
A System for Updating Trust and Performing Belief Revision

Aaron Hunter and Sam Tadey
Department of Computing, British Columbia Institute of Technology, Burnaby, Canada

Keywords: Belief Revision, Trust, Systems.

Abstract: The process of belief revision is impacted by trust. In particular, when new information is received, it is only
believed if the source is trusted as an authority on the given information. Moreover, trust is actually developed
over time based on the accuracy of past reports. Any practical tool for representing and reasoning about the
beliefs of communicating agents will therefore require some mechanism for modeling trust, both in terms
of how it changes over time and in terms of how it impacts belief revision. In this paper, we present such a
tool. We use so-called trust graphs to give a compact representation of how strongly one agent trusts another to
distinguish between possible states of the world. Our software allows a trust graph to be updated incrementally
by looking at the accuracy of past reports. After constructing a trust graph, the software can then compute the
result of AGM-style belief revision using two different approaches to incorporating trust. In the first approach,
trust is treated as a binary notion where an agent is either trusted to distinguish certain states or they are not. In
the second approach, the relative strength of trust is compared directly with the strength of the initial beliefs.
The end result is a tool that can flexibly model and reason about the dynamics of trust and belief.

1 INTRODUCTION

Belief revision refers to the process in which an
agent’s beliefs change in response to new informa-
tion. In practical settings, new information is often
obtained from other agents. As such, there is a con-
nection between belief revision and trust; we only
want to incorporate new information if we trust the
reporting agent to be an authority on the topic. The
trust that we hold in other agents is built by looking
at past reports, to see how accurate they have been.
As such, a complete treatment of belief change in a
multi-agent setting requires a framework that can per-
form the following steps:

1. Create a model of trust for a reporting agent.

2. Update the model based on the accuracy of past
reports.

3. Calculate the result of the revision from a new re-
port, taking trust into account.

In this paper, we describe a software tool that can per-
form all of these steps. The tool is based on the notion
of trust graphs, as defined in (Hunter, 2021).

We make several contributions to the literature on
belief revision and trust. First, the software presented
here is a useful addition to the relatively small col-
lection of existing belief revision solvers, because it

extends the class of practical problems that we can
model and solve. To the best of our knowledge, the
software presented in this paper is the first imple-
mented system that incrementally builds a model of
trust that is specifically intended to inform the pro-
cess of belief revision. The work here also makes a
contribution to our understanding of the connection
between revision and trust. Our software allows two
different approaches to revision that incorporate trust
in different ways. By implementing both approaches,
we make it possible to experiment with alternative
views on the relationship between strength of belief
and strength of trust.

2 PRELIMINARIES

2.1 Belief Revision and Trust

We are interested in belief revision in the setting of
propositional logic. We assume a finite set V of propo-
sitional variables that can be combined with the usual
propositional connectives ¬,∧ and ∨. A state is a
propositional interpretation of V , and we let S denote
the set of all states.

We briefly introduce two well-known approaches
to belief revision. The most influential approach is the

Hunter, A. and Tadey, S.
A System for Updating Trust and Performing Belief Revision.
DOI: 10.5220/0011614800003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 55-62
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

55

so-called AGM approach (Alchourrón et al., 1985).
In the AGM approach, the beliefs of an agent are rep-
resented by a set of formulas Ψ. An AGM revision
function ∗ takes the initial belief state Ψ and a for-
mula φ as input. This pair is mapped to a new belief
state Ψ∗φ, subject to a set of rationality postulates. It
is well known that every AGM revision operator ∗ can
be defined in terms of minimization with respect to a
total pre-order over states (Katsuno and Mendelzon,
1992).

An alternative model for reasoning about beliefs
is by using a ranking function over states to represent
the beliefs of an agent (Spohn, 1988). A ranking func-
tion κ is a function that maps every state to a natural
number, with the constraint that κ(s) = 0 for at least
one state. Informally, if κ(s)≤ κ(t), we interpret this
to mean that the agent considers it more likely that the
actual state of the world is s as compared to t. A rank-
ing function representing beliefs is sometimes called
an epistemic state, as it includes the current beliefs as
well as information about how these beliefs will be
changed when new information is obtained.

