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Abstract: Go-Explore achieved breakthrough performance on challenging reinforcement learning (RL) tasks with sparse
rewards. The key insight of Go-Explore was that successful exploration requires an agent to first return to an
interesting state (‘Go’), and only then explore into unknown terrain (‘Explore’). We refer to such exploration
after a goal is reached as ‘post-exploration’. In this paper, we present a clear ablation study of post-exploration
in a general intrinsically motivated goal exploration process (IMGEP) framework, that the Go-Explore paper
did not show. We study the isolated potential of post-exploration, by turning it on and off within the same al-
gorithm under both tabular and deep RL settings on both discrete navigation and continuous control tasks. Ex-
periments on a range of MiniGrid and Mujoco environments show that post-exploration indeed helps IMGEP
agents reach more diverse states and boosts their performance. In short, our work suggests that RL researchers
should consider using post-exploration in IMGEP when possible since it is effective, method-agnostic, and
easy to implement.

1 INTRODUCTION

Go-Explore (Ecoffet et al., 2021) achieved break-
through performance on challenging reinforcement
learning (RL) tasks with sparse rewards, most no-
tably achieving state-of-the-art, ‘super-human’ per-
formance on Montezuma’s Revenge, a long-standing
challenge in the field. The key insight behind Go-
Explore is that proper exploration should be struc-
tured in two phases: an agent should first attempt
to get back to a previously visited, interesting state
(‘Go’), and only then explore into new, unknown ter-
rain (‘Explore’). Thereby, the agent gradually ex-
pands its knowledge base, an approach that is visual-
ized in Fig.1. We propose to call such exploration af-
ter the agent reached a goal post-exploration (to con-
trast it with standard exploration).

There are actually two variants of Go-Explore in
the original paper: one in which we directly reset
the agent to an interesting goal (restore-based Go-
Explore), and one in which the agent has to act to get
back to the proposed goal (policy-based Go-Explore).
In this work, we focus on the latter approach, which
is technically part of the literature on intrinsic motiva-
tion, in particular intrinsically motivated goal explo-
ration processes (IMGEP) (Colas et al., 2020). Note
that post-exploration does not require any changes to

the IMGEP framework itself, and can therefore be
easily integrated into other existing work in this di-
rection.

While Go-Explore gave a strong indication of the
potential of post-exploration, it did not structurally
investigate the benefit of the approach. Go-Explore
was compared to other baseline algorithms, but post-
exploration itself was never switched on and off in the
same algorithm. Thereby, the isolated performance
gain of post-exploration remains unclear.

Therefore, the present paper performs an ablation
study of post-exploration in both tabular and deep
RL settings on both discrete and continuous tasks.
Experiments in a range of MiniGrid and Mujoco
tasks show that post-exploration provides a strong iso-
lated benefit over standard IMGEP algorithms. As
a smaller contribution, we also cast Go-Explore into
the IMGEP framework, and show how it can be
combined with hindsight experience replay (HER)
(Andrychowicz et al., 2017) to make more efficient
use of the observed data. In short, our work presents a
systematic study of post-exploration and shows its ef-
fectiveness on both discrete navigation tasks and con-
tinuous control tasks.
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Figure 1: Conceptual illustration of post-exploration. Each box displays the entire state space, where green and red denote
the (currently) explored and unexplored regions, respectively. Left: Goal-based exploration without post-exploration. The
top graph shows the agent reaching a current goal, after which the episode is terminated (or the next goal in the green area is
chosen). Therefore, in the next episode (bottom) the agent will again explore within the known (green) region), often leaving
the unknown (red) area untouched. Right: Goal-based exploration with post-exploration. The top figure shows the agent
reaching a particular goal, from which the agent now post-explores for several steps (dashed lines). Thereby, the known area
(green) is pushed outwards. On the next episode, the agent may now also select a goal in the expanded region, gradually
expanding its knowledge of the reachable state space.

