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Abstract: Artificial Intelligence (AI) has become a revolutionary tool in multiple fields in the last decade. The appearance
of hardware with improved capabilities has paved the way to apply image processing based on Deep Neural
Networks to more complex tasks with lower costs. Nevertheless, some environments, such as remote areas, re-
quire the use of edge devices. Consequently, the algorithms must be suited to platforms with more constrained
resources. This is crucial in the development of AI systems in seaside zones. In our work, we compare a wide
range of recent state-of-the-art Deep Learning models for Semantic Segmentation over edge devices. Such
segmentation techniques provide a better scene understanding, in particular in complex areas, providing pixel-
level detection and classification. In this regard, coastal environments represent a clear example, where more
specific tasks can be performed from these approaches, such as littering detection, surveillance, and shoreline
changes, among many others.

1 INTRODUCTION

The “Blue Economy” focuses on the role of the
marine environment and the coastal zones of our
planet as an economic source. Moreover, highlights
the importance of managing its resources efficiently
by restoring damaged ecosystems, and introducing
technology and innovation that allow sustainable
use in the future (Addamo et al., 2022). Technolog-
ically speaking, the marine ecosystem offers many
opportunities for the development and application of
Artificial Intelligence tools in interesting topics, such
as maritime surveillance (Wiersma and Mastenbroek,
1997; Frost and Tapamo, 2013; Yang et al., 2018),
smart tourism (Ulrike Gretzel and Koo, 2015; Tsaih
and Hsu, 2018), forecasting algal blooms (Anderson,
2009; Samantaray et al., 2018), forecasts of regional
sea-level rise (Yang et al., 2020) and storm surges
(Wang et al., 2020), prevention of coastal erosion
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(Peponi et al., 2019), among a wide spread of appli-
cations.

In recent years, Artificial Intelligence strategies,
specially approaches based on Neural Networks, have
revolutionized many fields. Examples are medical di-
agnosis (Guo et al., 2017; Amato et al., 2013), Natural
Language Processing (NLP) (Collobert et al., 2011;
Vaswani et al., 2017) or computer vision (Krizhevsky
et al., 2012; Redmon et al., 2015; Guo et al., 2016),
opening new uses that did not exist or improving sub-
stantially the pre-existing ones. Some of the keys to
its recent success are the growing amount of accessi-
ble data today and the extraordinary advances in hard-
ware devoted to parallel computing (Shi et al., 2016a;
Wang et al., 2019).

Plenty of these advances are guiding us to a
“Smarter World”. Thus, many proposals (Ullah et al.,
2020) have been presented to improve the efficiency
of city services in traditional smart city applications.
For instance, smart homes, smart healthcare, smart
transportation, smart security, etc. Smart seaside
cities can also improve their capacities due to Deep
Learning approaches and remote sensors. We must
also notice that, in order to work in coastal areas
where may suffer from poor connectivity, remote sys-
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tems are normally mandatory. In fact, nowadays it is a
common assumption that the AI methods must be em-
bedded in edge computing systems (Shi et al., 2016b;
Satyanarayanan, 2017).

In this context, we focus on deeply analyzing AI
strategies running on edge devices. In particular,
we center the study on seaside scenarios captured by
cameras. The aim is to provide a fully understanding
of the scene, by applying semantic segmentation tech-
niques. Such methods give pixel-level information,
assigning a class label to each one of them (person,
animal, sea, sand, car, etc.). Hence, it can be obtained
low-level information, which is priceless for a wide
variety of high-level applications.

Therefore, we analyze the behavior of image seg-
mentation through Deep Learning pre-trained models
using two datasets of seasides scenes. With the ap-
plication of semantic segmentation in these environ-
ments, we pursue a better understanding of the im-
ages. That allows further applications to guide more
specific tasks, such as garbage detection or surveil-
lance, that could have a great impact on user experi-
ence in the area. All these artificial intelligence appli-
cations in vision should be the key to industrial prod-
ucts for maritime safety, and smart tourism, among
others.