In our software, we internally use the rank-
ing function approach for modeling epistemic states.
However, we will see that our software also permits
users to enter beliefs as a set of formulas, which is
then extended to an epistemic state using a default
ranking.

2.2 Trust Graphs

A trust graph is a representation of the trust that an
agent holds in an information source.
Definition 1 ((Hunter, 2021)). Let S be the set of
states over V . A trust graph over S is a pair 〈S,w〉,
where w : S×S→ N.

Hence, a trust graph is just a weighted graph
where the nodes represent states, and the weights are
distances between states. Informally, the distance be-
tween two states represents how strongly we trust the
reporting agent to be able to distinguish them.
Example Suppose that an agent gets information
about the weather from the radio. They strongly trust
the announcer to be able to tell if it is sunny outside
(S). On sunny days, they also have moderate trust that
the announcer can tell if it is humid (H); however,
they have no trust at all in the announcer’s ability to
know the humidity when it is not sunny. This can be
captured by the trust graph in Figure 1.

2.3 Update Rules

A trust graph is not static; it should be updated based
on the accuracy of reports provided by a particular

S,H S

H/0

2

0

4 44 4

Figure 1: A Trust Graph for Weather Reports.

agent. We can define a report to be a pair (φ,m) where
m is either 0 or 1. If m = 0 (resp. 1), this is interpreted
to mean that φ was falsely (resp. correctly) reported
in the past.

Suppose that an agent reports φ, and we subse-
quently learn that φ is false. In this case, we should
now have less trust in the reporting agent’s ability to
know if φ is true. This means that, following a false
report, we should increase the distance between states
where φ is true and states where φ is false. Similarly,
if an agent provides an accurate report of φ, then we
should decrease the distance between such pairs of
states.

There are many different ways to update the dis-
tances on a trust graph. As an illustration, we consider
the following simple additive update rules.

Update Rule 1. Given an initial trust graph over S
and a report (φ,0), update the graph as follows:

• For each pair of states s1,s2 such that s1 |= φ and
s2 6|= φ decrease the value w(s1,s2) to w(s1,s2)−
1.

Update Rule 2. Given an initial trust graph over S
and a report (φ,1), update the graph as follows:

• For each pair of states s1,s2 such that s1 |= φ and
s2 6|= φ, increase the value w(s1,s2) to w(s1,s2)+
1.

According to the first rule, a false report of φ

makes an agent have less trust in the reporting agent’s
ability to distinguish φ-states from ¬φ-states. Accord-
ing to the second rule, a true report of φ makes an
agent have more trust in that distinction.
Example Consider the weather reporting example.
Suppose that the announcers says it is sunny outside,
but then we go outside and we find that it is not sunny.
This report is formally represented as (S,0). Accord-
ing to Update Rule 1, we need to decrease the dis-
tances on states where S is true and those where S is
false. The new trust graph is given in Figure 2.

Note that Update Rules 1 and 2 are simply in-
tended to provide an example of the process; we do
not intend to assert that these are the most appropri-
ate update rules in practice. In fact, there is clearly
a problem with Update Rule 1 in that it can actually

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

56

S,H S

H/0

2

0

3 33 3

Figure 2: Updated Trust Graph.

lead to negative edge weights. This problem can be
fixed by allowing negative weights during the update,
and then normalizing at the end. This problem can
also be fixed by adding constraints to the weights on
the initial trust graph, or by introducing more sophis-
ticated rules. We return to this problem later in our
discussion of the our implemented system. We will
see that our software allows for very flexible update
rules to be defined. But for the purpose of motivation
and illustration in this section, we believe it is useful
to give concrete, simple rules that are easily under-
stood.