2 RELATED WORK

Go-Explore is a variant of intrinsically motivated goal
exploration processes (IMGEP) (surveyed by (Co-
las et al., 2020)) which generally consists of three
phases: 1) defining/learning a goal space, 2) sam-
pling an interesting goal from the goal space, and
3) getting to the sampled goal based on knowledge
from previous episodes. Regarding the first step, Go-
Explore (Ecoffet et al., 2021) pre-defines goals as
down-scaled states, and the goal space is adaptively
extended by adding new encountered states. Other
IMGEP approaches, like Goal-GAN (Florensa et al.,
2018) uses a generative adversarial network to learn
a goal space of appropriate difficulty. As an alterna-
tive, AMIGo (Campero et al., 2021) trains a teacher
to propose goals for a student to reach. In this work,
we largely follow the ideas of Go-Explore, and pre-
define the goal space as the visited state space, since
our research questions are directed at the effects of
post-exploration.

After a goal space is determined, we need a sam-
pling strategy to set the next goals. Generally, de-
sired next goals should be novel/diverse enough or
lie on the border of the agent’s knowledge boundary.
Example strategies to select next goals include nov-
elty (Ecoffet et al., 2021; Pitis et al., 2020), learning
progress (Colas et al., 2019; Portelas et al., 2020), di-
versity (Pong et al., 2019; Warde-Farley et al., 2019),
and uniform sampling (Eysenbach et al., 2018). In
this work, we use novelty (count-based) for sampling,
since it has less tuneable hyper-parameters.

In the third IMGEP phase, we need to get back
to the proposed goal. One variant of Go-Explore
simply resets the agent to the desired goal, but this

requires an environment that can be set to an ar-
bitrary state. Instead, we follow the more generic
‘policy-based Go-Explore’ approach, which uses a
goal-conditioned policy network to get back to a goal.
The concept of goal-conditioning, which was intro-
duced by (Schaul et al., 2015), is also a common ap-
proach in IMGEP approaches. A well-known addi-
tion to goal-based RL approaches is hindsight expe-
rience replay (Andrychowicz et al., 2017), which al-
lows the agent to make more efficient use of the data
through counterfactual goal relabelling. Although
Go-Explore did not use hindsight in their work, we
do include it as an extension in our approach.

After we manage to reach a goal, most IMGEP
literature samples a new goal and either reset the
episode or continue from the reached state. The main
contribution of Go-Explore was the introduction of
post-exploration, in which case we temporarily post-
pone the selection of a new goal (Tab. 1). While post-
exploration is a new phenomenon in reinforcement
learning literature, it is a common feature of most
planning algorithms, where we for example select a
particular node on the frontier, go there first, and then
unfold the search tree into unknown terrain.

3 BACKGROUND

We adopt a Markov Decision Processes (MDPs) for-
mulation defined as the tuple M = (S ,A ,P,R,γ) (Sut-
ton and Barto, 2018). Here, S is a set of states, A
is a set of actions the agent can take, P specifies the
transition function of the environment, and R is the
reward function. At timestep t, the agent observes
state st ∈ S , selects an action at ∈ A , after which
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Table 1: Overview of moment of exploration in IMGEP papers. Most IMGEP approaches, like Goal-GAN (Florensa et al.,
2018), CURIOUS (Colas et al., 2019), DIAYN (Pong et al., 2019), MEGA (Pitis et al., 2020) and AMIGo (Campero et al.,
2021), only explore during goal reaching. Restore-based Go-Explore, which directly resets to a goal, only explore after the
goal is reached. Our work, similar to policy-based Go-explore, explores both during goal-reaching and after goal reaching.

Approach Exploration Post-exploration
IMGEP ! %

Restore-based Go-Explore % !

Policy-based Go-Explore + this paper ! !

the environment returns a next state st+1 ∼ P(·|st ,at)
and associated reward rt = R(st ,at ,st+1). We act in
the MDP according to a policy π(a|s), which maps
a state to a distribution over actions. When we un-
roll the policy and environment for T steps, define
the cumulative reward (return) of the resulting trace
as ∑

T
k=0 γk · rt+k+1, where γ ∈ [0,1] denotes a discount

factor. The goal in RL is to learn a policy that can
maximize the expected return.

