.45 
37.5k 63.66 58.86 49.36 78.69 
5k0 63.76 58.96 49.44 78.81 

62.5k 63.84 59.03 49.50 78.91 
75k 63.87 59.06 49.53 78.96 

87.5k 63.89 59.07 49.54 78.97 
100k 63.89 59.08 49.54 78.98 

112.5k 63.89 59.08 49.54 78.98 
125k 63.90 59.08 49.54 78.99 

137.5k 63.90 59.09 49.55 78.99 
150k 63.95 59.13 49.58 79.04 

162.5k 64.00 59.18 49.62 79.11 
175k 64.07 59.24 49.67 79.19 

187.5k 64.14 59.30 49.73 79.28 
200k 64.22 59.38 49.79 79.38 
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Based on this evaluation, and figure 5, it can be 
observed that the proposed model is capable of 
achieving 10.5% better recall than DMLA (Zhang et 
al, 2018), 12.5% higher recall than AQ PMS (Yu et 
al, 2019) and 23.4% better recall than PSO (Reddy 
et al,2010) under different test sequence sizes.  

 

Figure 5: Average search recall for different Test Set 
Sequences 

This is due to combination of GA with multiple 
distance metrics, and use of Map Reduce, which 
assists in improving search performance under 
different scenarios. Similar evaluations for search 
delay can be observed from table 5 as follows: 

Table 5: Average search delays for different Test Set 
Sequences. 

TSS D (ms) 
DMLA 

(Zhang et 
al, 2018) 

D (ms) 
AQ PMS 
(Yu et al, 

2019) 

D (ms) 
PSO 

(Reddy et 
al,2010) 

D (ms) 
MRQ 
PMS 

25k 160.53 126.39 130.47 74.41 
37.5k 161.02 126.78 130.87 74.64 
5k0 161.27 126.98 131.08 74.75 

62.5k 161.47 127.13 131.24 74.85 
75k 161.56 127.20 131.31 74.89 

87.5k 161.59 127.23 131.34 74.91 
100k 161.60 127.23 131.35 74.91 

112.5k 161.61 127.24 131.36 74.91 
125k 161.62 127.24 131.36 74.92 

137.5k 161.62 127.25 131.37 74.92 
150k 161.74 127.34 131.46 74.97 

162.5k 161.88 127.45 131.57 75.04 
175k 162.04 127.57 131.70 75.11 

187.5k 162.22 127.72 131.86 75.20 
200k 162.43 127.88 132.02 75.29 

 
Figure 6: Average search delays for different Test Set 
Sequences. 

Based on this evaluation, and figure 6, it can be 
observed that the proposed model is capable of 
achieving 23.5% faster search performance than 
DMLA (Zhang et al, 2018), 16.5% faster search 
performance than AQ PMS (Yu et al, 2019) and 
18.2% faster search performance than PSO (Reddy 
et al,2010) under different test sequence sizes. This 
is due to combination of GA with multiple distance 
metrics, and use of Map Reduce, which assists in 
improving search performance under different 
scenarios. Due to these enhancements the proposed 
model is capable of deployment for a wide variety of 
real-time QPMS application scenarios. 

5 CONCLUSION AND FUTURE 
SCOPE 

The proposed model uses a combination of Map 
Reduce along with GA & QPMS for optimization of 
Motif searches. Due to use of Map Reduce the 
model was able to reduce the search delay, which 
was further optimized via GA, which assisted in 
estimation of Q values for search operations. These 
when combined with a hybrid similarity metric, 
assisted in improving overall search performance 
under different use cases. This performance was 
compared with various state-of-the-art methods, 
where the proposed model was found to be capable 
of 18.4% better accuracy than DMLA (Zhang et al, 
2018), 25.54% higher accuracy than AQ PMS (Yu et 
al, 2019) and 23.94% better precision than DMLA 
(Zhang et al, 2018), 15.9% better precision than AQ 
PMS (Yu et al, 2019) and 19.44% better precision 
than PSO (Reddy et al,2010) as well as 10.54% 
better recall than DMLA (Zhang et al, 2018), 
12.54% higher recall than AQ PMS (Yu et al, 2019) 
and 23.44% better recall than PSO (Reddy et 
al,2010) under certain conditions. The proposed 
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model was found to be capable of achieving 23.5 
percent faster search performance than DMLA 
(Zhang et al, 2018), 16.5 percent faster search 
performance than AQ PMS (Yu et al, 2019) and 18.2 
percent faster search performance than PSO (Reddy 
et al,2010) under various test sequence sizes. This 
performance was also evaluated in terms of search 
delay. This is a result of the combination of Map 
Reduce and GA with various distance metrics, 
which helps to enhance search performance in 
various scenarios. These improvements enable the 
proposed model to be deployed for numerous real-
time QPMS application scenarios. In future, the 
proposed model must be validated on larger datasets, 
and can be improved via use of Deep Learning 
Models like Q-Learning, Autoencoders, and other 
Convolutional Neural Networks (CNNs), which will 
assist in further improving its scalability. This 
performance can be further improved via use of 
Gated Recurrent Units (GRUs), Generative 
Adversarial Networks (GANs), along with 
bioinspired computing models which will allow the 
model to be continuously optimized for different 
Motif Search based use cases. 
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