3 IMPLEMENTATION

3.1 Functionality

We describe T-BEL , a Java application for modeling
the dynamics of trust and belief. The core functional-
ity of T-BEL is as follows. It allows a user to create an
initial trust graph over different information sources,
and it then allows a user to enter a series of reports
which might be correct or incorrect. These reports
trigger an update to the trust graph. Finally, the user
can calculate the result of belief revision, in a manner
that accounts for the influence of trust.

Note that the steps listed above need not be done
sequentially. The interface for the software provides
several panels for different actions: initializing a trust
graph, manipulating the trust graph, visualizing the
trust graph, and performing revision. The only con-
straint is that the vocabulary needs to be provided to
initialize the trust graph. After the initial trust graph is
constructed, a user can jump between different panels.
For example, one could add new information about
past reports at any time, even after revision has been
performed.

3.2 Constructing a Trust Graph

In order to perform belief revision using T-BEL , we
first need to initialize a trust graph. This is done

Figure 3: Initializing a Trust Graph.

through the panel in Figure 3. The user simply enters
a propositional vocabulary as a comma delimited se-
quence of strings. Optionally, one can specify an ini-
tial trust value; this is the weight that will be assigned
to all edges in the trust graph. If it is not specified, it
will default to 1.

Note that, with the initial trust value of 1, the
weights can become negative after as few as two re-
visions using the default update rules. As such, it is
recommended that users set an initial trust value that
is larger than the number of reports that will be en-
tered. However, this constraint is not enforced; we
would like to leave open the possibility that the user
does not know the number of reports to be entered.
Internally, weights are additively normalized to get a
minimum value of zero. This is not a problem for the
most basic problems, but it can be questionable when
we move to different update rules.

The trust graph is displayed in Figure 4 as a ma-
trix. In the image, the initial trust value has been set
to 5, and the user is shown the weights between ev-
ery state. Note that the propositional variable names
do not appear here. The state 10 is listed to indicate
the state where a is assigned true and b is assigned
false. The order of variables for these states is just the
order that they were entered when defining the propo-
sitional vocabulary.

The main goal of T-BEL is to allow trust to be
built incrementally by adding reports. This is done
through the report entry section in Figure 5. Reports
are entered as formulas in a simple variant of propo-
sitional logic, using the keyboard-friendly symbols &
(conjunction), | (disjunction) and − (negation). The
reports are tagged with 1 (positive) and 0 (negative).
By default, when the Add Reports button is pressed,
the matrix on the left updates the values in accordance
with Update Rule 1 and Update Rule 2.

There is one remaining feature shown in Figure 4:
the Distance Checker. We will see in the next section
that we actually do not use the values in the trust ma-
trix directly; we use the minimax distance generated
from these values. As such, we provide the user with
a simple mechanism for checking minimax distance.
This is useful for testing and experimentation.

While the default operation of T-BEL assumes

A System for Updating Trust and Performing Belief Revision

57

Figure 4: The Trust Panel.

Figure 5: Initializing a Trust Graph.

that reports update the trust graph in increments of
1, there is actually an optional feature that can be
used to change this behaviour. We can run the T-BEL
in an enhanced mode, where the report entry panel
has the form displayed in Figure 5. The difference
here is that there is a third column for specifying a
weight for each report. By using this column, the
user can indicate that different reports should increase
(or decrease) the weights in trust graph by a different
amount. For example, with the values in Figure 4, the
report of ’a’ will increase all affected edges by 2. This
weighting can be used to indicate that a particular re-
port carries a different weight in terms of building the
new trust graph.

3.3 Implications of the Implementation

It is possible to validate that the trust graphs produced
by T-BEL are actually correct. The trust panel in Fig-
ure 4 presents a matrix giving all of the weights ex-
plicitly. In order to validate, we performed a series

of tests with graphs with different initial vocabularies
and compared the matrix with the graphs generated
by hand. Unfortunately, when the vocabulary is larger
than 4 variables, the matrix becomes small and diffi-
cult to read. In order to validate these examples, we
need to script the output to print all weights line by
line for validation. The process here can be tedious,
but all tests were successfully passed.