Traditionally, urban environments have been
deeply explored using semantic segmentation tech-
niques, due to the interest in areas such as au-
tonomous driving. Nevertheless, to the best of our
knowledge, there has been no review study of this
type on coastal imagery. Moreover, this scenario
with particular computing conditions can provide
researchers with systematic reference information,
which is the motivation of our comparative analysis.
Besides, the deployment of Deep Learning models on
low compute devices is an increasingly important area
of research. In this sense, our comparison is focused
on models that work in edge devices.

The paper is organized as follows: in section 2,
we include recent state-of-the-art works regarding se-
mantic segmentation, based on Convolutional Neu-
ral Networks, as well as Transformers. On the other
hand, section 3 describes the experimental setup, en-
compassing the hardware description, the datasets
employed, and the results that we have obtained. Fi-
nally, we include the conclusions in section 4.

2 RELATED WORKS

There are two main approaches to tackle image seg-
mentation tasks, namely those based on Convolu-
tional Neural Networks (CNNs) (Lindsay, 2021), and

the ones derived from Transformers (Khan et al.,
2022). In this work, we have evaluated models be-
longing to each one of them (about 24, combining
8 different backbones with multiple methods - see
Tables 5 and 6 for more details), aiming to provide
a clear and objective analysis of such different ap-
proaches.

More classical methods are based on Convolu-
tional Neural Networks, although new proposals keep
arising. A clear example is the Deeplab method, and
its successive iterations (Deeplabv3 and Deeplabv3+)
(Chen et al., 2017). Its main characteristic is the
use of atrous or dilated convolutions and the Atrous
Spatial Pyramid Pooling module to take advantage
of information from a larger neighborhood with the
same computational cost. A similar inspiration is fol-
lowed by PSPNet (Pyramid Scene Parsing Network)
(Zhao et al., 2017), which is a semantic segmenta-
tion method that utilizes a pyramid parsing module
that exploits global context information by different-
region-based context aggregation. A more reliable
prediction is obtained by joining the local and global
clues together.

Using a global image representation, APCNet (He
et al., 2019) adaptively constructs multi-scale contex-
tual representations with multiple designed Adaptive
Context Modules (ACMs). Such modules leverage
these global representations, guiding the estimation
of local affinity coefficients for each sub-region, and
then calculate a context vector with these affinities.

The non-local block is a popular module for
strengthening the context modeling ability of a reg-
ular CNN. This block attention computation can be
split into two terms, a whitened pairwise term ac-
counting for the relationship between two pixels and a
unary term representing the saliency or prominence of
every pixel. However, the two terms are tightly cou-
pled in the non-local block, which hinders the learn-
ing of each. Disentangled Non-Local Neural Net-
works (DNL) (Yin et al., 2020) decouples these two
terms to facilitate learning for both.

As a ResNet variation, ResNeSt (Zhang et al.,
2022) proposes the channel-wise attention on dif-
ferent network branches to leverage their success in
capturing cross-feature interactions and learning di-
verse representations, through a single unified Split-
Attention block. In this way, feature representation is
improved, which is useful in multiple applications.

Another viewpoint is found in SegNeXt (Guo
et al., 2022), where a combination of a CNN with
an attention module based on MSCA (multibranch
spatial-channel attention) is proposed. The authors
rely on a better efficiency of the convolutional ap-
proach to extract contextual information, by using
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good characteristics present in previous segmentation
models.

Aiming to embed Transformer features into a
CNN architecture, in HorNet (Rao et al., 2022), a new
operation to perform high-order spatial interactions
(Recursive Gated Convolution) is proposed. Thus,
a new family of vision backbones (HorNet) is pro-
vided, by replacing the spacial mixing layer in var-
ious Transformers. This can be done by using the
new operation, which is more efficient, extensible,
and translation-equivariant.

On the other hand, Transformers were originally
applied to Natural Language Processing (NLP), by
using their self-attention mechanism to recognize dif-
ferent parts of input data. Their application to Com-
puter Vision (CV) tasks relied on adapting the archi-
tecture to the structure of visual data, by modifying
network designs and training techniques.