Define the state-action value Qπ(s,a) as the ex-
pected cumulative reward under some policy π when
we start from state s and action a, i.e.,

Qπ(st ,at) = Eπ,P

[ T

∑
k=0

γ
k · rt+k|st = s,at = a

]
(1)

Our goal is to find the optimal state-action value
function Q∗(s,a) = maxπQπ(s,a), from which we
may at each state derive the optimal policy π∗(s) =
argmaxaQ∗(s,a). A well-known RL approach to
solve this problem is Q-learning (Watkins and Dayan,
1992). Tabular Q-learning maintains a table of
Q-value estimates Q̂(s,a), collects transition tuples
(st ,at ,rt ,st+1), and subsequently updates the tabular
estimates according to

(2)
Q̂(st ,at)← Q̂(st ,at) + α

· [rt + γ ·max
a

Q̂(st+1,a)− Q̂(st ,at)]

where α ∈ [0,1] denotes a learning rate. Under a pol-
icy that is greedy in the limit with infinite exploration
(GLIE) this algorithm converges on the optimal value
function (Watkins and Dayan, 1992).

In deep RL, state-action value function Q(s,a) is
approximated by a parameterized neural network, de-
noted by Qφ(s,a). While dealing with continuous ac-
tion space, taking max operation over state-action val-
ues like in Eq. 2 is intractable, we could learn a pa-
rameterized deterministic policy µθ for the agent in-
stead. A deterministic policy maps a state to a deter-
ministic action rather than a distribution over all ac-
tions. Then we can approximate maxa Qφ(s,a) with
Qφ(s,µθ(s)).

(3)
L(φ,D) = E(st ,at ,rt ,st+1)∼D

(
rt + γ

· Q̂(st+1,µ(st+1))− Q̂(st ,at)
)2

Deep deterministic policy gradient (DDPG) (Lil-
licrap et al., 2016) is an actor-critic method that pa-
rameterizes the deterministic policy (‘actor’) and the
state-action value function (‘critic’) as neural net-
works. The critic is updated by minimizing the mean
squared TD error L(φ,D) in Eq. 3, where D is a set of
collected transitions. The actor is updated by solving
the Eq. 4.

max
θ

Est∼D

[
Qφ(st ,µθ(st))

]
(4)

4 METHODS

We will first describe how we cast Go-Explore into
the general IMGEP framework (Sec. 4.1), and subse-
quently introduce how we do post-exploration (Sec.
4.2).

4.1 IMGEP

Our work is based on the IMGEP framework shown
in Alg 1. Since this paper attempts to study the funda-
mental benefit of post-exploration, we try to simplify
the problem setting as much as possible, to avoid in-
terference with other issues (such as goal space rep-
resentation learning, goal sampling strategy design,
reward function design, etc). We, therefore, define
the goal space as the set of states we have observed
so far. For continuous tasks, we discretize the whole
state space into bins, so the goal space for continu-
ous control tasks is the set of bins we have observed
so far. Firstly, a bin will be sampled, then we further
uniformly sample a goal from that bin. The goal space
G is initialized by executing a random policy for one
episode, while new states/bins in future episodes aug-
ment the set.

For goal sampling, we use a count-based novelty
sampling strategy which aims to sample goals that are
less visited more often and more visited less often
from the goal space. We therefore track the number of
times n(g) we visited a particular goal g, and specify
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Figure 2: FourRooms, LavaCrossing, LavaGap, FetchReach, and PointUMaze. Room layouts of two lava environments are
procedurally generated.

Algorithm 1: IMGEP with post-exploration and hindsight
(red part is post-exploration).

Initialize: Goal-conditioned RL agent RL, envi-
ronment Env, episode memory M, goal space G,
goal sampling probability p(g), goal-conditioned
reward function Rg(s,a,s′).
while training budget left do

g∼ p(g) {Sample a goal g from
the goal space G according to the goal sampling
probability p(g).}
s = Env.reset() {Reset the environment.}
Execute a roll-out using RL and collect transi-
tions T along the way.
Update G and p(g) using T . {Extend G by
adding new encountered states from T .}
Store collected transitions T to M.
if g is reached then

Execute a fixed number of steps using the ran-
dom policy and collect transitions Tr along the
way.
Update G and p(g) using transitions Tr.
Store collected transitions Tr to M.

end if
Sample a batch B from M and hindsight relabel
according to the reward function Rg.
Update RL agent RL using batch B.

end while

the probability of sampling it p(g) as

p(g)g∈G =
( 1

n(g) )
τ

∑
g∈G

( 1
n(g) )

τ
. (5)

Here, τ is a temperature parameter that allows us to
scale goal sampling. When τ is 0, goals will be sam-
pled uniformly from the goal space, while larger τ will
emphasize less visited goals more.