The bigger problem with the implementation is
that we are interested in using these graphs to per-
form belief revision in the next section. While the
trust graph over ten variables can be computed and
manipulated quickly, even at that scale the revision
calculations in the next section become prohibitively
slow. Performance issues are discussed after intro-
ducing our approach to revision in the next section.

4 REVISION AND TRUST

4.1 Specifying an Epistemic State

Generating a trust graph is just the first step in im-
plementing an approach to revision that incorporates
trust. We now discuss the next two steps: defining an
epistemic state, and then implementing suitable ap-
proach to belief revision.

As noted previously, epistemic states are repre-
sented in T-BEL using ranking functions. The soft-
ware provides two different ways to specify an epis-
temic state.

The first way to specify an epistemic state is by
explicitly specifying a total pre-order over all states.
This is done by creating an external text file that lists
a “level” for all states starting from 0. For example,
if we had two variables A and B, then one example
input file is shown in Figure 6. In this file, the first

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

58

Figure 6: File Input.

line indicates that there are 2 variables. The second
line says that the state where A and B are both false
is the most plausible, so it is the only state in level 0.
The next line specifies the states in level 1. Any states
not listed are put in level 2. A ranking over states
specified in this manner gives us enough information
to perform belief revision.

Manually specifying a complete ranking in this
manner can be problematic, because it is time con-
suming and it is easy to make mistakes. As such, we
also give the user the ability to experiment with revi-
sion simply by entering a belief state as a set of for-
mulas through an input box in the main interface. For
example, we could enter the beliefs by giving this list
of formulas:

A&B
A|-B

To generate a ranking function from such a list, T-
BEL finds all satisfying assignments of the formulas
specified. T-BEL then uses the Hamming distance
from the set of satisfying assignments to create a full
ranking. In other words, the default approach de-
fines a ranking that corresponds to Dalal’s revision
operator (Dalal, 1988). This approach is suitable for
many applications, and allows users to get the soft-
ware running without a detailed ranking over states.
The problem, of course, is that this approach requires
the software to solve a satisfiability problem. How-
ever, this is not a significant problem for the proto-
type software as it has only been tested on problems
with a small set of variables. For larger problems, a
competition-level SAT solver could be used for this
step. The effectiveness of this approach for belief re-
vision problems has previously been demosntrated in
(Hunter and Agapeyev, 2019).

4.2 Naive Revision

T-BEL implements two different approaches for in-
corporating trust into the belief revision process; the
user chooses the mechanism to be used in the menu in
Figure 3. The first approach is called Naive Revision.
The intuition behind naive revision is that we consider
the rankings for beliefs and trust to be independent. In
other words, it is not possible to compare strength of

belief and strength of trust, because we assume that
they are on different scales. The approach that we use
in this case is to use the trust graph and the initial be-
lief state to define a trust-sensitive revision operator
(Booth and Hunter, 2018). In this section, we briefly
describe how this is implemented in T-BEL .

A trust sensitive revision operator is defined with
respect to a trust partition Π over states. Informally,
the reporting agent is only trusted to be able to dis-
tinguish between states that are in different cells of
this partition. Trust-sensitive revision works as fol-
lows. Given a formula φ, let mod(φ) denote the set
of all states where φ is true. Then let Π(φ) denote
the union of all cells of Π that contain an element of
mod(φ). To calculate the result of the trust-sensitive
revision by φ, we actually revise by a formula φ′ with
mod(φ′)=Π(φ). So we are essentially revising by the
set of all states that are indistinguishable from mod-
els of φ, from the perspective of the trust partition Π.
We refer the reader to (Booth and Hunter, 2018) for a
complete description of this operation.

For our purposes, it is sufficient to note that every
partition over the set of states defines a trust-sensitive
revision operator. In order to obtain such a partition,
we can use the following result.

Proposition 1 ((Hunter, 2021)). Let T be a trust
graph, let dT be the minimax distance between ver-
tices, and let m be a natural number (the threshold
value). For any state s, let Xs = {t | dT (s, t) ≤ m}.
The collection of sets Xs over all states forms a parti-
tion of S.