Initially, Vision Transformer (ViT) proposal
(Dosovitskiy et al., 2021) was the first step towards
the unification and cross-area research sharing be-
tween CV and NLP. ViT is the application of a well-
known NLP architecture, the Transformer (Vaswani
et al., 2017), to CV. For this aim, ViT divides the im-
ages into a grid of S × S patches and considers ev-
ery patch as a token, working similarly to the origi-
nal NLP architecture. Swin Transformer (Liu et al.,
2021) is an evolution of ViT, but applies a hierarchi-
cal structure using windows. In this way, it divides the
images into a non-constant size grid of windows and
split each window into a constant size grid of patches.
This approach allows availing finer details in the im-
age without the need for a large and computationally
costly grid with ViT.

Segmenter (Transformer for Semantic Segmenta-
tion) (Strudel et al., 2021), is also a ViT approach. It
aims to model global context from the very beginning
of the architecture and through the whole network
without using convolutions. The authors propose a
family of models with different levels of resolution,
with the intention of a trade-off between time and per-
formance. As a result, it is estimated that this model
can provide a unified approach for different sorts of
segmentation (semantic, instance, and panoptic).

Following with ViT strategies, in (Chen et al.,
2022), an adapter for ViT is proposed. The aim is
to avoid the lower performance on dense prediction
of ViT, by introducing biases with additional archi-
tecture. This architecture consists of a spatial prior
module and two feature interaction operators. Such an
adapter is connected to a general backbone, in order
to introduce prior information of input data, making
the network suitable for downstream tasks.

In order to avoid a finetuning of transformer back-

bone networks, in SeMask model (Jain et al., 2021)
is proposed to include a semantic prior to guiding the
encoder’s feature modeling. In this way, the proposed
model can be plugged into any hierarchical ViT, with
the objective to acquire semantic context and improve
its representation by using semantic attention opera-
tion.

Finally, the proposal of SegFormer (Xie et al.,
2021), is to unify Transformers with multilayer per-
ceptron decoders. By redesigning the encoder an de-
coder, the authors consider jointly the efficiency, ac-
curacy, and robustness. The main idea is to avoid the
complex designs of previous approaches.

3 EXPERIMENTS

In this section, we describe the experimental setup.
Firstly, the hardware system is described, including
capture and edge computing devices. Afterward, we
include the details regarding the datasets employed in
the experiments, to finally explain the experimental
results obtained.

3.1 Hardware

Concerning the hardware system, we appraise two
main elements. On the one hand, we have the cam-
era, from which the images will be captured. On the
other hand, we consider the edge device, devoted to
performing the computations on the input data by us-
ing different Deep Learning models. Notice that such
a description relies on the scenario that we manage,
and the configuration of the capture systems for other
datasets (such as in the case of ArgusNL) may vary,
as well as the edge device features.

Regarding the capture system, a PTZ camera
(Hikvision DS-2DF8836I5X) has been used to obtain
images of coastal scenes. It has three degrees of free-
dom, provided by its inherent pan, tilt, and zoom ca-
pabilities. It is mounted on a bracket, and at a height
enough to provide a wide view of the coast. This cam-
era is able to capture images up to 4K resolution but
we use 1920x1080 resolution to achieve faster results.
A more detailed description of camera features can be
found in Table 1.

The current technological trends like Internet of
Things (IoT) or autonomous vehicles are boosting
the use of neural networks in remote devices and so
that require appropriate hardware , such as embed-
ded computing boards. NVIDIA Jetson is the family
of NVIDIA products specifically designed for Edge
Computing, characterized by having a good relation
between performance versus energy consumption and
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Table 1: Main Hikvision DS-2DF8836I5X camera specifi-
cations.

Feature Description

Image sensor 2/3” CMOS
Shutter time 1/1 s - 1/30000 s
Focal length 7.5 mm - 270 mm
Optical zoom x36
Pan range 360º
Tilt range -20º a 90º
Maximum resolution 4K
Dimensions Θ 266.6 mm × 410 mm

size. In this work, the edge device we used to test
memory consumption restriction and inference time
measuring is an NVIDIA Xavier NX 8GB with Jet-
Pack 4.5 installed. Main Xavier NX model specifica-
tions are presented in table 2 (find more details at this
link).