Note that we could also use other methods, both
for defining the goal space and for sampling new
goals (for example based on curiosity or learning
progress).

To get (back) to a selected goal, we train a goal-
conditioned policy, for tabular settings we use Q-

learning, and for deep RL settings we use DDPG.
Agents are trained on the goal-conditioned reward
function Rg, which is a one-hot indicator that fires
when the agent manages to reach the specified goal:

Rg(s,a,s′) = 1s′=g. (6)
Note that different goal-conditioned rewards func-

tions, and different update methods are of course pos-
sible as well.

4.2 Post-Exploration

The general concept of post-exploration was already
introduced in Figure 1. The main benefit of this ap-
proach is that it increases our chance to step into new,
unknown terrain. Based on this intuition, we will now
discuss when and how to post-explore, as well as how
we utilize data collected during the post-exploration.

As is directly visible from Figure 1, post-
exploration is aiming to expand the agent’s knowl-
edge boundary further when necessary. Since the less
visited goals are sampled more often, when a selected
goal is reached by the agent, that means the agent’s
knowledge boundary (the ability to reach goals) is al-
ready near the selected goal, then we decide to expand
the boundary by doing post-exploration. In this work,
we simply let the agent post-explore every time the
selected goal is reached. More constraints can be ap-
plied here, such as only doing post-exploration when
the reached goal is lying on the border of the unknown
area or it is the bottleneck of a graph of the visited
states, etc. We leave the design of smarter strategies
for future work.

We assume that post-exploration could lead the
agent to step into new naive areas, thus it is impor-
tant to design an effective way to do post-exploration.
In Go-Explore (Ecoffet et al., 2021), they mentioned
random post-exploration is a simple and effective
way. So in this work, we also use the random pol-
icy during the post-exploration. The agent will take a
fixed number of random actions for post-exploration.

The agent in principle only observes a non-zero
reward when it successfully reaches the goal, which
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Figure 3: IMGEP agents with (blue) and without (orange) post-exploration. Left: Performance on FourRooms, with results
averaging over three different values of ε (0,0.1,0.3). Middle: Performance on LavaCrossing, averaged over 10 different
environment seeds. Right: Performance in LavaGap, averaged over 10 different environment seeds. Overall, agents with
post-exploration outperform agents without post-exploration.

may not happen at every attempt. We may improve
sample efficiency (make more efficient use of each
observed trajectory) through hindsight experience re-
labelling(HER) (Andrychowicz et al., 2017). With
hindsight, we imagine states in our observed trajec-
tory were the goals we actually attempted to reach,
which allows us to extract additional information
from them (‘if my goal had been to get to this state,
then the previous action sequence would have been a
successful attempt’). For tabular settings, we choose
to always relabel 50% of the entire trajectory (goal
reaching plus post-exploration), i.e., half of the states
in each trajectory are imagined as if they were the
goal of that episode. We choose to always relabel the
full post-exploration part, because it likely contains
the most interesting information, and randomly sam-
ple the remaining relabelling budget from the part of
the episode before the goal was reached. For deep RL
settings, we use the ‘future’ relabel strategy from the
original HER work (Andrychowicz et al., 2017).

5 EXPERIMENTS

5.1 Experimental Setup

We test our work on three MiniGrid environ-
ments (Chevalier-Boisvert et al., 2018) (tabular set-
tings), and two Mujoco environments (kngwyu, 2021;
Plappert et al., 2018) (with using the function approx-
imation), visualized in Fig. 2. Results on two lava en-
vironments are averaged over 10 seeds, i.e., 10 inde-
pendently drawn instances of the task. For evaluation,
not like in Go-Explore where the agent needs to reach
a specific final goal (the state with the highest score),
we instead test the ability of the agent to reach every
possible state in the whole state space. This checks to
what extent the goal-conditioned agent is able to reach
a given goal, when we execute the greedy policy (turn
exploration off). All our results report the total num-

ber of environment steps on the x-axis. Therefore,
since an episode with post-exploration takes longer,
it will also contribute more steps to the x-axis (i.e.,
we report performance against the total number of
unique environment calls). Curves display mean per-
formance over time, including the standard error over
5 repetitions for each experiment (10 repetitions for
DRL experiments).