This result holds because the minimax distance de-
fines an ultrametric. This is in fact why we use the
minimax distance, because it defines a collection of
partitions that are suitable for reasoning about trust.

Following Proposition 1, we know that we can de-
fine a trust-sensitive revision operator from the trust
graph by specifying a threshold value to define the
partition. This is why Figure 3 includes a field for a
threshold value. The user simply enters a threshold
here, and that number is used to define the revision
operator for Naive Revision.
Example Returning to the weather example. Sup-
pose that we set a threshold of 3. This defines a par-
tion with two cells Π1 and Π2:

Π1 = {{S,H},{S}}
Π2 = {{H}, /0}

This partition intuitively indicates that the radio an-
nouncer is trusted to determine if it is sunny or not, bu
they are not trusted to determine if it is humid. If the
announcer says that it is sunny and humid, we repre-
sent this with the formula φ = S∧H. But when we

A System for Updating Trust and Performing Belief Revision

59

perform trust-sensitive revision, then we would ac-
tually revise by (S∧H)∨ (S∧¬H) because the an-
nouncer is not trusted to tell the difference between
these states.

Informally, specifying a high threshold value will
mean that the reporting agent is not trusted to dis-
tinguish between many states; in this case, the re-
ports they provide will not result in drastic changes
of belief. On the other hand, a low threshold value
will mean that the reports will be taken at closer to
face-value. The recommendation for users with no
knowledge of trust-sensitive revision is to set an ini-
tial threshold value of 1, which means that reports are
trusted unless the reporting agent has previously pro-
vided a false report on the same topic.

T-BEL is able to perform all of this automatically.
The user simply enters the threshold vavlue in the
panel in Figure 3, and then clicks revise. They will be
prompted to enter a formula for revision, and the com-
putation will be done based on the partition generated.
The result of revision is displayed as a formula, cap-
turing the minimal states in the new ranking.

4.3 General Revision

In the General Revision approach, we assume the
rankings for trust and belief are on the same scale,
so they are comparable. This allows us to model sit-
uations where an agent weighs how strongly they be-
lieve something against how strongly they trust an in-
formation source. In other words, if we strongly be-
lieve φ to be true, then we will not believe ¬φ when
reported by an agent that is only weakly trusted. In
this case, we want to consider the interaction between
strength of belief and strenght of trust. Roughly,
strength here is indicated by the values assigned by
different ranking functions.

We can specify that we want to use general re-
vision in the dropdown menu in Figure 3. In this
case, we essentially have two ranking functions that
we would like to combine. On one hand, we have
κ - the ranking function over states representing the
beliefs of an agent. On the other hand, we have a
minimax distance function d over states defined by
the trust graph. When this function d is paired with
a formula φ for revision, it defines a second ranking
function over states. Using this notation, we define a
new function through the following formula:

κ
φ

d(s) = κ(s)+min{d(s, t) | t |= φ}.
Of course, this may not be a ranking function because
it is not guaranteed to take the value 0. The new rank-
ing function following revision is obtained by normal-
izing κ

φ

d by subtracting the minimimum value from
the ranks of all states.

Example We return to the weather reporting exam-
ple. Suppose that we start with the initial values from
Example 1, and then we receive 5 correct reports of
sunshine in a row. So the new distances from {S} in
the trust graph are as follows:

d({S},{S}) = 0
d({S},{H}) = 9

d({S},{S,H}) = 2
d({S}, /0) = 9

Now suppose that our initial belief state κ has the
property that κ({S,H}) = 2 and κ(s) = 0 for all other
states s. So we initially believe it is definitely not
sunny and humid. Suppose further that the current
weather report says that it is S∧¬H, indicates that it
is sunny and dry. We calculate κ

φ

d(s) for all states s in
the following table:

s κ(s) d({S},s) κ
φ

d(s)
{S} 2 0 2
{H} 0 9 9
{S,H} 0 2 2

/0 0 9 9

Since the first and third rows both have mini-
mal values, it follows that the new belief state is
{{S},{S,H}}. This means that we now believe it is
sunny, and it may or may not be humid. This re-
sult balances our initial strength of belief with the fact
that the reporter is strongly trusted to know when it is
sunny.