Table 2: Nvidia Jetson Xavier NX specifications.

Feature Description

AI Performance 21 TOPS
GPU 384-core NVIDIA Volta GPU

with 48 Tensor Cores
CPU 6-core NVIDIA Carmel 64-bit

CPU
Memory 8 GB 128-bit LPDDR4x
Power 3 modes of 10 / 15 / 20 W
Dimension 69.6 mm x 45 mm

Therefore, considering the constraints presented
in table 2, it is clear that a detailed analysis of dif-
ferent models and their performance would be useful
to identify a trade-off between throughput and results
obtained.

3.2 Datasets

In order to test the models described in the above sec-
tion 2, two different datasets have been used. On the
one hand, we experiment with the ArgusNL dataset,
which includes a set of images captured on the Dutch
coast and manually annotated. On the other hand, a
second dataset is proposed, obtained from a location
on the South-West coast of the Gran Canaria island.
In this section, we include a more detailed description
of both datasets.

The ArgusNL dataset (Hoonhout et al., 2015),
consists of 192 images (snapshots) taken during the
summer of 2013 and manually annotated. To obtain
them, 4 different coastal camera stations have been
used, placed on the Dutch coast (Egmond, Jan van
Speijk, Kijkduin, and Sand Motor). These stations

count with multicamera systems, with setups rang-
ing from 5 to 8 cameras. This dataset was originally
published in (Hoonhout and Radermacher, 2014), and
contains snapshots captured at different moments of
the day, providing a variety of light conditions. These
images have been captured in RGB color code, JPG
format, and with resolutions of 2448 × 2048 and
1392×1040 (probably depending on the station setup
used to perform the capture). Associated with each
one of them, a pickle (.pkl) file with the manual anno-
tations is included.

In addition, we also use a second dataset denom-
inated Smart Coast Segmentation Dataset (SCSD),
which is provided by the R&D company Qualitas Ar-
tificial Intelligence and Science S.A. (QAISC). In the
context of the project ”Smart Coast AI solutions for
tourism 4.0” led by QAISC, several cameras have
been deployed in harbors, marinas, beaches, and ho-
tels on Gran Canaria island. SCSD includes about 36
images, with different scenes and light/shadow condi-
tions. Such images were captured from two cameras
installed in the South-West of Gran Canaria island 1.
The images have been obtained in RGB color code,
JPG format, with a resolution of 1920× 1080. Con-
versely to ArgusNL dataset, SCSD provides homoge-
nous resolutions. Therefore, is easier to perform reso-
lution dependant experiments with the whole dataset.
Along with the images, PNG grayscale files are in-
cluded with the annotations following ADE20K an-
notations style and indexes (Barriuso and Torralba,
2012).

To illustrate the classification performed by se-
mantic segmentation techniques, in Table 3, we in-
clude the details of the correspondences between the
different classes and their associated colors. Please,
note that in the case of the SCSD dataset, the color
codes are based on the ADE20K dataset, whereas Ar-
gunsNL uses its own colors (with light differences
among both datasets). Furthermore, in ArgusNL clas-
sification, each pixel that has not been classified as
any of the considered classes is assigned to the ob-
ject class. The classes without an associated color are
marked with a dash.

3.3 Experimental Results

In this section, we show the experimental results ob-
tained. To this aim, we apply the models described in
section 2 to both datasets. About 24 different mod-
els have been used, by combining 8 backbones with
multiple methods. Regarding the model implementa-
tions and weight files, Upernet-Swin, ConvNext, Seg-
menter, Segformer, Resnet and ResneSt come from

1https://www.smartcoast.info/
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Table 3: Correspondences between classes and colors for
SCSD and ArgusNL datasets. In the SCSD dataset, the veg-
etation class is a virtual class we created to join tree, grass,
plant, and palm classes.