5.2 Results

Fig. 3 compares an IMGEP agent with post-
exploration to an IMGEP agent without exploration
in the three MiniGrid environments. On all three en-
vironments, the agent with post-exploration outper-
forms the baseline agent significantly (on its average
ability to reach an arbitrary goal in the state space).

A graphical illustration of the effect of post-
exploration is provided in Fig. 4. Part a shows a char-
acteristic trace for an agent attempting to reach the
green square without post-exploration, while b shows
a trace for an agent with post-exploration. In a, we
see that the agent is able to reach the goal square, but
exploration subsequently stops, and the agent did not
learn anything new. In part b, the agent with post-
exploration subsequently manages to enter the next
new room. This graph, therefore, gives a practical il-
lustration of our intuition from Fig. 1.

To further illustrate this effect, in Fig. 4, c and d
show a visitation heat map for the agent after 200k
training steps, without post-exploration (c) and with
post-exploration (d). The agent with post-exploration
(c) has primarily explored goals around the start re-
gion (in the bottom-right chamber). The two rooms
next to the starting room have also been visited, but
the agent barely managed to get into the top-left room.
In contrast, the agent with post-exploration (d) has ex-
tensively visited the first three rooms, while the cov-
erage boundary has also been pushed into the final
room already. This effect translates to the increased

First Go, then Post-Explore: The Benefits of Post-Exploration in Intrinsic Motivation

31



Figure 4: Comparison of characteristic traces (a,b) and coverage (c,d) for agents without post-exploration (a,c) and with
post-exploration (b,d). Colour bars indicate the number of visitations, green square indicates the selected goal in a particular
episode. (a): Standard exploration towards a goal without post-exploration. (b): With post-exploration, the agent manages to
reach the next room. (c): Coverage after 200k training steps without post-exploration. (d): Coverage after 200k training steps
with post-exploration. The boundary of the coverage with post-exploration clearly lies further ahead.

Figure 5: IMGEP agents with (blue) and without (orange)
post-exploration. Left: Performance on FetchReach, with
results averaging over 10 different random seeds. Right:
Performance on PointUMaze, averaged over 10 different
random seeds. Overall, agents with post-exploration out-
perform agents without post-exploration.

goal-reaching performance of post-exploration visi-
ble in Fig. 3. We think such a principle holds in other
environments as well.

Comparisons between agents with post-
exploration and ones without on Mujoco envi-
ronments are shown in Fig. 5 and we use the DDPG
agent with HER as the baseline (orange lines in
Fig. 5) to compare with. With post-exploration,
agents (blue lines in Fig. 5) outperform baseline
agents in both FetchReach and PointUMaze environ-
ments. We observed that at the beginning and the
end, two agents (with post-exploration and without)
tend to have similar performances. We interpret the
phenomenon as follows: the agent is not able to reach
any selected goals in the beginning so there are no
post-exploration and no benefits; then gradually the
agent starts being able to reach selected goals and
post-exploration comes in thus further improving the
performance; in the end, when the whole state space
is been entirely discovered post-exploration will not
add benefits anymore. We think this phenomenon
happens in environments where the baseline agent
(without post-exploration) can also fully discover
the whole state space over time, however, it would
less happen in environments where there are many

bottlenecks so that the baseline agent can hardly fully
discover the entire state space.

By adding post-exploration, the agent is more
likely to step into new unknown areas and thus can
further improve the state coverage. Ideally, we want
the agent’s visitation of the state space to be as uni-
form as possible. More specifically, the higher en-
tropy indicates that the visitation of the whole state
space is more uniform. The entropy is computed us-
ing Eq. 7.

−
N

∑
i=1

p(xi)log(p(xi)) (7)

where the whole state space is discretized into N bins

and p(xi) = n(xi)/
N
∑

i=0
n(xi), n(xi) is the number of vis-

itations of the ith bin. Fig. 6 shows the entropy on
agents’ visitation of the state space during the train-
ing. With post-exploration (blue lines), the entropy al-
ways lies above the one without (orange lines). There-
fore, the principle (Fig. 4) that we saw in the dis-
crete navigation tasks is still true in continuous con-
trol tasks.