We refer the reader to (Hunter, 2021) for a more
detailed discussion of rationale behind this approach.
For the moment, we simply indicate that the most
plausible states obtained with this operator will be
those with the lowest aggregate of strength of belief
and strength of trust.

4.4 Step by Step Example

In this section, we walk through a complete example
using all features of T-BEL to define a trust graph, add
reports, and then calculate the result of revision.

Assume we want to work with the vocabularly
{a,b}, as well as past reports of (a∨ b,1) and (a,1).
Assume further that we would like to start with the be-
lief state (a∧b) and then revise by (a∧¬b)∨(¬a∧b).
Using T-BEL , then can solve this problem through the
following steps:

1. Enter the vocabulary a,b and a default value of 5.

2. Enter reports (a|b,1) and (a,1) then click Add Re-
ports.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

60

Figure 7: Revision Output.

3. Select Naive revision with threshold 3.

4. Enter the belief state a&b and formula (a&−
b)|(−a&b).

5. Click Revise.

The default value in step 1 should be set so that it is
at least as high as the number of reports. However,
beyond that constraint, it will not impact the results.
After step 2, the values in the matrix representing the
trust graph will be as follows:

00 01 10 11
00 0 6 7 7
01 6 0 6 6
10 7 6 0 5
11 7 6 5 0

The revision panel following the example is in Figure
7, showing the input and the fact that the beliefs are
unchanged after revision. It can easily be verified that
this is correct.

4.5 Iterated Revision

The problem of iterated revision is well-known in the
belief revision literature. The highly-influential AGM
approach to revision suffers from the fact that it can
only be used for a single revision, because the result
of belief revision does not include the full ordering
required for subsequent revisions. For our software,
users can certainly calculate the result of iterated re-
vision by pressing the revision button several times.
However, we need to be clear on how well this cap-
tures an approach to rational belief change.

For Naive Revision, the situation is slightly com-
plicated. If the user has specified the initial belief state
as a formula, then they are performing Dalal revision.
This is an operation that can be applied repeatedly, so
T-BEL can be used to solve iterated belief change in
this case. However, if the user has used a custom ini-
tial ranking through the file-based interface, then this
is a problem. The result of Naive Revision is a set
of states, not a full ranking. As such, Naive Revision
with a custom ranking is not suitable for iterated be-
lief change. At a practical level, T-BEL will still let
the user perform several revisions. However, it is im-

portant to note that subsequent revisions will default
to Dalal revision regardless of the initial ranking.

For General Revision, the situation is better.
While T-BEL displays the result of General Revision
as a formula, this is just for ease of readability for
the user. The formula displayed specifies the minimal
states in the new ranking, but the full ranking is in-
ternally maintained. As such, iterated revision can be
performed using the new orderings as they are modi-
fied.

5 DISCUSSION

5.1 Performance

The question of run time is a challenging one to ad-
dress for any implemented belief revision system, due
to the well known compexity of revision (Eiter and
Gottlob, 1992). The problem is even worse when we
add trust graphs, which become very large as the vo-
cabulary size increases.

We made many implementation choices in order
to optimize performance. For example, we represent
a trust map internally as a hashmap of hashmaps; the
lookup time is very fast. Another place where we fo-
cus on efficiency is in the translation from formulas to
belief states, where we use a DPLL solver to find sat-
isfying assignments. However, the run time for T-BEL
still becomes slow as the vocabulary size increases. It
is a useful prototype for reasoning about small exam-
ples, and demonstrating the utility of trust graphs. In
future work, we will look to improve run time by in-
tegrating a competition level ALLSAT solver for the
hard calculations (Toda and Soh, 2016).