Class Colors

SCSD ArgusNL

background —
wall —
building —
sky
floor —
tree —
grass —
earth —
plant —
sea
rock —
sand
bridge —
palm —
boat —
swim pool —
pier —
vegetation
object —

MMSegmentation and the rest from their original im-
plementations. In this way, qualitative and quantita-
tive results are included to show the robustness of the
different approaches. Our final objective is to obtain
a trade-off between precision and computational cost.

Aiming to illustrate the results obtained, in Table 4
the outcomes for some of the best performing Seman-
tic Segmentation models are depicted. Additionally,
we consider a variety of illumination conditions: op-
timum, medium, and bad. In the first two rows, we
include the inputs and their associated ground-truths,
whereas in the rest of the rows the results for different
models are represented. Note that, although the color
correspondences seem not to agree with the ground-
truth, this is due to the fact that the image segmenta-
tion result is superimposed on the input image with
transparency, which produces slight differences.

As observed, with optimum illumination all of
them correctly segmentate the biggest regions in the
image, sea, sky, building, and vegetation. Under
worse illumination conditions (third column) some
models start to struggle to detect a diffuse horizon line
like Swin-B384 and ViT-Adapter with lower resolu-
tion. Segmenting an image with a very bad illumina-
tion (fourth column) is a challenging task. All of the
depicted models struggle to accurately classify both
dikes areas. Only Hornet-L-GF is able to correctly

keep the sea shape around the dike in the back. With
bad illumination, the difference between resolutions
is hardly noticeable.

On the other hand, in Figure 1 we show different
results when the input image is affected by shadows.
Thus, we include the input image with the shadow
(Figure 1(a)) and its corresponding ground-truth (Fig-
ure 1(b)). In particular, here we can see that there are
two regions that are tougher to classify: the building
shadow and the wet sand. Most models perform simi-
larly segmenting the sea and most of the sand but also
fail to segment the building and shadowed sand area
next to the promenade. Like in the illumination exper-
iment, Hornet-L-GF (Figure 1(c)) is the best segment-
ing in these difficult regions and Swin-B384 (Figure
1(e)) with 1080 pixels width works acceptably on this
area but miss-classifies half of the building.

For the purpose of quantitatively characterizing
the results obtained with the different models, we in-
clude figures in Tables 5 and 6. In each one, the three
models with the overall best performance are high-
lighted in bold. In Table 5 we show the numerical
results for the ArgusNL dataset. In this way, num-
bers related to the mean intersection over union (IoU),
mean accuracy (Acc.), and absolute accuracy (|Acc.|)
are presented. On the ArgusNL dataset, three back-
bones outstand, HorNet, ViT, and Swin. In the same
way, ViT-Adapter, HorNet-L-GF, and HorNet-S-7x7
rank top-3 in all metrics, but not in the same order,
and achieve more than 70 % in IoU . Segmenter B
and Swim B224-22k perform very close to the 70 %
IoU barrier as well. Averaging the three metrics ViT-
Adapter works best in this dataset closely followed by
HorNet-L-GF.

Table 6 includes figures regarding the SCSD
dataset. As described in section 3.2, this dataset pro-
vides a homogeneous set of images with the same
resolution, which allows us to perform resolution-
dependent experiments. In addition to the metrics
presented in the previous table, we also include the
inference time for the first inference and the mean for
the rest of them. All these experiments have been
performed for two image widths: 1080 and 1920,
when feasible. For an image width of 1080 pix-
els, top-3 IoU are HorNet-L-GF, ConvNext B640,
and Semask-FPN-Swin-L but their average inference
time is bottom-4 and over 7.5 s which is almost pro-
hibitive. Performance and inference time objectives
are opposed so we must keep in mind this trade-off.
When we use the original image width, 1920 pixels,
we are boosting the performance of modern models
to the detriment of their resources consumption and
execution time. Some models consume more RAM
memory than available so must be discarded with this
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Table 4: Semantic Segmentation results under optimum, medium, and bad illumination conditions, respectively.