Figure 6: The entropy of the visitation on the state space for
the agent with (blue) and without (orange) post-exploration.
Left: Entropy on FetchReach, with results averaging over
10 different random seeds. Right: Entropy on PointU-
Maze, averaged over 10 different random seeds. Adding
post-exploration can increase the entropy of the agent’s vis-
itation on the state space.
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6 CONCLUSION AND FUTURE
WORK

An intrinsically motivated agent not only needs to
set interesting goals and be able to reach them but
should also decide whether to continue exploration
from the reached goal (‘post-exploration’). In this
work, we systematically investigated the benefit of
post-exploration in the general IMGEP framework
under different RL settings and tasks. Experiments
in several MiniGrid and Mujoco environments show
that post-exploration is not only beneficial in navi-
gation tasks under tabular settings but also can be
scaled up to more complex control tasks with neural
networks involved. According to our results, agents
with post-exploration gradually push the boundaries
of their known region outwards, which allows them
to reach a greater diversity of goals. Moreover, we re-
alize that ‘post-exploration’ is a very general idea and
is easy to be plugged into any IMGEP method. Re-
searchers should put more attention to this idea and
consider using it when possible.

The current paper studied post-exploration in a
simplified IMGEP framework, to better understand
its basic properties. In the future, it would be in-
teresting to plug post-exploration into other existing
IMGEP methods directly to show its benefits. More-
over, our current implementation uses random post-
exploration, which turned out to already work reason-
ably well. So an interesting direction for future work
is to post-explore in a smarter way, like using macro
actions or options. For example, in tasks where we
need to control a more complex agent such as an ant
or a humanoid robot, then random actions will never
help the agent stand up properly and it is even harder
to lead the agent step into new areas. Another promis-
ing future direction is to investigate the ‘adaptive’
post-exploration. Intuitively, post-exploration will be
most likely useful when it starts from a state that is
new or important enough and the agent should post-
explore more if the reached area is more naive, etc.
In short, the agent should adaptively decide when and
for how long to post-explore based on its own knowl-
edge boundary or properties of reached goals. Alto-
gether, post-exploration seems a promising direction
for future RL exploration research.
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A APPENDIX

A.1 Hyper-Parameter Settings

A.1.1 Tabular Q-learning

All hyper-parameters we used for tabular Q-learning
in this work are shown in Tab. 2. Learning rate α and
discount factor γ are for Q-learning update (Eq. 2).
τ is the temperature for goal sampling. (Eq. 5). ε

is the exploration factor in ε-greedy policy. We av-
erage results over 3 different values of ε. ppe is the
percentage of the whole trajectory that the agent will
post-explore. ppe = 0.5 means the agent will post-
explore 0.5 ∗ l steps after the given goal is reached, l
is the length of the trajectory the agent takes to reach
the given goal.

Table 2: All hyper-parameters we used for tabular Q-
learning experiments.

Parameters Values
learning rate 0.1

discount factor 0.99
τ 0
ε 0, 0.1, 0.3

ppe 0.5

A.1.2 DDPG

All hyper-parameters we used for DDPG agent are
shown in Tab. 3. The learning rate α is for both the
policy and the critic update. τ is the temperature for
goal sampling. (Eq. 5). Random ε is the probability of
taking a random action and noise ε is the probability
of adding noise to selected actions. npe is the number
of steps that the agent will post-explore. nbins is the
number of bins we discretize the whole goal space on
each dimension. Batch size is the size of the batch
sampled for training every time. Replay k is the por-
tion of data we will relabel. If k = 4, that means we

will relabel 4/5 of the whole sampled training data.
The replay strategy we used here is ‘future’.1

Table 3: All hyper-parameters we used for DDPG agents.

Parameters FetchReach PointUMaze
learning rate 0.001 0.001

discount factor 0.98 0.98
τ 0 0.01

random ε 0.01 0.1
noise ε 0.01 0.1

npe 30 50
nbins 20 100

batch size 16 2
replay k 4 4

replay strategy future future

1For the remaining parameters of DDPG agents, we use
the default settings from https://github.com/TianhongDai/
hindsight-experience-replay.
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