5.2 Related Work

Fundamentally, this work is about software to support
reasoning about knowledge-based trust; this problem
has previously been explored in the practical context
of evaluating web sources (Dong et al., 2015). There
has also been related formal work on the relationship
between trust and belief (Booth and Hunter, 2018; Liu
and Lorini, 2017), as well as emerging work on truth

A System for Updating Trust and Performing Belief Revision

61

discovery (Singleton and Booth, 2020). In terms of
implemented systems, T-BEL can be seen as an exten-
sion of the GenB system (Hunter and Tsang, 2016).
GenB is a general solver for revision with a limited
capacity to capture trust; T-BEL is significantly more
sophisticated when it comes to representing and rea-
soning about the dynamics of trust and belief.

6 CONCLUSION

In this paper, we have described a tool for solving be-
lief change problems influenced by trust. The focus
is on building trust from reports, and then performing
belief revision.

Our software provides a simple interface that can
be used to build a trust graph iteratively, and then this
graph is used to adjust the behaviour of a formal be-
lief change operator to account for trust. We suggest
that this tool is an important step towards demonstrat-
ing the utility of belief change operators for solving
practical problems with partially trusted information
sources. In future work, we intend to improve run
time performance, apply the tool to concrete problems
in the evaluation of web resources, and connect our
approach to related work on learning with respect to
trust.

REFERENCES

Alchourrón, C. E., Gärdenfors, P., and Makinson, D.
(1985). On the logic of theory change: Partial meet
functions for contraction and revision. Journal of
Symbolic Logic, 50(2):510–530.

Booth, R. and Hunter, A. (2018). Trust as a precursor to
belief revision. J. Artif. Intell. Res., 61:699–722.

Dalal, M. (1988). Investigations into a theory of knowledge
base revision. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), pages 475–479.

Dong, X., Gabrilovich, E., Murphy, K., Dang, V., Horn,
W., Lugaresi, C., Sun, S., and Zhang, W. (2015).
Knowledge-based trust: Estimating the trustworthi-
ness of web sources. Proceedings of the VLDB En-
dowment, 8.

Eiter, T. and Gottlob, G. (1992). On the complexity of
propositional knowledge base revision, updates and
counterfactuals. Artificial Intelligence, 57(2-3):227–
270.

Hunter, A. (2021). Building trust for belief revision. In
Proceedings of the Pacific Rim Conference on Artifi-
cial Intelligence (PRICAI), pages 543–555.

Hunter, A. and Agapeyev, J. (2019). An efficient solver for
parametrized difference revision. In Proceedings of
the Australasian Conference on Artificial Intelligence,
pages 143–152.

Hunter, A. and Tsang, E. (2016). GenB: A general solver for
AGM revision. In Proceedings of the European Con-
ference on Logics in Artificial Intelligence (JELIA),
pages 564–569.

Katsuno, H. and Mendelzon, A. (1992). Propositional
knowledge base revision and minimal change. Arti-
ficial Intelligence, 52(2):263–294.

Liu, F. and Lorini, E. (2017). Reasoning about belief, ev-
idence and trust in a multi-agent setting. In An, B.,
Bazzan, A. L. C., Leite, J., Villata, S., and van der
Torre, L. W. N., editors, PRIMA 2017: Principles and
Practice of Multi-Agent Systems - 20th International
Conference, Nice, France, October 30 - November 3,
2017, Proceedings, volume 10621 of Lecture Notes in
Computer Science, pages 71–89. Springer.

Singleton, J. and Booth, R. (2020). An axiomatic approach
to truth discovery. In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), pages 2011–2013.

Spohn, W. (1988). Ordinal conditional functions. A dy-
namic theory of epistemic states. In Harper, W. and
Skyrms, B., editors, Causation in Decision, Belief
Change, and Statistics, vol. II, pages 105–134. Kluwer
Academic Publishers.

Toda, T. and Soh, T. (2016). Implementing efficient all so-
lutions sat solvers. ACM Journal of Experimental Al-
gorithmics, 21(2):1–44.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

62