Models Illumination

Optimum Medium Bad

Input

ground-truth

Hornet-L-GF

Hornet-S-7x7

Swin-B384 (1080)

Swin-B384 (1920)

SeMask

ViT-Adapter (1080)

ViT-Adapter (1920)
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(a) Input (b) Ground-truth

(c) Hornet-L (d) Hornet-S

(e) Swin-B384-1080 (f) Swin-B384-1920

(g) SeMask (h) ViT-Adapter-1080

(i) ViT-Adapter-1920

Figure 1: Results for different models when the input image
is affected by shadows.

resolution. Those which can work with this resolu-
tion achieve some improvements over lower resolu-
tions, like HorNet-S-7x7, Swin-B384-22k, and ViT-
Adapter which perform top-3 on IoU with images of
1920x1080 pixels.

With the aim of comparing models in terms of
quality and speed, we plotted the mean IoU against
average inference time in Figure 2. The more left-up
corner the model is placed in, the better overall, in
terms of higher IoU and faster In f . As usually hap-
pens in multi-objective optimization problems, there
is no model which is best, rather we have a Pareto
set composed of 7 models, which means that no other
model is better than they in both objectives. There-
fore, we can consider different models depending on
the scenario and desired results concerning time and

Table 5: Results for ArgusNL dataset. From left to right:
backbone, model, mean IoU, mean accuracy, and absolute
accuracy. All HorNet and Swin backbones models were
combined with Upernet unless other method is specified.

Backbone Model Metrics (%)

IoU Acc. |Acc.|
ConvNext ConvNext B640 57.47 74.55 65.17

Hornet

HorNet-L-GF 71.71 84.59 82.87
HorNet-L-7x7 67.17 80.61 76.21
HorNet-B-GF 59.54 78.04 73.69
HorNet-B-7x7 63.59 80.27 74.48
HorNet-S-GF 62.82 78.64 77.27
HorNet-S-7x7 70.60 84.60 83.22

MiT Segformer B5 66.55 81.48 79.75

MSCAN SegNext-L 58.50 77.50 71.86
SegNext-B 62.85 79.15 75.55

Resnet101
DNL 65.88 80.26 80.04
PSPNet 49.73 69.12 62.94
APCNet 51.89 71.34 65.53

ResneSt101
PSPNet 55.58 74.79 67.65
DeepLabv3 53.79 73.07 67.19
DeepLabv3+ 60.15 76.72 71.78

Swin

Upernet Swin-B384-22k 67.45 81.07 80.51
Upernet Swin-B384-1k 61.19 79.33 75.40
Upernet Swin-B224-22k 69.85 83.72 82.53
Upernet Swin-B224-1k 58.82 78.64 70.65
Upernet Swin-S 63.04 80.28 75.56
SeMask-FPN-Swin-L 68.26 81.59 82.57

ViT Segmenter B 69.79 81.29 82.67
ViT-Adapter AugReg-B 71.87 84.24 84.80

accuracy. According to the problem to solve, num-
ber of inferences per cycle, and quality requirements,
one of those models should be chosen. With a longer
working cycle and/or lower number of inferences
Swin-B384-22k can be used to obtain higher qual-
ity segmentation results. In case the number of in-
ferences required is high, a SegNext variant could be
deployed, either SegNext-B with a higher image res-
olution or SegNext-L with a lower one. In other cases
where there has to be a compromise between speed
and quality, Segmenter B with lower or medium reso-
lution input images seems a balanced option between
both.

4 CONCLUSIONS

Performance analysis of different Deep Learning
models on an edge device to perform semantic seg-
mentation tasks has been presented in this work.
To this aim, two different datasets have been used,
namely ArgusNL and SCSD. Combining 8 back-
bones with multiple methods, we have applied a total
amount of 24 different models to such datasets, in-
cluding qualitative and quantitative results.
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Table 6: Results for the SCSD dataset. From left to right: backbone, model, mean IoU, mean accuracy, absolute accuracy, the
computational time for the first inference, and mean value for the rest of the inferences (for image widths of 1080 and 1920
respectively). All HorNet and Swin backbones models were combined with Upernet unless other method is specified.

Backbone Model

Image width

1080 1920

Metrics (%) Time (sec.) Metrics (%) Time (sec.)

IoU Acc. |Acc.| 1st Inf. Inf. IoU Acc. |Acc.| 1st Inf. Inf.

ConvNext Upernet ConvNext B640 44.82 57.34 82.04 12.49 7.76 — — — — —

Hornet

HorNet-L-GF 44.91 58.53 82.41 30.42 10.03 — — — — —
HorNet-L-7x7 43.42 56.72 82.08 23.97 10.50 — — — — —
HorNet-B-GF 42.72 58.55 80.36 17.79 5.46 — — — — —
HorNet-B-7x7 40.37 54.77 80.05 12.48 5.60 40.66 55.68 80.66 32.62 5.48
HorNet-S-GF 41.86 53.39 80.90 13.01 4.82 41.89 55.80 81.27 41.55 4.78
HorNet-S-7x7 42.43 56.94 81.44 10.62 4.54 44.03 58.74 82.16 40.84 4.87

MiT Segformer B5 40.07 51.15 79.50 7.41 2.32 — — — — —

MSCAN SegNext-L 41.24 51.08 79.88 6.21 1.16 42.18 52.68 80.66 13.80 1.44
SegNext-B 37.76 48.33 78.26 4.97 0.68 39.52 50.56 79.08 11.15 1.00

Resnet101
DNL 36.48 46.45 78.62 7.68 2.35 36.36 46.48 78.01 17.84 3.48
PSPNet 36.10 46.94 78.35 4.57 2.08 35.55 46.29 77.64 10.88 2.40
APCNet 36.54 47.33 76.27 6.42 2.30 36.90 48.63 76.18 13.94 3.05

ResneSt101
PSPNet 37.86 49.71 77.08 4.84 2.30 37.63 49.26 76.65 9.62 2.71
DeepLabv3 38.78 50.26 77.29 5.36 2.95 38.57 49.96 77.24 10.10 3.42
DeepLabv3+ 36.66 47.25 76.49 5.02 2.39 37.06 47.70 76.53 11.09 2.90

Swin

Upernet Swin-B384-22k 43.63 56.94 81.06 8.33 3.51 44.90 58.68 81.65 18.41 4.10
Upernet Swin-B384-1k 39.40 50.99 78.22 7.01 3.02 39.82 52.21 78.35 20.21 4.08
Upernet Swin-B224-22k 40.47 51.32 80.62 6.97 2.85 41.70 53.24 81.46 23.12 3.97
Upernet Swin-B224-1k 39.75 49.63 79.48 7.03 2.84 40.65 50.62 79.25 21.37 3.90
Upernet Swin-S 40.23 52.41 78.82 7.55 2.55 41.28 52.91 79.01 16.75 3.29
SeMask-FPN-Swin-L 44.40 56.49 82.05 10.24 7.91 — — — — —

ViT Segmenter B 42.82 54.76 81.78 7.81 1.82 — — — — —
ViT-Adapter AugReg-B 43.54 57.59 81.14 11.77 6.01 44.37 59.11 81.08 39.76 10.75

As observed, the visual results show the strengths
and weaknesses of the evaluated models, related to
different illumination and shadow conditions. Poor
illumination, strongly affects all approaches, whereas
with shadows some of them perform better.

Quantitatively, both datasets have been used to
study the performance of the models, including fig-
ures regarding mean IoU, average, and absolute ac-
curacy. In addition, with the proposed SCSD dataset,
inference time has been also compared, as well as dif-
ferent input image resolutions. The selection of the
best model relies on a trade-off between precision and
computational time. As presented, the scenario deter-
mines the best choice, in particular in terms of mean
inference time.

To the best of our knowledge, this is the first work
that presents a detailed review of the capabilities of
Deep Learning models in semantic segmentation run-
ning on edge devices environment, in particular, for
applications on coastal imagery. Although this is a
growing area and further research is needed, we hope
to contribute to solutions in remote coastal regions.
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Figure 2: Mean Intersection over Union (IoU) vs. average inference time (In f .) for the models in Table 6. The green dashed
line represent the Pareto frontier.
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